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K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 4 

Dynamic Solution of General Coalition-Game 

MILAN MAREŠ 

The presented paper is a free continuation of the author's paper [3]. The general coalition-game 
model, suggested in [3], is further investigated, and the concept of the dynamic, i.e. not strong, 
solution of such game is presented here. Some of its properties are derived and the mutual con­
nections between both, strong and dynamic, solutions are discussed. The solution of the game is 
considered separately for coalition structures and for configurations formed by coalition struc­
tures and their admissible imputations. 

0. INTRODUCTION 

The concept of the general coalition-game was suggested in [3] and some of its 
special modifications were mentioned there. In the same paper [3], the strongly 
stable solution of such game was defined. This solution is a generalization of the 
"strong" or "ideal" solutions defined for some well known types of coalition-games. 

The strong solutions have some ideal properties following from the fact that they 
fulfil the demands of all players and coalitions. On the other hand, such solutions 
are not achievable for lots of games. For such games, many other solutions were 
defined which do not fulfil all theoretically possible demands, but which exist in all 
(or all important) games and describe the behaviour of rational players sufficiently 
well. These "weak" solutions are rather various, adapted for different modifications 
of the game model and for different purposes of applications. It means that it is 
practically impossible to find such a solution of the general coalition-game which 
would be a generalization of all of them. The solution of the general coalition-game 
suggested in this paper is an analogy of the solution of the coalition-game with side-
payments presented by the author in [2]. The main reason for choosing exactly 
that solution is that the solution deals with coalition structures and with imputations 
(or configurations) separately. In this way, the finding of the optimal coalitions and 
the finding of their optimal imputations may be considered separately. It is advanta-



geous for a wide class of applications. Moreover, the solution presented here is divided 
into a few relatively simple steps which enable certain variability and modifications 
of it, if necessary. Some more discussion about this topic is introduced in [2], and 
also in [3] and in Section 4 of this paper. It is shown in the following sections that 
the strongly stable solution of the general coalition-game is a special, most preten­
tious, modification of the dynamicaly stable solution given here. 

1. GENERAL COALITION-GAME 

The concept of the general coalition-game was introduced and discussed in [3]. 
The definition of it is briefly repeated and a few auxiliary notions are introduced in 
this section. In the whole paper we denote by R the set of all real numbers. 

Let us suppose that there exists a non-empty and finite set J, and the class of all 
non-empty subsets of/, denoted by J, i.e. 

J = 21 - {0} . 

Let us suppose, further, that there exists a mapping Vfrom 2' into the class of subsets 
of R1, i.e. 

V : 21 -» 2RI, 

such that for all K e 2 t 

(1.1) V(K) is closed ; 

(1.2) if x = (xt)iel e V(K), y = (yi)ieJ e R', x, £ y, 

for all i e K, then y e V(K) ; 

(1.3) V(K) * 0 , V(K) = R1 oK = ®. 

Then the pair 

r = (I, V) 

is called the general coalition-game. Elements of J and J are called players and 
coalitions, respectively. The mapping Vis the general characteristic function of the 
game T. 

Every partition of/ into disjoint non-empty coalitions is called a coalition structure. 
The class of all coalition structures in the given game is denoted by K. If X and <£ 
are two coalition structures then we say that J f is a subpartition of SC iff for every 
coalition K e Jf there exists a coalition Le £C such that K c L. 

If M c K is a class of coalition structures then we denote by \J M the set of 
coalitions 

(JM = {Ke J-.Ks^f for some JTe M} . 

If Ke J is a coalition then the set 



(1.4) V*(K) = {x = (x,)i6j: ,/ y = (y,)m e R1, yt ^ xt 

for all i e K and yj > Xj for some j e K, 

then y £ V(K)} = 

= {x = (xi)(s/: for all z = (zt)teI e V(K) is 

either xt > ztfor some i e K or xt = zt 

for all ieK] , 

is called the superoptimum of the coalition K. 

If Jl c J is a non-empty class of coalitions then we denote 

V(M) = n V(K), V*(M) = n V*(K), 
KeJl KeJi 

and for the empty subclass 0 of J is by (1.3) and (1.4), 

F(0) = F*(0) = R' . 

It is easy to see that for M cz J, Jf a J is 

V(M u / ) = V(M) n K p T ) , V*(Jt u / ) = F*(^T) n F*(J^) . 

It was shown in [3] already that for every coalition Ke J and for every coalition 
structure Jf e K is 

(1.5) V(K)u V*(K) = R1 

and 

(1.6) V(K) n V*(K) + 0 , V(jT) n V*(jf) + 0 . 

Every real valued vector x = (xt)kl e R1 is called an imputation. If there exists 
a coalition structure Jf E K such that x g F(^T) then x is called an admissible 
imputation in Jf. 

Every pair ( J T , x), JC e K, x e R1, is called a configuration. If, moreover, x e V(j#~), 
then the configuration ( J T , x) is called admissible in the given general coalition-game. 

It is obvious that for every coalition KeJ and every pair of imputations x e R1, 
yeR1 such that x ; ^ >\- for all i e K, the relation x e F*(K) implies y e V*(K), and, 
on the other hand, the relation y e V(K) implies x e V(K). Moreover, if x e V(K) — 
- F*(K) then there exists an imputation z e V(K) n V*(K) such that xt ^ z, for 
all i el. The last statement was proved in [3]. It is useful to introduce the following 
property of the general characteristic function V ana of the superoptimum func­
tion V*. 

Lemma 1. If K,LeJ are coalitions such that V(K) n V*(L) + 0 then also 
V*(K) n V*(L) + 0 and V*(K) n V(K) n V*(L) + 0. 



Proof. Let us consider an arbitrary imputation x e V(K) n V*(L). If x e V*(K) 
then the statement holds. If x e V(K) — V*(K) then there exists an imputation 
y e V(K) n V*(K) such that yt ^ x ; for all i e I. It means that y e V*(L), too. 

2. EFFECTIVE COALITION STRUCTURES 

The concept of effectivity, introduced in this section, is an important auxiliary 
concept by means of which the coalitions and coalition structures may be classified, 
and those ones having real chance to be realized may be chosen. The effectivity, 
defined below, represents a generalization of the analogous notion defined in [2], 
and it was partly used in [3], too. The main purpose of the effectivity concept is to 
exclude the coalition structures which can not appear during the bargaining process. 
In the second degree, the concept of effectivity helps to exclude the coalition struc­
tures which will be, in an extremally simple way, substituted by some other coalition 
structures, more advantageous for all players. For this purpose, two kinds of ef­
fectivity of coalition structures are introduced here. The effectivity from below, 
excluding the coalition structures in which at least one coalition can not fulfil the 
rational demands of its members and sub-coalitions, and the effectivity from above 
(which is less important) helping to eliminate the coalition structures which may 
appear but which will be immediately substituted by some universally more useful 
ones, only by means of simple union of coalitions. First of all, the following pre­
liminary notion is defined. 

Definition 1. A coalition K e J is called effective iff there exists an imputation 
x e V(K) which belongs to the superoptimum of all subcoalitions of K, i.e. iff 

V(K)n( D F*(J))=M. 

Remark 1. It follows from (1.6) immediately that all one-player coalitions are 
effective. 

Definition 2. Let X e K be a coalition structure. Then X is called effective from 
below iff each coalition K e X is effective. The class of all coalition structures being 
effective from below will be denoted by Kef. Further, X is called effective from above, 
iff for every coalition structure JS? effective from below, ££ e Kef, such that X is 
a subpartition of £?, there exists an imputation x e V(X) such that x <£ V(£C) -
- V*(y). The class of all coalition structures being effective from above will be 
denoted by Kef. The coalition structure X is called effective iff it is effective from 
below and effective from above. The class of all effective coalition structures will be 
denoted by Kef. 



Remark 2. It follows from Remark 1 immediately that the coalition structure 265 
containing exactly all one-player coalitions is effective from below. Moreover, if 
some coalition K e J is effective then there always exists a coalition structure effective 
from below and containing K. 

Lemma 2. A coalition structure X e K is effective from below iff there exists an 
imputation x e V(jf) such that for all f eK which are subpartitions of Jf, is 
X 6 V*(f). 

Proof. If j f e K is effective from below then all coalitions K e / are effective 
and, consequently, for every K e Jf there exists an imputation 

*K = (xf)ieIeV(K) 

such that xK e V*(J) for all J e J, J a K. As the coalitions in X are disjoint, it is 
possible to construct an imputation 

x = (x;) ie/ e R1, x, = xf, ieK, K e jf . 

Then 
x e n V(K)= V(X), 

KeX 

and x e V*(J) for all J e J, such that J c K for some K e Jf. It means 

x e n ( n V%!)). 
Ks.5f JeJf,J<=K 

Consequently, x e V*(f) for all coalition structures f e K which are subpartitions 
of J T . The opposite implication is obvious. 

Lemma 3. If L e J is not effective then there exists a set of coalitions 

(2.1) J*(L) = {J: Je J, J a L, J is effective} 

such that 

V*(L)=. n V*(J). 
JeJ»*(t) 

Proof. Let us denote 

J(L) = {J:JeJ,J <= L} . 

If L is not effective then 

V(L)n( n F*(J)) = 0-
JEy(L) 

As V(L) u F*(L) = R ,̂ according to (1.5), the inclusions 

V*(L)=. n F*(J) 
Je./(L) 



266 and 

(2.2) V*(L)^ n V*(J) 
Je(J*(L)-{L}) 

are true. The same is true for all non-effective coalitions J e / . Consequently, it is 
true even for all non-effective coalitions from J(L) — {L}. Hence, using (2.2), the 
inclusion 

V*(L)=> n V*(J) 
J<EJ»(L) 

is proved. 

Remark 3. The sets J*(L) used in the previous lemma are non-empty for all 
coalitions L e </, as they contain at least the effective one-player coalitions. It means 
that also 

U J = L 
JES*(L) 

for all coalitions L e / . 

Remark 4. It follows from Lemma 3 immediately that a coalition X e / i s effective 
iff 

V(K)n( n V%!))*0 
JeJf*(K) 

where the set of coalitions J*(K) is defined by (2.1). 

Remark 5. A coalition structure K e Jf is effective from above iff there does not 
exist any S£ e Kef such that X is a subpartition of S£ and V(tf) c V(S£) - V*(S£), 
as follows from Definition 2 immediately. 

Lemma 4. If the coalition structure Jf is not effective from above, i.e. Jf e K — Kef, 
then there exists an effective coalition structure Jl s Kef such that 

V(JT) c V(^) - F*(./#) . 

Proof. If Jf e K - Kef then there exists S£ e Kef such that X is a subpartition 
of Se and F(Jf) c V(jS?) - V*(S£), as follows from Definition 2. Let us denote 
by K(jf) the class of exactly all coalition structures S£ having the properties intro­
duced above. Let us choose Ji e K(Jf) such that for no Jr e K(,5T) the inclusion 

V(Jf) - V*(JS) => V(„#) 

holds. It is obvious that such a coalition structure Jl exists in the finite class K(X~), 
and that it is effective from above and effective from below. 



Theorem 1 . There exists at least one effective coalition structure in every general 267 
coalition-game, i.e. 

K% = Kef nKei + 0 . 

Proof. The coalition structure containing exactly all one-player coalitions is 
effective from below, as follows from Remark 2. It means that the class Kef is non­
empty. Let us define the partial ordering relation on Kef in such a way that for 
X, £C e Kef is Sf > X iff Jf is a subpartition of & and V(X~) <= F(.Sf) - V*(&). 
This relation is antirefiexive, antisymetric and transitive. As the class Kef is finite 
and non-empty, there exists at least one maximal element in Kef according to the 
partial ordering relation given above. The class Kef is equal to the class of exactly 
all those maximal elements. 

3. SAFE COALITION STRUCTURES 

By means of the concept of effectivity from below, we are able to eliminate the 
coalition structures which can not arize in the given game. Moreover, by means 
of the effectivity from above, we may distinguish the coalition structures effective 
from below, the "life" of which is limited by the ability of their coalitions to increase 
their profit by union of their cooperation. In certain sense, the effectivity of coalition 
structures expresses their ability to withstand the objections of their subpartitions and, 
on the other hand, of the coalition structures the subpartition of which the given 
coalition structure is. 

In this section, we are interested in the ability of coalition structures to resist the 
objections of the remaining coalitions and coalition structures. Coalition structure 
preserves its existence by choosing such an imputation which corresponds with the 
rational demands of as many coalitions as possible. The coalition structure may be 
considered to be safe against the objections (or demands) of some set of coalitions, 
if it chooses its admissible imputations which can not be dominated by any of the 
objecting coalitions and which preserves its effectivity from below. This idea is 
formulated, more exactly, in the following definition. 

Definition 3. Let Jf e K be a coalition structure and Ji c / b e a set of coalitions. 
We say that JT is safe against Ji, and write X a Ji, iff there exists an imputation 
x e V(X) such that x e V*(Ji). If X is not safe against Ji, we write Jf non a Ji. 

Remark 6. The preceding definition implies immediately that for j f e K and 
Ji <=. J is X safe against Ji iff 

V(pf) n ( f| V*(ji)) * 0 . 
MeM 



Lemma 5. If X e K is a coalition structure then 

(1) for any set of coalitions Jt <= J, exactly one of the relations Jf a Ji and 
Jf non a Jl is true; 

(2) if Jf e K — Kef then there exists a coalition Ke Jf and a set of coalitions 
Jt <= {J; J e J, J <= K, J. is effective}, such that Jf non a Jl; 

(3) if Jf e K - Kef then there exists ££ e Kef such that Jf is a subpartition of if, 
Jf non a <£ and ££ a Jf; 

(4) if ^ <= JT <= J and X a A" then Jf a Jt; 

(5) if.// c J then JSf a ^ implies Jf a (^ u Jf); 

(6) if 0 is the empty subset of J then always Jf a 0. 

Proof. The first statement follows from Definition 3 immediately. If Jf is not 
effective from below then there exists a coalition K e , f which is not effective, i.e 

V(K)n( n V*O)) = 0, 
JeJ ,JczK 

and, according to Lemma 3, for every non-effective coalition Le J, L <= K, it is 

n V*(J) <= V*(L) , 
JeJf*(L) 

where J*(L) = {J: J e J, J <= L, J is effective}. It means that 

V(K)n( n V*(J)) = 0 , 
JeJT*(K) 

too. Consequently, V(jf) n V*(.#) = 0 for some .Ji <= J*(K). If Jf is not effective 
from above then there exists an effective coalition structure Jaf such that Jf is a sub­
partition of S£ and 

V(jf) <= V(j£f) - v*(se), 

as follows from Lemma 4. It means that V(jf) n V*(jzf) = 0 and, according to 
Remark 6, X non a ££'. On the other hand, V(jf) c V(if) and V(jf) n V*(jf) * 0, 
as follows from (1.6). It means that V(S£) n V*(jf) 4= 0 and if a Jf. If .4T <= Jf <= J 
and J f a Jf then, according to Definition 3 or Remark 5, Jf a Jt, too. If j f a Ji 
for some Ji <= J\ then there exists an imputation x e V(jf) n V*(Ji). Condition 
(2.1), Lemma 1 and the fact that coalitions in Jf are disjoint imply that there exists 
an imputation y e V(jf) n V*(jf) n V*(J4), and, consequently, Jf a (Ji u Jf). 
Finally, if 0 is the empty subset of J then V*(0) = R1, according to Section 1. 
Hence, V(jf) n V*(0) 4= 0 for all coalition structures Jf, and Jf a 0. 

Lemma 6. If / e K, Jf e K and if V(f) <= V(jf) - V*(jf) then / non a Jf 
and Jf a f. 



Proof. If V{f) c F(jf) - V*{jf) then F ( / ) n V*{X) = 0. Hence, / non a X. 269 
Further, as V{#) c V(jf), relation (1.6) and the fact that coalitions in any coalition 
structure are disjoint imply that 

0 4= n (V(J) n V*{J)) cz n F(J) c n V(K). 
Jef Jef KeX 

It is equivalent with 

0 * V*(/) n F ( / ) c= V{jf) , 

then 

F(JT) n v*{/) # 0, j r CT / . 

Investigating the property of safety of coalition structures, it is sufficient to be 
interested in the effective coalitions only, as follows from the next statement. 

Lemma 7. Let Jf e K, J{ <=. J and let Jf non CT Ji. If there exists a coalition 
L e Jl which is not effective then there exists a set of effective coalitions / c= ,/*(L), 
where J*{L) is defined by (2.1), such that Jf non CT {{Ji - {L} u / ) . 

Proof. If L e ,M is not effective then, according to Lemma 3, 

F*(L)=> n V*{J). 
JeS*(L) 

It means that 

0 = V{jf) n V*{Jt) = V{X) n V*{L) n ( n V*{M)) => 
tfeJ-(i} 

=. V(jf) n V*(/) n ( n V*{M)) = F(jf) n V*((^ - {L}) u / ) 
Me.M-{L] 

for at least one set of coalitions / c= J>*{L). 

Corollary. It follows from the previous lemma that if j f e K, Jl c= . / , if 
J f non CT ̂ # and if there exists ££ e K — Kcf such that £? c Jt then there exists 
a class of coalition structures {/1 ( . . . , / r } <= Kef such that 

Jf non CT ( ( ^ - i f ) u ( / x u ... u / r ) ) . 

4. STABILITY IN GENERAL COALITION-GAMES 

The auxiliary concepts of effectivity and safety introduced in the preceding sections 
enable us to define the concept of stability in the considered general coalition-game. 
The stability will be considered for coalition structures and for configurations se­
parately. In this model, the stability of the coalition structures is the primary one, 
and the stability of configurations (or imputations) is derived from it in a simple way. 



The coalition structures which are considered to be stable must fulfil a few of 
natural conditions. Namely, their realization in the given game must be possible, 
i.e. they should be effective from below. Moreover, they must be safe against as many 
other coalitions as possible. Among the coalition structures fulfilling those conditions 
we prefer the ones which are stable from above. Analogously, the stable configura­
tions must be formed by stable coalition structures and by the imputations which 
guarantee their stability. 

In this paper, two kinds of stability are distinguished, the strong and the dynamic 
one. If the strong stability exists then the considered coalition structure or con­
figuration fulfils the reasonable demands of all players and coalitions. It means 
that it is safe against all objections and can not be replaced by another one, more 
advantageous for some coalition. Such strong stability was already introduced and 
discussed in [3], It is not difficult to verify that the strongly stable coalition structures 
do not exist in some games. Because of it, some weaker solutions, existing in all or 
almost all games, were presented in the literature. The main goal of this paper is to 
introduce one of such solutions for the general coalition-games. This solution will 
be called dynamically stable. 

The dynamically stable solution need not fulfil the demands of all players and 
coalitions. It means that it is not, generally, safe against all objections. During the 
bargaining process, the coalition structure or configuration having the properties 
of the dynamic stability, but not of the strong one, repetitively appears. After the 
objections of some players or coalitions, against which it is not safe, this coalition 
structure or configuration is substituted by another one. The new coalition structure 
or configuration is not safe against all objections, too, and it is substituted by another 
one. Each of these dynamically stable coalition structures or configurations may 
appear, after a few steps of the described process, again. They are equivalent in the 
sense that it is impossible to decide in which one of them the bargaining process 
really stops. 

The solutions presented in this paper are analogous to those ones given in [2] 
for coalition-games with side-payments. It was written in [3], already, that the 
solutions of different types of coalition-games presented in literature may be roughly 
divided into two groups. The first one contains the strong solutions fulfilling the 
demands of all coalitions. The strong stability, investigated in [3] and mentioned 
also in the following sections of this paper, is a generalization of some solutions from 
this first group. This fact was proved for the core of the coalition-game with side-
payments in [3]. It can also be proved for strong solutions of some other coalition-
games which are special cases of the general coalition-game. The second group of 
solutions contains the weak ones, not fulfilling the demands of all coalitions. These 
solutions are rather various and they can not be generalized by one weak solution of 
the general coalition-game. However, the dynamically stable solution suggested 
in the following section reflects at least some useful properties of the most important 
weak solutions known from the literature. 



The solution suggested in [2] was chosen to be generalized for the general coalition-
games according to its ability to separate the stability of coalition structures from the 
stability of imputations and configurations. It is useful in some non-traditional 
applications of the coalition-games theory, namely for clustering and groups forming 
models. This separation cannot be absolute, of course. The stability of configurations 
is derived from the stability of coalition structures, and, on the other hand, the sta­
bility of coalition structures is defined by means of some existentional properties 
of imputations. It means that both concepts, stability of coalition structures and 
stability of configurations, are closely connected. However, this particular separation 
of the concepts enables wider variability of their applications. 

The general ideas, discussed above, are more exactly formulated and investigated 
in the following sections. 

5. STABILITY OF COALITION STRUCTURES 

Before introducing the definitions of stability (strong or dynamic) of coalition 
structures, we define a useful auxiliary notion. 

Definition 4. The mapping A from the class of the coalition structures into the 
family of subclasses of the class of the coalition structures effective from below, 
A: K -> 2K'C, such that for all jf e K is 

(5.1) A(X) = {/ e Kef: there exist M c Kef such that 

Jf o- ((J M) and Jf non a (({J M) u / ) } 

is called the domination structure in the given general coalition-game. 

Remark 7. It follows from Definition 3 immediately that for any Jff e Kef is 

(5.2) A(jf) = { / e Kef: there exists M c Kef such that 

V(X) n ( n V*(~#)) * 0 and 
JleM 

V(tf) n ( n V*(Ji)) n V*{f) = 0} . 
MeM 

The previous remark implies that the concept of safety of coalition structures may 
be avoided in the definition of the domination structure A. In fact, it is an auxiliary 
concept without any deeper influence on the definition of stability. However, the 
concept of the safety of coalition structures enables us to simplify the formulation 
and formal description of some steps of the following explanation. It is also useful 
for the easy interpretation and understanding of some steps of the solution model 
suggested here. 



272 Remark 8. It follows from Lemma 5 that for any Jf e K is Jf $ A(X). 

Lemma 8. If a coalition structure Jf is not effective, Jf e K - Ke[, then A(X) 4= 0 
and also A(X) n K f̂ * 0. 

Proof. Let J f e K - Kef. Then there exists the class of coalition structures 

J — {</: S <= K, S is a subpartition of X} 

such that 

F( j f ) n ( n V*(S)) = 0 . 

Let us construct another class 

J* = { / : / e Kef, / is a subpartition of X} . 

It is obvious tha J* c _/ and J* a Kef. It follows from Lemma 3 immediately that 

n v*(s) = n n v*(j) •=> n n F*(J) = n v*(s), 

and, consequently, 

F( j f ) n ( n V* 

It means that there exists a class of coalition structures L cz J* and a coalition struc­

ture S eJ* - - <= Kef,
 s u c r i that 

F( j f ) n ( n F*(JS?)) 4= 0 
X&L 

and 

F(jf) n ( n V*(S£)) n F * ( / ) = 0 . 
XeL 

Hence, / £ ^ ( J T ) . Let, on the other hand, Jf e Kef - Kef. It follows from Lemma 5 
that J f c 0 where 0 is the empty class of coalitions. Moreover, it follows from 
Lemma 5 that there exists a coalition structure Sf e Kef such that JT non a Sf. It 
means that Sf e A(X). 

Lemma 9. If J f e K is a coalition structure then A(X) = 0 if and only if 
X a (U Kef). 

Proof. Let J f a (U Kef). Then 

F(jf) n ( n V*(Sf)) * 0 
sesKcr 



and there exists no Jt e Kef such that Jt e A(jf), as follows from (5.2). If, on the 273 
other hand, A(X) = 0 then, according to Definition 4, Jf a (U M) for all M c Kef, 
and also for A1 = Kcf. 

Remark 9. It follows from Lemma 8 and Lemma 9 immediately that A(jf) = 0 
iff Jf e Kef and Jf a (\J Kef). 

In the following two definitions, we introduce the concepts of stability, strong and 
dynamic, of coalition structures. The notion of strong stability was already defined 
and briefly investigated in [3], and both types of stability were interpreted and 
discussed in Section 4 of this paper. 

Definition 5. A coalition structure Jf e K is called strongly stable iff the value 
of the dominantion structure A(jf) is empty. The class of strongly stable coalition 
structures in the given general coalition-game is denoted by S*. 

Remark 10. It follows from the previous definition and from Lemma 8 immediately 
that S* <= K%. 

Theorem 2. A coalition structure X is strongly stable if and only if it is safe 
against the set of all effective coalitions. 

Proof. It follows from Lemma 9 immediately that , f e $ * iff / a ( U K t f ) . 
Remark 2 implies that 

U Kef = { M e / : 3 Jt e Kef, M e Jt} ={MeJ:M is effective} , 

and the statement is proved. 

Corollary. It follows from the preceding theorem immediately that 

Jf e S* o j f a (U Kef). 

The definition of the strong stability of coalition structures given in [3] was 
formally different from Definition 5 written above. However, Theorem 6 from [3], 
the previous Theorem 2 and Remark 7 of this work imply that both definitions are 
equivalent. As the strong stability of coalition structures was already investigated 
in [3], the dynamic stability and the mutual connections between both types of 
stability will be the main object of the presented paper. 

Definition 6. A coalition structure JT is called dynamically stable iff for every 
finite sequence of coalition structures 

{jfujf2,...,^r„} c Kef, 



274 such that 

Jf1 = j f , 3TreA(Xr.^, r = 2, . . . , _ , 

there exists a finite sequence of coalition structures 

{S?u...,S?m} <_ Kef 

such that 

S?\=Jfn, S?reA(S?T.1), r = 2, .... m , J f e _,(_?„). 

The class of all dynamically stable coalition structures is denoted by S. 

Remark 11. It follows from the previous definitions immediately that S* c_ S c Kel. 

Lemma 10. If Jf, i f e Kef and if e A(X), Jf e S, then also S? e S. 

Proof. If Jf e S and Sf e _l(jf) then there exists for every finite sequence 

{JT, s?, j r . , ..., jr„} c Kef 

such that 

Jf , e_l(_?), - f r e d ( j f r _ i ) , r = 2, . . . ,_ , 

there exists a finite sequence 

{JS?..,...,_?„} c K e f 

such that 

i f i e A ( j f „ ) , _?,£_.(_?._.), r = 2, . . . ,_. , j f e _.(_?„), 

and, consequently, if e S. 

Lemma 11. If jf, i f e K, j f e S* and if there exists a finite sequence of coalition 
structures {jf l5 ..., Jf„} c Kef such that 

J f i e _ l ( i f ) , J f e z l ( j f „ ) , _ r r 6 _ ( ( - r r _ i ) , r - 2 , . . . , « , 

then the coalition structure S? is not dynamically stable, i.e. S? $S. 

Proof. As J ( j f ) = 0, there is no finite sequence of coalition structures 
{Sfu...,S?m} <= Kef such that i f l £ _ ( ( j f ) , S?eA(S?m) and _?,£_,(_?._/) for 
r = 2 , . . . , m. Consequently, S? £S. 

Lemma 12. If Jf e K - Kef and if e Kef is the coalition structure for which J f 
is a subpartition of if and V(jf) c V(S?) - V*(S?) then J f # S* and if Jf e S ' 
then also S?eS. 



Proof. If X e K - Kef then d(jf) + 0, according to Lemma 8. Consequently, 
Jf $ S*. If i<? fulfils the assumptions of this lemma, then, according to Lemma 6, 
.3T non G ££. As JC a 0, where 0 is the empty class of coalitions, it follows from 
Definition 4 that JSP e A(jf). Lemma 10 implies that for j f e S is also i? e S. 

In the intuitive considerations introduced in Section 4, as well as in the Introduc­
tion, we have supposed that the bargaining process hardly ever stops in the coalition 
structure not effective from above, but that it is substituted by some effective unions 
of its coalitions. The previous Lemma 12 implies that this intuitively supposed step 
my be done without loss of the dynamic stability of the resultant coalition structure. 

It means that looking for the rational bargaining result of the general coalition-
game for the class of coalition structures, we may limit ourselves to two classes 
of them. Namely, to the class of strongly stable coalition structures (which are always 
effective, as follows from Remark 10), and to the class of effective and dynamically 
stable coalition structures. In symbols, we are interested in classes 

S* and S n Kc[. 

The main properties and mutual connections between these two classes of coalition 
structures are discussed and investigated in the remaining part of this section. 

When discussing the motivation of introducing the weak (in our terminology 
dynamically stable) solutions of the general coalition-games, it was claimed that the 
strong solution does not exist in some games. In the following example, we show that 
this statement is really true. 

Example 1. Let us consider a general coalition-game T = (/, V) such that / = 
= {1,2,3} and 

V({i}) = {x = (xk)k=u2y.xi^0}, 1=1,2,3, 

F ( M ) = {* = (**)* = >,2,3: xj + *j -= 1} , Uj = 1, 2, 3, i+j, 

V(l) = {x = (xk)k = U2y. x, + x2 + x3 g 1} . 

Then 

r*{{i}) = { / = 0 ^ = 1 , 2 , 3 : ^ 0 } , / = 1,2,3, 

r*({U}) = {/ = (^=1,2,3: )'i + yJ = 1}. U = 1.2,3, i +- j, 

V*(i) = { y = U)ft=1.2,3:^1 + ;'2 + > < 3 ^ i } -

Let us denote the coalition structures 

Jf0 = { { l } , { 2 } , { 3 } } , j r . = { { - } . {-, 3 } } , X 2 = { {2} , {1 ,3} } , 

X 3 = { {3} , {1 ,2} } , Jf4 = { / } . 



276 It can be easily verified that 

0 V*(Xt) = n {x = (x*)*=i,2,3: x, = 0, Xj + xm = 1, 

j , m = 1, 2, 3, j =f= i + m + j} = 

= {x = (xA)s=1,2>3: x ; ^ 0, Xj + xm ^ 1, 

/,./, m = I, 2, 3, m =)= i 4= j 4= m} , 

and 

F(jf4) n ((1 V*(tfi)) = 0 . 
i = 1 

It means that Jf4 £ Kcf. It is easy to verify, in an analogous way, that 

Kef = {JTO> -̂ "l> ^ 2 ) " ^ 3 / • 

Further 

V(jf0) = {x = (x,) t = 1 > 2 ,3 : Xi = 0, i = 1, 2, 3} 

and for any i e / is 

V(X) = {x = (xk)k=U2y. xt S 0, xj + x„, g 1, 

j , m = 1, 2, 3, j + / + m +• /} . 

Hence, 

V(jf0) c V(jr;) - F*(jf,.) 

for all i = 1, 2, 3 and, consequently, Jf0 £ Kcf. It is obvious, then, that 

Kcf = { j f , , j f 2 , j T 3 , j f 4 } and Kc
f = {jf „ Jf2, J f 3} . 

It can be easily verified that 

Jf 0 non a Jf, for i = 1, 2, 3 , 

and 

Jf i CT Jfj, Mi non a (jf} u Jf *) 

for all i,7, k = 1, 2, 3, i + j + /c + i. Moreover, 

J f 4 a J r , - , JT4 non a ( jf y, Jf fc), j , k = 1, 2, 3 , ; + / c . 

Consequently, 

J(jf0) = {jT f, Jf2, Jf3} , 

J( j f ;) = {jf,-, Jf*} , i,j, k = 1, 2, 3 , i * j * k + i , 

J(jf4) = {Jfj, Jf2, J f3 } . 



Hence, 
S* = 0 , S = {%\,tf2,X3} = K%. 

On the other hand, the second one of the considered classes of coalition structures, 
the class S n Kef, is always non-empty, as follows from the next theorem. 

Theorem 3. There exists at least one effective and dynamically stable coalition 
structure in every general coalition-game, i.e. S n Ke[ 4= 0. 

Proof. First, we prove that the class S is non-empty. Let us define a binary re­
lation >- on the class K such that for Jf, i f e K is ££ >- Jf iff there exists a finite 
sequence 

(J f , , . . . , Jf„} cz Ker, 

X 1 = j f , XreA(jfr.x), r = 2,...,m, <£ e A(jfn) , 

and there is no finite sequence {JSPX, . . . . ^£m}, such that 

S£x = <£ , 3'reA(S£r_1), r = 2,...,m, Jf _ A(<£m). 

Then >- is a partial ordering relation on the finite class K. It evidently follows from 
the definition of the relation >- that it is antireflexive, antisymetric and transitive. 
There always exists at least one coalition structure _e e K such that the relation 
Ji >- ££ is not true for any Ji e K. It follows from the definition of the relation 
>- that the class of such maximal elements according to >- is equal to the class 
of dynamically stable coalition structures. It means that S + 0. Moreover, S c Kef, 
as follows from Remark 11, so that also S n Kef =j= 0. If there exists some 
Jf e S — Kef = S — Kcf then Lemma 12 and Lemma 4 imply that there exists 
Ji e S n KH 

Considering the mutual relations among the important classes of coalition struc­
tures, it is useful to answer the question whether the class S is really different from 
Ke[. We know that S e Kef, nevertheless, it was not shown, yet, that S and Kef are 
generally different classes. The next example proves that it is so. 

Example 2. Let us consider a general coalition-game F = (I, V), with / = 
= {1,2,3,4} and with 

^ 0 } , ( = 1 ,2 ,3 ,4 , 

+ xj ^ 0 } , tjel, i*j, 

+ Xj + xm :£ 1} , i,j, m el, i + j + m 4= i, 

V(l) ={x = (xk)keI: x, + x2 + x3 + x4 S 1} • 

Let us denote the coalition structures 

* . - . { { - } . { - } . {3}, W} ^ 9 ={{3}, {1,2}, {4}} 

V({i}) ={x = (xk)ш: x 

П{iJ}) ={* = Ы t ó : x 
ЩiJ, m}) = {x = (xk)ш: x 



JT2 = {{1},{2,3},{4}} JT10 = {{3},{1,2,4}} 

JT3={{1},{2},{3,4}} j r i x = { { 4 } , { l , 2 , 3 } } 

JT4 = {{!}, {3}, {2, 4}} J r . . - - { { 1 , 2 } , {3, 4}} 

JT5 ={{1}, {2, 3, 4}} JT ] 3 = {{1,3},{2,4}} 

JT6 = {{2},{1,3},{4}} JT14 = {{1,4},{2,3}} 

JT7 = {{2},{3},{1,4}} JT15 = {/} 

JT. = {{2}, {1,3, 4}}. 

It can be easily verified, by methods used in Example 1, that 

Kef = * - {^15} , 

Kef = {JT5, J T 8 , JT10, J f \ i , JT1 2 , JT13 , JT14} 

and that 

^(•^s) = {^"s, JTio, - ^ n } > 

-•(•'* 8J = {^~ 5' "̂ TlO, •* l l j ' 

-"V^io) = {^5 ' ^ 8 , **"llj i 

A(Xxl) = {JT5, JT8, JT10} , 

^(•^12) = ^ (^13 ) = ^(-^14) = {^5> ^ 8 , ^10> ^ l l } • 

Consequently, 

S* = 0 and S = {jr 5 , j r 8 , JT 1 0 , j r 1 1} 4= Kef * K^ * S. 

It was already mentioned in this paper that the game solution model, introduced 
here, is in certain degree analogical to the model given in [2] for coalition-games with 
side-payments. It was proved in [2] that if there exists at least one strongly stable 
coalition structure in the considered type of game, then all dynamically stable coalition 
structures are strongly stable. This strong result is true for the very special case of the 
coalition-games with side-payments and for some games very closely related to them, 
but it is not true for all general coalition-games. It is shown in the following example. 

Example 3. Let us consider a general coalition-game r = (I, V), where / = 
= {1,2,3} and 

P({'}) = ix = (**W ** = 1} - i = L2,3, 
V({\,2}) = {x = (xk)kel:x, = 4 , x 2 ^ 2 } , 

V({\, 3}) = {x = (xk)ksI: x. £ 2, x3 g 4} , 

V({2, 3}) = {x = (xt)teI: x2 S 4, x3 g 2} , 

F(/) = {x = (xt)t6/: xt £ 3, k = 1, 2, 3} . 



Let us denote, analogously to Example 1, the coalition structures 

^ o = { { ! } , {2}, {3}}, 

Jf, = {{.},{/',&}}, i = l , 2 , 3 , j,k = 1,2,3, i+j + k + i, 

Jf4 = {1} . 

It is easy to verify that 

Kef = K and Ke
f
f = Kef = {jf „ j f 2, jf3, j f 4 } . 

Further, 

Jf 4 CT J f ; for all (' = 0, 1, 2, 3 and Jf 4 CT ( U Kef) 

and, consequently, 

i ( j f 4) = 0 . 

On the other hand, 

J f ; c r J f 0 , Jf ;CTjf4 for all i = l , 2 , 3, 

_>!? i O" yC 3 , J i 2 O" Jfc i , *>7 T O" Jfc 2 ) 

J f ! non CT Jf 2 , J f 2 non CT J f 3 , J f 3 non CT J f , , 

j f 0 non CT J f ; , i = 1, 2, 3, 4 . 

Then 

_)(jf f) = Jf 2 , J ( j f 2 ) = Jf 3 , _l(jf 3) = Jf . . 

It means that 

S* = { j f 4 } , S = { j f . , J f 2, J f 3, J f 4} = K e f = S n Kef. 

The coalition structure Jf4 is strongly stable, the coalition structures Jf u Jf2, Jf3 

are dynamically but not strongly stable, Jf0 is neither effective nor dynamically 
stable. 

One of the mutual connections between the classes of strongly stable and the 
others coalition structures is formulated in the following theorem and its corollary. 
Some further may be derived for some special types of general coalition-games, 
e.g. for superadditive coalition-games of for coalition-games with restricted or non-
restricted side-payments and for some other modifications of the general model. 

Theorem 4. If a coalition structure £? is not strongly stable then there always 
exists a dynamically stable effective coalition structure Jf e S n Kef and a finite 
sequence of coalition structures {jf 1 ; . . . , Jf„} c Kef such that Jf, E /)(_?), 
Jfr 6 _l(jf r_i), r = 2 , . . . , n, J f e J(jf„). 

Proof. Let us consider a coalition structure if e Kef — S, and let us suppose that 



280 the statement of theorem is not valid. It means, we suppose that there does not exist 
any sequence 

{ jr . , ...,3fn, JT) C Kef 

such that 

JfeS, XleA{S£), Xre A{Xr„x), r = 2,...,n, jf e A{Sf). 

As SS $ S*, there exists at least one coalition structure Sf x which is effective from 
below and such that Sf t e A{Sf). The assumption that the statement of this theorem 
is not true implies that Sf^^S a S*, and there must exist some Sf2 e Ket such that 
S£2 6 A{S£l). It is possible to continue in this way, and to construct a sequence 

{<e0,sfu...,sfm} c=Kef 

such that 

Sf0 = Sf, S£r e A{S£r_.i), r=\,...,m, Sfr<£S, r = 0,\,...,m. 

Moreover, we may construct that sequence so that 

Sfp 4= Sfs 4= Sf for r, s = I, 2 , . . . . m, r # s . 

As the class Kef is finite, it is obvious that after a finite number of steps we construct 
such Sfm e Kef that for every / e A{Sfm) there exists Sf h 0 ^ i < m, such that 
/ = Sf i. But, it means that Sfm is necessarily dynamically stable, S£ m e S. If J^m e S -
— Kef then Lemma 8 implies that there exists JT e Kef such that JT e A{Sfm) and, 
according to Lemma 10, X e S n Kef. If J$?m e S n K$, we put j r = Sfm. 

Corollary. The previous theorem implies that if the equality S = S* is valid in 
a general coalition-game then for every coalition structure Sf e K — S there exists 
a coalition structure Jf e S* and a sequence { J T J , ..., JT„} <= Kef such that 
JTi e J(j5f), Jf r e zJ(JTr_ i), r = 2 , , . . , n, JT e ^(Jr„). 

6. STABILITY OF IMPUTATIONS 

In the last section of this paper, the notions of the strong and dynamic stability 
of configurations are introduced. According to Section 1 of this paper, a configuration 
is a pair formed by a coalition structure and an imputation, and we call it admissible 
if the imputation is admissible in the considered coalition structure. The motivation 
of the stability concepts, as well as the reason, why the stability of configurations is 
separated from the stability of coalition structures, were discussed in Section 4. 
The main properties of (strongly and dynamically) stable configurations are closely 
connected with the analogous properties of stable coalition structures, and they are 
derived from them. 



Definition 7. A configuration (jf, x), Jf e K, x e R1, is called strongly stable 281 
iff it is admissible and x is an element of the superoptimum of all coalitions, i.e. 

x e V(X) n ( n V*(L)). 
Ls.f 

Remark 12. It follows from the previous definition immediately that a configura­
tion (X, x) is strongly stable iff 

x e V(X) n ( n V*(&)) . 
JfisK 

Remark 13. It follows from the previous definition and from Definition 5 that 
if a configuration (X, x) is strongly stable then the coalition structure Jf is also 
strongly stable. 

The following theorem is an analogy of the similar result introduced for strongly 
stable coalition structures in Theorem 2. 

Theorem 5. If (X, x) is an admissible configuration, i.e. x E V(jf), then it is 
strongly stable if and only if x belongs to the superoptimum V*(J) of all effective 
coalitions J; this condition is equivalent with x e V*(f) for all f e Kef. 

Proof. It was already proved in Lemma 3 that for any non-effective coalition 
Le J" the inclusion 

V*(L)=> n V*(J), 
JeJT*(L) 

where 

J*(L) = {J eJ: J c L, J is effective} , 

is true. It means that if x e V*(J) for all effective coalitions then x e V*(L) for all 
coalitions in J. A coalition structure f e K is effective from below iff it consists 
of effective coalitions only. On the other hand, every effective coalition belongs to at 
least one coalition structure which is effective from below, as follows from Remark 2. 
It means that 

n V*(J) = n V*(J) . 
Jt^.f,J is effective JeK. f 

Theorem 6. If Jf is a strongly stable coalition structure then there always exists 
an imputation x e R' such that the configuration (X, x) is strongly stable. 

Proof. The statement of this theorem follows immediately from Definition 5 and 
Definition 7. 

Theorem 7. If (jf', x) is a strongly configuration, i f e K is a coalition structure 
and if x e V(Se), then the configuration (if, x) is also strongly stable. 



Proof. If (jf, x) is strongly stable then x e V(jf) and x e V*(f) for all / e K . 
If x e V(£C), too, then the second condition keeps valid, and, consequently, (S£, x) is 
a strongly stable configuration. 

It is evident, especially after the previous theorem, that the strong stability of con­
figurations is, almost exclusively, a property of imputations. It keeps valid if the 
coalition structure is substituted by another one preserving the admissibility of the 
imputation. It means that it is possible to consider the strong stability of imputations 
as another form of the strong stability of configurations. It was done so in [3], where 
the strong stability of imputations is defined analogously to Definition 7, and some 
of its properties are derived. It follows from Theorem 6 that these properties may be, 
without any difficulties, transformed into analogous properties of the strongly stable 
configurations. 

The situation is essentially different if we consider the dynamic stability of con­
figurations. It is really a property of pairs where both members, coalition structure 
and imputation, play an important role, and where they are connected by relatively 
strong conditions. 

Definition 8. A configuration (X, x), j f eK , x e R1, is dynamically stable iff 

(6.1) xeV(jf); 

(6.2) J e S ; 

(6.3) Ji e Kef, x 4 V*(Ji) => Jie A(X). 

The preceding definition means that a configuration is dynamically stable iff it is 
formed by a dynamically stable coalition structure and by one of the imputations 
which characterize the dynamic stability. It means that the property of "dynamic 
stability" of imputations is dependent on the coalition structure in which the im­
putations are realized. The existence of dynamically stable configurations is guaran-
eed by Theorem 8 and by Theorem 3. Before presenting Theorem 8, it is useful to 
introduce the following lemma. 

Lemma 13. If a configuration (jf, x) is strongly stable then it is also dynamically 
stable. 

Proof. If (yT, x) is strongly stable, then x e V(jf) and x e V*(Ji) for alL# e Kef. 
Moreover, Remark 3 and Remark 11 imply that X e S. It means that all conditions 
of Definition 8 are fulfilled and (JT, x) is strongly stable. 

Theorem 8. If a coalition structure Jf is dynamically stable, then there exists an 
imputation x e R1 such that the configuration (jf, x) is dynamically stable. 



Proof. Let us choose a dynamically stable coalition structure X e S, and for 
every class of coalition structures M cz Kef denote 

(6-4) YM(X) = V(X) n ( D V*(Jt)) • 
JieM 

It follows from (1.6) that the set YM(X)is non-empty for at least one class of coalition 
structures M = {X}, where Remark 11 implies that M = {X} cz Kef. Moreover, 
if M cz N c Ke( then VM(jf) => YN(X). If / e Kef and VM(Jf) 4= 0 then 
yMuif}(^) = 0 only if / e A(X). Then also / e S, as follows from Lemma 10. If 
YM(^) * 0 for all M cz Kef, then J(Jf) = 0, and for all imputations 

*ey K e f ( J f ) 

the configurations (Jf, x) are strongly stable. It means, according to Lemma 13, that 
(X, x) is dynamically stable. If 

yK^) = 0 

then there exists M cz Kef such that X e M, 

**.(•*") * 0 and YMu{y)(X) = 0 for all J e Ke{ - M . 

It means that all / 6 Kef - M belong to the set A(jf), and all imputations 
x e YM(3f) + 0 fulfil the condition (6.3). The coalition structure Jf fulfils (6.2), and 
(6.1) follows from (6.4). It means that (X, x) is dynamically stable. 

Corollary. Theorem 8 and Theorem 3 imply that there exists at least one dynamical­
ly stable configuration in every general coalition-game. 

Theorem 9. If a coalition structure JT is strongly stable, Jf e S*, and if x e R1 

is an imputation such that (jf, x) is dynamically stable, then the configuration (jt, x) 
is strongly stable. 

Proof. If Jf e S* then A(jiT) = 0, as follows from Definition 5, and x e 
for all Jt e Kef, because of the dynamic stability of (JT, x). That dynamic stability 
implies also that x e V(yf), and the conditions of Definition 7 are fulfilled. 

The preceding theorem means that a strongly stable coalition structure cannot 
form a configuration which would be only dynamically but not strongly stable. 
A consequence of that fact is formulated in the following, last theorem of this paper. 

Theorem 10. Let X e K be a coalition structure and let x, y e V(jf) be admissible 
imputations. If the configuration (X', x) is strongly stable and the configuration 
(X, y) is not strongly stable, then (X, y) is not dynamically stable. 



Proof. If ( J T , X) is strongly stable then Remark 13 implies that j f is strongly 
stable coalition structure. If ( J T , y) were dynamically stable, then it should be, 
according to Theorem 9, also strongly stable. As we assume that (Jf, y) is not 
strongly stable, the statement of theorem must be true. 

7. CONCLUSION 

The concept of the dynamic stability of general coalition-games, introduced and 
investigated in this paper, represents only one of the possible "weak" solutions of 
such games. It is obvious that also some other solutions, suggested for special cases 
of such games, may be generalized and reformulated for the general coalition-game. 

The results, derived in this paper and in paper [3], describe some of the main 
general properties of the investigated type of games. It is not difficult to see that 
further results may be derived for particular more special types of such games. It 
was done so in the literature for the known types of games. On the other hand, some 
further special cases, e.g. the general coalition-games with the superadditivity as­
sumption, or coalition-games with restricted side-payments (cf. [3], Section 5) 
represent an unknown field, from this point of view, and it will be useful to pay some 
attention to them. 

(Received April 5, 1978.) 
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