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K Y B E R N E T I K A — V O L U M E 19 (1983), N U M B E R 1 

ESTIMATION OF PROBABILISTIC NOISE MODELS 
BASED ON FILTRATION OF SAMPLE NOISE SEQUENCES 

IGOR VAJDA 

Optimum as well as suboptimum estimation of standard multistate noise models of information 
theory is introduced. The suboptimum estimation is based on a suitably filtered noise sequence 
only. It is also shown that a formula for probability of errorless transmission which has formerly 
been derived within the framework of a two-state model remains to be applicable independently 
on the number of states considered. 

1. INTRODUCTION 

In most communication situations, the information-theoretic concept of a channel 
reduces into simpler concept of a noise. This is connected with possibility to repre
sent the channel output messages as sums a + X of input messages a = (au ..., a„) 
with some random sequences X = (Xu ...,X„). In digital communication both at 

and Xj can be supposed to take on values from a binary alphabet A = {0, 1} and 
the + can be interpreted as a coordinate mod 2 binary addition. Thus a practically 
oriented information theory is concerned with binary random suquences {Xt : i = 
= 0, ±1, . . -} representing probabilistic noise models (cf. [1]). 

In this paper we consider a quite common class of probabilistic noise models. 
Models are simple and, on the other hand, realistic for a relatively wide variety of 
real communication channels. 

Strictly speaking, each class of noise models is a set of probabilities P on the natural 
c-algebra of subsets of the set A1 of all binary sequences {xt: i = 0, ± 1, . . .},i.e. 
the set of all possible realizations of above considered binary random sequences. 
The aim of this paper is to propose statistical methods for estimation of probabilities 
P within the class considered. The estimation is based on samples (xu ..., x„) e A" 
from the noise random sequences, called sample noise sequences. As the title indicates, 
filtration of a sample sequence (xu ..., x j is an important mid-step in our method 
of turning out this sequence into a concrete estimate P. 
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2. PROBABILISTIC NOISE MODELS 

The class of noise models we shall deal with can be described as follows. Consider 
the stochastic automaton shown in Fig. 1 with a finite or infinite state space S = 
= {g, b, gt,..., gN} (i.e. with N e {0, 1,..., oo} where the limit specifications for N = 

PN 

Fig. 1. (P=pt+ ... + PN). 

= 0 or N = oo are perhaps clear from Fig. l) and with an output function 

1 if s = b 
(1) 00 = 

0 if sє{g,g1,...,gìi} . 

The 2N + 2 parameters of the automaton are supposed to be arbitrary real numbers 
from the open interval (0,1) (state transition probabilities) satisfying condition 
P + P^h 

Let {Sj : i = 0, +1 , . . . } be a stationary Markov chain with the state space S 
and with the transition probabilities matrix 

b _ g gx ... gN 

l-ß-ß ß ßt ... ßN 

q 1 - q 0 . . . 0 
qx 0 1 - ? 1 . . . 0 

7N L <ZN 0 0 . . . 1 - qNJ 

Obviously, this chain is irreducible and aperiodic (i.e. ergodic) with 

/ ( l + fijq + fijq)-1 if s = 6 

(2) P(S, = s) = — fi\q(\ + fijq + ^q)'1 if s = g where fijq = ^fifa . 

^ PMl + Pk + PlqY1 if - = ffi-
The random noise { Z ; : i = 0, ->1,...} is now defined as the output random sequence 

of the automaton, i.e. 

(3) Xi = 0{St), £ = 0, - > 1 , . . . . 

Thus a general noise model which we consider is defined by a (21V + 2)-parameter 

16 



automaton. The TV is called the order of the model. It follows from (l) that g,gt ... 
. . . , A N aie good (errorless) states while b is a bad (error) state. Consequently the 
parameter p = P(X, = l) = P(S; = b) (see (2)) means a bit error rate of the noise 
under consideration. An obvious non-triviality condition on infinite-order models 
is thus 

P v Pi 
q i=l fl; 

In what follows we restrict ourselves to models satisfying this condition. In fact, 
all practically interesting models are satisfying a stronger condition, namely 

(4) 3 < - < oo (cf. Section 4) . 
q q 

Note that the zero-order models have first been considered by Gilbert [2]. These 
models are uniquely described by just two parameters q, P e (0,1). It is obvious that 
the errors appear here in clusters (bursts of errors) of average length ijp. The average 
length 1/yS is not, however, a proper measure of a burst memory since the actual 
scattering of errors over the noise sequence depends on the parameter q too. A proper 
measure of memory we obtain if we take the ^-divergence of two consecutive noise 
digits (see [3]), which is given in the zero-order models by(l - q — fif. Thus (in 
a subclass of practically interesting models non-negative) 

(5) X = 1 - q - P 

can be considered as a noise memory measure (if 1 - q — P < 0 we replace (5) 
by | l - q - p\). Since it follows from (2) and (5) that 

(6) q = p(l~l), P-(1-P)(l-X)> 

each zero-order model can be reparametrized by (p, %) instead by the less intuitively 
appealing (q, P). 

An obvious advantage of the zero-order over higher-order models is that they 
allow reconstruction of the sequence of states (S1 ; . . . , Sk) from the observable noise 
sequence (Xu...,Xk) (i.e. the statistic (Xu ..., Xk) - (^(Sj),..., #(S„)) of the 
state sequence (S1 ; . . . , Sk) is sufficient for the unknown parameters; such models are 
sometimes called unifilar, see [4]). A disadvantage is that, in real sample noise 
sequences, the burst of errors form block of mixtures of l's and O's inserted between 
long error-free gaps while, in zero-order models, the bursts are simply blocks of 
pure l's. Consequently, the correlation properties of zero-order noise sequences are 
too far from the observed reality. 

This disagreement can be supressed by passing to higher-order (multistate) models 
defined by Fig. 1. These models have been introduced into the literature by Fritchman 
[5]. According to [6, 7, 8], such models realistically describe HF radio channels 
and, according to [9], telephone channels too. A general discussion of practical 
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applicability of these models can be found in [1]. Note that the infinite-order version 
of the Fritchman's model is just a theoretical abstraction introduced for the purpose 
of the present paper. 

As soon as N = 1, the noise random sequence is neither Markov chain nor the 
statistic (Xu ...,Xk) is sufficient for the parameters of the model. This means that 
to find out an asymptotically optimum solution of the estimation problem introduced 
above is a difficult task. 

In the next section we describe an asymptotically optimum solution based on a side 
information additional to the statistic (Xt, ...,X„). In Section 4 we describe an 
asymptotically suboptimum solution of this problem based on the statistic (Xt,..., X„) 
only. 

3. ASYMPTOTICALLY OPTIMUM ESTIMATION 

From now on we consider an arbitrary fixed model of order 1 _ JV :§ oo with 
a Markov chain of states {S; : i = 0, ± 1, . . . } . Next definitions are based on the idea 
that the noise is "bursting" as long as S,- takes on values from the set {b, glt..., gN}-
Thus g e S is the only truly good state of the model generating long blocks of 0's 
(of average size \jq) while gteS are semigood states generating short blocks of 0's 
(of average size l/a/) frequently alternated by l's (inside error bursting time intervals). 
Thus our basic intuition can formally be expressed by the assumption that \\q is 
much (say two orders) greater than qt for all i = 1, ..., JV. Taking into account our 
experience with bursting error measurements both in HF and telephone channels, we 
can conclude that we shall stay well within limits of practical applicability of the 
theory if we simplify this assumption into the following form 

(7) q^lO'3, q,, fc 1 0 ' 1 for all i = l,...,N. 

It is to be noted, however, that neither (7) nor any similar assumption is formally 
needed for the theory developed below so that this theory applies to the arbitrary 
model under consideration. 

The random sequence {Yt : i = 0, +1 , . . . } defined by Y; = ^(S;), where 

,1 if se{b,gu ...,gN} 
(8) ^ ) = < n ., 

x 0 if s = g , 
is called burst indicator sequence. 

Let us now consider a subsequence of the sequence {Xt : i = 0, + 1 , ...} of noise 
digits generated while S; is continuing to stay inside the "bursting state" {b,gu ..., gN) 
In other words, Xt belongs to the subsequence if Y; = 1. Enumerate the 
elements Xt of the subsequence with i > 0 by iu i2, ... and the elements 
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with i = 0 by i0, i_ t , ... and denote {Xt. : j = 0, ± 1 , ...} by {Z} : j = 0, 
± 1 , ...}. It follows from this definition that the new sequence is generated by 
a reduced version of the automaton of Fig. 1 shown in Fig. 2 with the same output 
function (l) as that generating the noise sequence {Xt : i = 0, + 1 , . . . } . Thus if 

{Sf : i = 0, ± 1 , . . . } is a stationary Markov chain defined by the transition matrix 
of Fig. 2 then, obviously, 

(9) Z ; = <P(St) for i = 0, ± 1 , .... 

Let us call the {Z; : i = 0, +1, . . . } a burst noise sequence. Since, vaguely speaking, 
the burst noise sequence is the noise {Xt : i = 0, +1, . . . } filtered by a random filter 
{Y : i = 0, ± 1 , ...}, we use a product notation 

{Zs:i = 0, ± 1 , . . . } = {Xt:i = 0, ± 1 , . . . } . {Y(: i = 0, ± 1 , . . . } . 

Let now ( Z 1 ; . . . , Z m J w i t h a random m„ be the burst noise subsequence of the 
noise sequence (Xu ..., Xn) and denote this subsequence symbolically by (Xlt..., Xn). 
. (Yj, ..., Y„). Under our assumptions it obviously holds 

(10) lim m„ = co a.s. 

For each k, I e {0, 1} we shall consider statistics k(Yu ..., Y„), kl(Yu ..., Y„) 
or k((Xu ..., X„). (Y 1 ; . . . , Y„)), kl((Xu ..., X„). (Yt,..., Y„)) denoting absolute 
frequencies of digits k and absolute frequencies of consecutive digits (k, I) in the 
sequence (Y 1 ; . . . , Y„) or (Z l 5 ..., Z m j = (Xu ..., X„). (Yu ..., Y„)respectively. 

Define now estimators 

(П) 
_ = 1 oo(Y ь . . . ,Y„) = 1 П(У 1 , . . . ,Г.) 

Ö f t ľ „ ) ' " í(ү1,...,ү„), 

Ł = l -
Щ(X1,...,X„).(Y1,...,Y„)) 

o((x, , j f . ) . ( y . , . . . , Y„)) 

ii((3r1,...,z.).(r1,...,y.)) 
i((2r.,...,z.).(y.,...,y.))' 

of unknown parameters q, fi or parametric functions q, /i of the model under con
sideration. 
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Theorem 1. The estimators q„, P„, q„, P„ defined in (11) are strongly consistent, i.e. 

(12) lim q„ = q , lim /?„ = /? a.s. 

(13) lim q„ = q, lim fi„ = fi a.s. 
ii—oo n—co 

Proof, (i) By definition ( l l ) and by definition of the burst indicator 

. ,- 00(Y l5..., Y„) 
hm q„ = 1 - lim —-M?—L-2 l = 

n-ooO(F1,...,YJ 

= 1 - lim 

oo^sj , . . . , y(sj) 
n  

"o(y(s1), . . . ,y(s^" 

j n - l 

1™- I W S . , S m ) 
= 1 - ~ n i = 1 - . 

lim- tIe(S.) 
n-oo n j = l 

Since {S,- : i = 1, 2,. . .} is an ergodic chain, the limits in numerator and denominator 
exist and 

lim - L W s « > S, + 1) = P(Si = g, S2 = o) a.s. 
n-oo n . = 1 

lim- tI 9(^)=P( s i = ^) a.s. 
n-oo f. i = l 

Since 

f ( S J - ^ p ) = P(S2 = a|51 = , ) = ! - , (seeFig . l ) , 

the first relation in (12) is proved. The second relation in (12) can be proved analo
gically. 

(ii) In view of (10) it holds 

00(Z1, ...,ZmJ 

hm q„ = I - hm -
n-oo 0 (Z 1 ; . . . ,Z m J 

m„ 
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so that, by (9), it holds for g = {glt..., gN} 

l im- IWSr,Sf+ 1) 
. . _ . _ - + « > » . „ i = l 

lim q„ = 1 — 
Иm-Ì I/,(SГ) 
n-»=o »7„ i = l 

Since the chain [S* : i = 1, 2,...} is ergodic, the limits in numerator and denomi
nator exist and 

lim - "thxÁSt Sj+Í) = P(S*eg, S*2eg) a.s. 
n-»oo m „ i = l 

Since 

and 

H m - f,I-j(St)=P(SÏeg) a.s. 
n-oo m„ І = I 

P(S* e g, S2* e g) = E P(S2* eg\st = g-) P(S* = «,•) = 
i = i 

= __.(- - « . W i = 3i) (see Fig. 1) 
i = l 

p(Sr6^) = xp(sr = i7,), 
we have proved that 

S_iP(s? = 0i) 
lim 5_ = i= i 

zp(sr = ^) 
i = l 

Since, further 

p(s?-*<)---(i+?y l (rf.(2)), 

it holds by (2) 

lim q,. = — = q 

and the first relation in (13) is proved. The second relation in (13) can be proved 
analogically. • 

Since the estimators ( l l ) are in fact maximum likelihood estimators of the respect
ive parameters, they are asymptotically optimum not only in the stated sense, but 
also in the sense of efficiency. Details are omitted here. 
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4. ASYMPTOTICALLY SUBOPTIMUM ESTIMATION 

In the preceding section we have supposed an additional side information (Yv . . . 
..., Y„). Here we consider the problem of estimation of unknown parameters /?, q, P, q 
on the basis of noise (Z 1 ; ..., X„) only. 

Let us consider an arbitrary fixed natural number k. Define a filter E: A1 -* A1 

of the noise by E({x; : i = 0, +1, . . .}) = ({y; : i = 0, ± 1 , ...,}) where 

(14) pt = / ( 0 c o ) (x ; + xi+1 + . . . + xi+k) (ordinary addition). 

The filtered noise sequence 

{%:i = 0, ±1 , . . . } = E({X;:i = 0, ±1, . . .}) 

will be considered as an estimator of the unknown burst indicator {Y; : ; = 0 , + 1 , ...} 
We shall say that a noise model for e < 0 is e-admissible if 

(15) q < 1 - ( 1 -e)m, qi^l-£
1'k for i = l,...,N. 

We see that for 10 ~ k = 50 and for e of order 10 " 2 the class of e-admissible models 
contains all models satisfying (7) i.e. all practically interesting models. 

Theorem 2. If the model is e-admissible then P(Y; + Y;) < e for all i = 0, + 1 , ... 

Proof. It holds 

p(fi * * . ) = £ P(fi *Yi\Si = s) P(S; = s) = 
ssS 

£ P(Y; + 1 [ St = s) P(S; = s) + P(f; + 0 | S; = g) P(S; = g) 
se{b,g,,...,gN} 

= X P(Y; = 0 | S; = s) P(S, = s) + (1 - P(Y; = 0 | S; = g)) P(S; = flf) . 
se{b,0i 9 N ) 

Since S; = b implies Z ; = $(S ;) = 1, it follows from (14) that P(f; = 0 | S; = b) = 
= 0. Further by (14) 

P(Y; = 0 | S, = a;) = P(X; = ... = Xi+k = 0 | S, = o;) 

= P(S; = ... = S;+, = gl\Sl = gl) 

= P(S1 = ... = Sfc = f l , . | s 0 = 3,-) 

= (1 - g;)
fc (cf. Fig. 1) 

and, analogically, 

P(Y; = 0 | S; = g) = (1 - qf . 
Thus we have proved 

P(Yt + F,) - S (1 - <?,)* P(S, = 3,) + ( ! - ( ! - qf) P(S; = a) • 
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Therefore 

P(Y; 4= Y) S max {max (1 - qtf, 1 - 1 - qf) . 

The desired inequality now follows from the fact that (15) implies 

max {max (1 - q,f, 1 - (1 - qf} ^ g . 

This result implies that if 10 ^ k ^ 50, then the filtered noise estimates the un
known burst indicator in all practically interesting situations with an error frequency 
of order at most 10 ~2. This order is essentially less if k is properly adapted to concrete 
noise sample sequences. 

On the basis of Theorems 1 and 2 we propose the following estimators qn, /?„, 
q„, fJ„ of the unknown parameters q, P,q,fl: 

1 ] q" 0(f1 , . . . ,Y„) l(?u...,?„) 

_ 00((Xu...,X„).(?,,...,?„)) 

0((Xu...,Xn). (?,,...,%)) ' 

f!r = 1 - 11((*,, - , * - ) • ( - ! , - , ->.)) 

with 

(17) % = 

1((Z 1 , . . . ,Z„) . (Y 1 , . . . ,Y„)) 

>-<o.«)(X. + ••• + Xi+k) for Í = 1, ..., n - k 

M ( 0 i 0 0 ) (X,+ . . . +Xn) for І - И - I . + 1 л . 

5. APPLICATION OF THE REDUCED MODEL KNOWLEDGE 

The above described statistical procedure provides us with a limited knowledge 
of the model (only two of 27V + 2 unknown parameters with two more parametric 
functions). But analytical treatment of some communication problems can be 
carried out with this limited knowledge equally well as if a complete knowledge was 
available. As an example mention here theoretical problems around the transmis
sion rate in ARQ communication. All the theory is based here on the function 

P „ ( 0 ) = P ( ( Z 1 , . . . , X „ ) = (0,...,0)) 

approximating P((XU ...,X„)eJf) for linear codes Jf c A" (see [10] and [11]). 
This function can be decomposed as follows 

(18) P„(0) = _ ; P , ( 0 | s ) P ( S o = s ) , 
seS 
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where 

P„(0 |S) = P((X1,...,X„) = ( 0 , . . . , 0 ) | S o = s) 

and P(S0 = s) is given by (2). It follows from Fig. 1 and from (3) that 

Pn(0\g) = (l-qj" 

p„(o\b) = (i-qr
i +ipl{i-q,ri 

i = l 

p„(o|fl,.) = ( i - < / , ) " • 

This together with (2) and (18) yields 

(i + £ + i) p„(o) = I (i - qy + p(i - qy-1 + i w - qd"'1 + 
\ q q) q ;=i 

+-L^(i-9^-£(--flr1 + £ f i ( - - « r 1 

(=i g, <j i=i a 
Hence, in view of (4), 

P 

(1 - g ) - 1
 š P n ( 0 ) ^ - ^ - - ( l - £ / ) " - 1 + 

1 + i - 1 + £ 
g з 

+ (1 - min g:J 
1 + -

Applying again (4) and (7) we obtain that in all practically interesting models P„(0) = 
±(l'-q)"-\i.e. 

(19) P„(0) = e _ «". 

Therefore P„(0) is essentially independent of the 2N — 1 remaining model para
meters as well as of the model order N. 

Since the parameter q is estimated (through the procedure proposed in Section 4 
or any other procedure) less comfortably than the noise error rate p = P(Xt =.1) = 
= P(S( = b), (p is easily estimated through p„ = 1(XU ...,X„)jn) it would be inte
resting to try to replace the parameter q by the parameter p and other additional 
parameters. This procedure is, however, meaningful only if the estimation of the 
additional parameters is simpler than the estimation of q itself. Fortunately, our 
experience with noise sequences from various concrete channels indicates that the 
parameter fi is more stable than the parameter q when outer conditions of a given 
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real channel vary at random. This fact together with the formula 

'—j-ij-J (-WWW) 
1 + - + - ' 

q q 

offer possibility to replace the parameter q in (19) by the product* pp. Moreover, 
it follows from (5) that for q satisfying (7) it holds ft = 1 — % where % is a burst 
memory introduced in Section 2. Thus (19) can be replaced by 

(20) P,(0)=s=e-'*" = e - ' ( 1 - " ) " . 

Notice that, placing ourselves within the framework of the zero-order model, (20) 
would be obtained directly from (6) and (19). Since the interpretation of both para
meters p and x is intuitively appealing, the right-hand formula in (20) seems to be 
quite convenient for theoretical analysis of ARQ communication problems. This 
formula had in fact been already used in [lOj but with a aless general reasoning than 
that presented in this paper. 

A typical application of the formula (20) is as follows. If a noise source of a commu-
cation channel slowly fluctuates within a class of multistate sources with a stable %, 
then the frequency of errorless transmission E„(0) fluctuates monotonically with 
average error frequencies 1(2L1} ...,X„) or p„ = 1(XU ...,X„)/n and 

(2i) p ^ e - a - ^ , , . . , , , , ) p ^ h m m . 
"(i - i) 

(Received April 22, 1982.) 

R E F E R E N C E S 

[1] L. N. Kanal and A. R. K. Sastry: Models for channels with memory and their application 
to error control. Proc. IEEE 66 (1978), 724—744. 

[2] E. N. Gilbert: Capacity of a burst-noise channel. Bell System Tech. J. 39 (1960), 1253 — 1366. 
[31 I. Vajda: Theory of Information and Statistical Decision (in Slovak). Alfa, Bratislava 1982. 
[4] T. Ericson: Unifilac sources and the source approximation problem. Ericson Techn. 28 

(1972), 175-290. 
[5] B. D. Fritchman: A binary channel characterization using partitioned Markov chains. 

IEEE Trans. Inform. Theory IT-13 (1967), 221-227. 
[61 S. Tsai: Evaluation of burst error correcting codes using a simple partitioned Markov 

chain model. IEEE Trans. Coram. COM-21 (1973), 1031-1034. 
[7] P. McManamon: HF Markov chain models and measured error averages. IEEE Trans. 

Comm. COM-18 (1970), 201 — 208. 

* In view of the formula p = qjfl we can say that above stated hypothesis means that the fre
quency q of transitions from the good state g to the bad state b of the channel is much more 
responsible for fluctuations of the average noise error rate/) than the frequency /? of transitions 
from the bad state b back so the good state g. The frequency p is usually between 0-7—0-9, i.e. 
of constant order while q is frequently fluctuating over two decadic orders. 

25 



[8] J. A. Picardi and P. I. Trafton: Error behavior of tactical H F data transmissions. Trans. 
IEEE Conf. on Commun. 4020—4025, Seatle 1973. 

[9] K. Brayer: Characterization of the digital high speed AUTO VON channel. Final Report 
of the MITRE Corporation, MTR-2968, 1976. 

[10] I. Vajda: Theoretical aspects of high-speed data transmission (in Czech). Přenos dat,ČSVTS, 
Brno 1981. 

[11] I. Vajda: Output based estimation of communication channels. Kybernetika 7(5(1980), 
330-340. 

Ing. Igor Vajda, CSc, Ústav teorie informace a automatizace ČSAV {Institute of Information 
Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou piii 4, 
182 08 Praha 8. Czechoslovakia. 

26 


		webmaster@dml.cz
	2012-06-05T10:46:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




