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KYBERNETIKA — VOLUME 20 (1984), NUMBER 2

ON CHARACTERIZATION OF DIRECTED DIVERGENCE
OF TYPE § THROUGH INFORMATION EQUATION

R. P. SINGH*, R. K. KHANNA

‘The directed-divergence of type f (f > 0, f =i 1) has been characterized through an ‘Informa-
tion Equation’ and its solution, under the homogeneity (of type f, f >0, f == 1) has been
obtained. Some applications of the directed-divergence of type § to Information Theory have
been discussed.

1. INTRODUCTION

The information theoretic concepts as envisaged in various measures, namely
Kullback’s information or directed-divergence [5], Kerridge’s inaccuracy [7] and
Theil’s information improvement [12], have found many applications in behaviourial
sciences. Characterizations of these measures in arbitrary probability spaces and
continuous analogs have been discussed earlier by Campbell 2], Rathie and Kannap-
pan [8], [6], Sharma and Autar [10]. Sharma and Soni [11] and Renyi [9] etc.

The object of this contribution is to characterize the directed-divergence of type
BB >0 =% 1) through ‘information equation’ and to discuss some applications
of it to information theory. Let the true probabilities of a system of events be given
by the complete probability distribution:

P = (Pl»l’z,“-’ Pa)s P20, ZP:‘ =1.

i=1
n
Letthe Q = (qy, 43, .- 4,), 4: = 0, Y. g; = 1 be the revised probability distribution.
- i=1

The measures of error made by the observer or the measures of information gain,
estimating the discrete probability distribution Q from the probability distribution P
are given by

(1.1) 1, (1’”"2""‘ p”) =

Gis G20 -5 Gy

i

n
-1
pilog(piqi’)
=1
* First author is thankful to U.G.C. (India) for financial assistance.
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and
s P2s oo P -1 -1 u 1-p
1.2 m(Per ):211 1 fgl P — 1
(12) <‘]1~‘127~-:‘l" ( )L ]
(cf. [5], and [8]) where >0, + 1.
Here we consider the ‘information equation’ given by

» X, ¥, 2\ _ 4 fx+» 0,z Xy 0
(1-3) ! (I, m, n) =1 (l + m,0, n) +1 (I, m, 0

in the domain D* = {(x, y, z; L, m, n);x, 5,2 2 0, ,m,n 2 0, xy + yz + zx > 0,

Im + mn + nl > 0}, a generalization of entropy equation [4] viz.
(].4) H{x, y, z) = H(x + 3,0, z) + H(x, ¥, 0)
(x,9,220, xy + yz + zx > 0).
The homogeneity condition considered here is defined as follows:
Ax, Ay, Az b 1-p (%Y 2
1.5) I* = I . A 0, >0, .
(1.5) (;zl, um, ;m) Pu S\L m,n b= b B+l

The symmetric and homogeneous (of type B, f >0, f + 1) solution of (1.3)
has been given in Section 2 and its applications to information theory have been
discussed in Section 3. '

2. SOLUTION OF INFORMATION EQUATION AND
CHARACTERIZATION OF DIRECTED-DIVERGENCE

In this section we solve the information equation (1.3) and characterize the directed-.
divergence of type f under the homogeneity condition (1.5). Let the measure (1.2)
satisfy the following postulates:

Postulate 1. Branching property i.e.

5 P2seees P + P25 P3s -5 Pa
(2'1) I{:(M Pz P) ;__1’/:‘_1(171 P2, P3 P) +

A5 925 -5 Gy d1 + 42,93, -5 4,
s Py P2\
) _ Prt+ P2 Pt D2
+ (0 + 0 (0 +92)' 0 14

91 92 -
41+ a2 41+ 42 ’

Postulate 2. Symmetry i.e.

(2_2) If (Pl, D2y eons Pn) _ lf (Pku)s Dr(2ays ++ v pk(n))

d15 925 -+ 4n Tr(1)s Dr(z)s + o> Dien,
where k(1), k(2), ..., k(n) is a permutation of 1,2, ..., n.
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Postulate 3. Nullity i.e.

1,0,0
N s L,V —
(2.3) 1 (1, 0, 0) 0.
Postulate 4. Unit i.e.
1,0,0
2 (b =1,
@4) fr (%, 3, 0) !
Lemma 1. The function
(2.5) X y z

,—_;-}+z’;<+y+z’x+y+z
pX%¥ 2\ _ , 8 1-pys | ¥
() e Y@ .

l+m+n l+m+n I[+m+n

(1,220, x+y+2z>0, Lmnz0,l+m+n>0)f+1 >0 satisfies
the information equation (1.3).

Proof. Set n = 3 in Postulate 1,

+ P2, P3

2.6 ¢ P1> P2> P3) _ I (Pl ) +

@9) 3(111,%, qs) ~ *\a1 + 0. 45
D U - T
py+ P2 Prt D2

+ (Pl + 172)‘7 (‘h + qZ)l_ﬁ I
q1 42

g+ 0 4t 4
Letting py = p, =

3, ps=0
G=9,=%, ¢;=0
and thenp; = p; =%, p,=0

G1=q3=%, ¢;=0
and using Postulate 2 we get

@7 1t (i g) =0.
Next setting ps = 0, ¢35 = 0in (2.6), we get
) " (Zi I;;%) =% (21 i Zi: g) + (o + 22 (0 + 02
P P2
N py+ P2 P1t P2
91 _92

a1+ 8x G+ a2
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which in accordance with p, + p, = 1 = q; + ¢, and (2,7} yields

X 0 P> P
2.9 1 Pys P2s ) — B[Py 2) .
@9 : <q1, 42,0 *\a1> 22
Therefore (2.6), on using (2.9) takes the form

P1; P2 1+ p2, 0. p -
(2.10) 1‘;(‘ "3):13‘(‘ P2 3)+(p1+p2)”(ql+qz}"’-

41> 42, 43 41 + 42,0, q5
I TEN S
Ny pi+p: pPLtD2 )
_ 4 42
91+ 42 41 + 4>
Next setting '
Py = z > P2 = Y » = z
X+y+z xX+y+rz X+y+z
and
_ 1 _ m _ n »
‘]1—74_";4’? q2—1+m+n, _Vlr+m+n
in (2.10), we get on simplification
(2.11)
X .y z
" x+y+z’x+y+z’x+y+z__ ' 1
: ) m n Tty Ema )t
+mtn I+m+n l+m+n
X+ y 0 z

x+y+z  x+y+z
(x+y+z)”(l+m+n)!_”l’g ' 7
I+ m n

\ > 0,
U+ m+n I+m+n

X Y _ 9
x+y x4y
+(x+ O+ m)rL '

! m_,

Finally using the functional relation (2.5), we mark that I (7’ ;Z’ ::) satisfies (1.3)
and this proves Lemma 1. > [m}

Next we prove the main theorem which relaxes the regularity condition.
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Theorem 1. The symmetric and homogeneous solution of type f, of (1.3) satis-
fying Postulate 3 and Postulate 4 is given by

(2.12)

” <;’ ”;’ ;) = AP0 4 PP Pt (x + y + 2 (I + m )]

where 4, = (27 — 1)1,

Proof. By homogeneity, we have

(% 0,0\ g (1,0,0)
(2.13) 1 (1, 0’0> X’ 13(1,0)0 0

x,1>0, f+1, f>0.
Define a functionf : [0, 1] x [0, 1] — R such that

1 —xx0
) = B > Xy -
(2.14) Sl =1 (1 e 0)
1-x x 0 I —x 0 x)\
= Aﬁﬂl-ﬂ]ﬂ A 2 — Aﬂﬂlﬁilﬁ 4
=11 0 -1 0 L
pw g

xe[0,1], I=[0,1], A4 p>0.
With this substitution on the right hand side of (1.3) and then using symmetry,

we get

(x+y+z)"(l+m+n)‘“”f(__i,_;._n__)_,_
X+y+z l+m+n

Y A (IO YLl f GRS ) I
et e m™f (= e

=(x+y+z;"(l+m+n)““f-‘y—~;——L ) +
xX+y+z l+m+n

Fxtzf a2 I
( i ) f(x+z I+n
or

(2.15)

l t-8
7 z , n + x+y> I+m 7 y . m)=
X+y+4+z l+m+n x+y+z/ \U+m+n x+y I+m
I3 1-8
oy N xEz N LA NP ;)
X+y+z l4+m+n x+y+z) \l+m+n x+z l+n
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Putting

z y n m
a= , b= —_ = , 0=
x+y+z x+y+z I+ m+n [+ m+n
(2.15) becomes
(2.16) flasa) + (L—af (1 =)t b f b, 0.
l—a 1 -«

IR SR Y

which is a functional equation which has the following solution

(217) flaso) = Agfafar™? + (1 —a)f (L —a)* P =1], B>0, B=1
(cf. [8]) under the boundary conditions

(2.18) f(1; 1) = £(0; 0y

and

(2.19) (L3 =04 =1.
From (2.18) we have

(2.20) Ay =(21F — 1)L,

Next (2.14) and (2.17) gives

(221 1’ G B Z’ Z’ g) = Agfa"atF + (1 —a)f (1 —a)™f —1].

Returning to the substitution,

_ z _ y _ n m
x+y+z,

;—iiy%’—iz’ I+m+n’ T+ m+n

(2.21) takes the form
x+y , z L0
x+y+z x+y+z
1 =
I+ m n

l+m+n l+m+n

-4 z 4 n ‘“”+ x+y V( Il+m “";l
? x+y+z) \l+m+n X+ y+z I+m+n

or

(222) g (7 i ;vr: Z’ g) = A[2PntF 4 (x + p) (1 + m)*~F —

—~(x+y+2f(I+m+n) .
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Also (2.22) and (2.2) gives

0
(223 I (;;}1 O) = A [XP1*F + yPm! P — (x + y)fP (I + m)t™F].

Finally (2.22), (2.23), (2.2) and (2.5) with (1.3) give the required result i.e.

I (;’ ’Jn f) = Ap[x"PF 4 yPmt P 4 2Pt~ (x4 y + 2 (P + m 4+ n) ]
> m,n

where Ay = (2“”1 -1 h
This completes the proof of the Theorem 1. ]

3. APPLICATIONS TO INFORMATION THEORY

Theorem 2. Let P = (p;, ps, ..., p,) €4, and @ = (g4, q;, ... 4,) € 4, be two
complete probability distributions; their directed divergence of type f satisfying
Postulates 1~ 5 is given by

(1) (Pt - o — [ el 1]

"\q1 42, - 4n
where f £ 1, > 0.

Proof. For probability distributions (p,, p,, ps) € 45 and (q;, 44, g3) € 4,
S pi=Y q, = 1, we have from (2.12)
i=1 i=1

P, P2 - - -
(32) M(‘Zpﬁ=@Mﬁﬂ+ﬂﬁﬂ+ﬁﬁ”—ﬂ
91, 492> 93
Also from (2.9), when p, + p, = 1,4, + g, = 1, we have
I P1s P2\ _ B 1-§ Bol=8 _
(3‘3) 2 an . = Ap[[’;‘h + p24: 1] .
1> 42

Applying the mathematical induction, we get the required result i.e. (3.1). Hence
the theorem. O

m n
Theorem 3. Let P = (Ph P2 - pm)s _ZIP;' =1, 0= (‘11: g2y -5 qu): .ZI‘Ij =1
n i= Jj=

and Q; = (qis> dizs -+ i), 3. 455 = L, i = 1,2, ..., m be the probability distribu-
tions, then we have j=t

_Z]pi‘hls ig]pigil; --ué}’i‘l.ﬁ) n (q“, Qizs o q,»,,)

o) s¥ it
q:, Gos cvnnnn s Gn 91> G20 --+29n

= itn
1

i=
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Proof.
ZPiQiu --uil’z‘lin nom _
n(= S o g (B a0
Ay oovenns > Ay J=ti=1

Refer, [3] (p. 532)
(3'5) (Zpi‘hj)ﬁ = Zpiq,?j’ for f<1
i=1 ]

<Y paly, for f>1.
i=1

Multiplying by q}'” and summing over all j's, we have

nom

" m
21(_211);(1”)‘* a* 2'_21(_211’#1?1) q;~*
J=1i= j=li=

according as f 2 1. However since (2#7* —1) = 0 according as 2 1, we have
when ff + 1

(3.6) (O Y [il(éll’i%j)p a7 -1] =

@t -t [Zl leiq{'liq}-ﬂ -1].
==

Thus
ZPi‘Zuw--,ZP.'Qi N i i
If(i:l =1 n>§(2f‘"—1)'12pi[2q{’jq}‘”—1]=
s evvvns s G =rg=t
_ “ iI'/: qihq[Z""’qin).
i:zlp (q.,qz, e
This completes the proof of the theorem. O

We conclude that the characterization of directed divergence under homogeneity
condition have applications in Mathematical Economics, Production Theory and
Utility Theory.
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