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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 3 

An Application 
of Logical-Probabilistic Expressions 
to the Realization 
of Stochastic Automata 

TOMÁŠ HAVRÁNEK 

In this paper some methods are suggested for the realization of stochastic automata and prob
abilistic operators. These methods are based on the notion of logical-probabilistic expression. 
Knowledge of papers [4] and [5] is eesential for the understanding of the following considerations. 

I. REALIZATION OF PROBABILISTIC OPERATORS 

The notion of a probabilistic operator, as we shall use it in the following considera
tions, was introduced in paper [4] as follows: consider a triplet s/ = [A , 0>A, B~], 
where A = {au a2, ..., ak} is the input alphabet, B = [bu b2} is the output alphabet 
and 3PA = {Pa}asA is a system of probabilities on B; we call this triplet the probabilis
tic operator with binary output. Analogously, the probabilistic operator with multiple 
valued output was defined (B = {bt, ..., b,}). The problem of the realization of these 
operators is understood here as a problem of how to find a probabilistic operator 
stf' = [A ', gP'A,, B]with a previously given structure, that would be probabilistically 
equivalent to the original, i.e. such ^/', for which there exists a one-to-one mapping 
[j/ of A on A' for which Pa = P'^a), a e A. Ke will now use logical-probabilistic 
expressions (LP-expressions). These expressions were introduced in the paper [4] 
as well. An LP-expression is a triplet $ = \F, SPF, QF\ where: (l) F is a logical-
-probabilistic form (LP-form), i.e., a form of propositional calculus in which a new 
kind of unary logical connective is used(<?)1, (p2, ...), (2) QF is a finite space of random 
events; the values of associated functions of probabilistic connectives are determined 
by these random events, (3) 2?F is a system of probabilities, 0>F = {Py}y, on QF, 
where the values of parameter y are given by the values of such subexpressions as F' 
for which (pt(F') is a subexpression of F (given a value on input variables). For further 
useful details see [4]. 

Probabilistic properties of an LP-expression 0 can be described by the characteristic 
vector p0; 



where a are possible evaluations of the variables and Qx is a subset of QF such that 
funcF (a, to) = 1 for to e Qu where funcF is the associated function of F (see [4]; 
Def. 8). Analogously the properties of sf can be described by the vector p^ = 
= (PJ(b2))aeA- We shall now try to find a probabilistically equivalent operator 
in a form corresponding to a LP-expression to a given probabilistic operator. Further, 
this LP-expression should be in simple probabilistic disjunctive normal form 
(SPDNF, see [4]; Def. 12). 

Theorem 1. Consider a probabilistic operator with binary output (stf = [A , 0>A) B]) 
There exists a natural number m, a mapping i/̂  of A to {0, l} m and an LP-expression 
<P = [F, QF, 0>F\ being in SPDNF, such that for every a e A Ptt(b2) = pna), where 
pHtt) is a member of p0. 

The vector p9, in which the members for which a $ ip(A) are left out, we denote 
asP<PWuy Then we can writep„>^(A) = p^. 

Proof. Let A = {aj, ..., afc}, let m be the smallest natural number for which 
k ^ 2m. We construct \j/ in the following way: let \j/(a^) = a, where a is the binary 
form of the number. - 1. W e p u t p ^ = (Pttl(b2), ..., Pttk(b2))

r andp^ = (Paib2), ... 
..., Pttk(b2), 0, ..., 0)T(dimensionp^ = 2m). According to Theorem 4from [4] we can 
construct an LP-expression <P = [F, QF, 3?F] in SPDNF, such thatp^ = p^. There is 

k 

(1) F ~ V 9i(A' ')& * ? ' & • • • & Xm^ , 
j = l 

where 

(xj if e) — 1 , 
x • = 

X; if ej = 0 , e; = ^(a.) 

and the probabilistic parametres of <p; are (0, p ;), p ; = Pa.(ft2) (P;(0; l) = 0, P ;(l; 1) = 
k 

= p ;); moreover, ^ F = {P(y; <a)}y£(0il)k, where P(y; w) = TJ P;(7,-; co;) for every 
y e {0, 1}* (the stochastical independence of <P). i = 1 • 

For computation of the characteristic vector of <P see also Example 3 from [5], 
This LP-expression can be physically realized by a logical net with probabilistic 

elements (LP-net). The numbers of elements of the corresponding net (or connectives 
in the expression) will be denoted as D(&), D(v), D(~), D(cp) respectively. For this 
realization according to the previous theorem we need D(&) = k(m — 1), D(v) = 
= k - 1, D(~) S m2m-1 and D(q>) = k. 

If we consider the numbers in binary forms, we need 2"'~1 more zeros for numbers 
from 0 to 2m~1 — 1, than for numbers from 2 m _ 1 to 2m - 1. By the coding \j/ to 
{0, l}m in the same way as in the theorem, we need the first k numbers for the forms 
(pt(x

ei ) & . . . & x ^ " . The occurence of 0 corresponds to occurence of an element 
of negation. It is much more useful to code from the top down, i.e., ^(a^ = (1, ..., 1), 



•A(a2) = (l) •••> 1> 0), !/>(a3) = (1, ..., 1, 0, 1) etc. By logical subexpression of an LP-
-expression we mean an LP-subexpression without any probabilisti connective. 
If we substitute the subnets corresponding to equivalent logical subexpressions 
by one subnet of the net corresponding to the form F of LP-expression (l) with the 
help of elements of forkjunction (see Fig. 1), then the number of used elements 

/ Xì,\-
. . Vj ftfX,)g*2- |—) 

H ViҚ, , ö—-/ 
Д y,f*,)&xг... Ң [y )fx f)&~xztx3Ax t[-

a) b) 

Fig. 1. 

is considerably lower. By the substitution we do not change the corresponding LP-
-expressions, nor the computation of probabilities. The LP-expressions remains 
stochastically independent. Then D(&) ^ 2 m _ 1 — 4 and the other numbers are 
without change. The preceding inequality follows from the fact that the number 
of distinct logical expressions of the form x ^ J ' & x ^ " occuring in expression (l) 
is less than 2 2 + 1, and the number of distinct logical expressions of the form 
:x4'ҷ22 & ••• & xe„f is less than 23 + 1 etc.; if we have such a subexpression of a given 
lenght, we need only one new conjunction to construct two new longer and distinct 
subexpressions. Then 

D(&) = 22 + 23 + ... + 2m = 2 m + 1 - 4 . 

The equality in preceding inequalities occurs if and only if all members of (px, ..., pk) 

are different and positive. If pt = 0 for some i e {1, ..., k], then we leave out the 

form p.(xi'') & . . . & xe™\ 

Further simplifications with the help of the element of forkjunction are posible 

if for some i, j , i =f= j , we have pt = pj 

Lemma 1. Consider a characteristic vector p^ and let there exist i,j e {1, ..., fc}, 
i =(= j , such that pt = p.. If we replace in LP-expression (l) q>bxEf)& ... & xB„f and 
<Pj(x\1') & .. . & xe,f by subexpressions with the forms 

Ft ~ xi1' & . . . & w'lxf) & .. . & Xs;"' 

and 

Fj ~ xef&...& (p'lxf) & .. . & xsy, 

where / is the indice for which e\ = ej and (p'h cp'j are functionally equivalent, then the 

equality p^ — P^^i>u) is preserved. 



Proof. We have 

(2) P(func Ft(a) = 1, func F/a) = 1) = 

= Pi(ol;l)pll -,_„,.-„, am + 

+ Pi(^,0)p1

al...iai_uO.<,l + 1 , „ , 

where 

P-......-,-ьC.« 

1 if x c

1 ' i & . . . & C & . . . & x ^ i = 1 
and x\lJ & ... & C & ... & x^"' = 1 
for x = a , 

0 in other cases , 

because Pt,/oi, c.; 1, 0) = 0. 

Further the right hand side of (2) is equal to 0, because pa\ >; ffm = 0 for every a 
and £, if we consider the form of F ; and Fj. Thus 

P(func Fi(a) = 1 u func F/a) = 1) = 

if <r = e1 or a = _' , 

in other cases. 
= P(func F,(ff) = 1) + P(func F/a) = 1) = j P ; lf 

(0 ii 

The stochastic independence and distinctness are preserved with respect to other 
conjunctive members from the form (l). • 

In the corresponding net we can then replace the subnets corresponding to F, 
and Fj by a single net with an element of forkjunction. In more complicated cases 
such as p; = Pi., i $ {iu ..., ir] __ {l, . . . , k}, we proceed in the analogous way. 

For other method see [ l ] , [2], [3], [6], [8], [11]. The methods from [8] and [11] 
for binary outputs are similar to the method suggested here. 

We now give our attention to the realization of the probabilistic operators with 
multiple values output. Then we have to consider characteristic matrices of the form 
(P„(b))£gB, i.e., characteristic matrices of such an operator. 

Analogously, we can consider characteristic matrices of the vectors of LP-expres-
sions, i.e., matrices of the form 

(P(funcFl (a, a>) = d , ..., funcFk(a, a) = Ql^;Vf 

(see [4]; Def. 14). 

Theorem 2. Consider a stochastic matrix P = (py)}=i','.'.'.',2»- Then a vector of LP-ex-
pressions $ = [F, QF; ^ F ] , where F = (F/xy, ..., x,„), ..., Fk(xu ..., x,„)), exists 
such that Pj, = P. 

Proof. We define logical expressions 

G_(y_, ...,yi-1), ••., Gn(yt,..., yt-_), 1 = 2m, 



in such a way that their associated functions are given by the table: 

У = = ( > ' , , . . , . ' , - l ) C „ . . . G„ 

1,.., 1 1. . . . .1-C, 
Уг f-
Уl-l Či-i 
Уi ì 

.i-0 c, 

where each y2, . . , y ^ j contains only one member equal to 0, and y2, . . , y.-x are 
different. The expressions are defined so that 

P((G1( J) , . . ,G„( J)) = Ci) = P ( j = (l,..,l)), 

P^G^y), ..., G„(j)) = C,-_) = P(y = 7 , - i ) , 

P((G1( J), . . ,G„( J)) = Q = l - _ _ P M = y,.). 
i = i 

According to Theorem 1 we can find LP-expressions -»1; ..., ->,_., stochastically 
independent, such that (if Oj is the binary form of j — 1 and P r is the probability 
determined by 0>r = {Pr,yr}) P'r(oj; Q\) is equal to p] for r = 1 , . . , / - 1, j - 1 , . . . 
. . , 2m. We considered the LP-expressions <£r = [F r , Qr, &>r] and P(ff; co*,.., ft)*) = 

, - i 

= Y\ P'r(
a<co*)- We n o w define a vector of LP-expressions given by a vector of LP-

r = l 

-forms F = (Ei(x), . . , F'„(x)), where Fj = GX^i, . . , F ._ , ) and E/ are functionally 
equivalent to F. fdr r =- 1 , . . , / — 1, j = 1, ..., n. 

If p' , i = 1 , . . , 2m, are solutions of the equations 

(3) £^2 . . . £ ( - , = P a , 

e . i8 .2 ••• £j,-2 ~ Pn = P u , . = 2, . . . , Z - 1 , 

where j u .., j , _ 2 are those indices for which 

r f ' - i (.'/-W.-.r}-1)). 
then the above mentioned vector of LP-expressions fullfils the assertion of the theorem. 
This is because (considering the definition of LP-expressions <_>•) by forms F}) we have 

(4) 

(Cj-(Cî. . . . .C5)) . 



246 where p„t,zj ls a member of the characteristic matrix of 4>, and the right hand side 
of (4) is equal to p\... p'r1 = pn for j = 1, to p\ ... p\~~2(l - p(^'l)) = pi2 for 
j = 2, etc. 

For j = /we obtain the value of probability as a complement. • 

If we have a probabilistic operator with matrix P^ = ( p 0 ) of the type k X I, 

we find the smallest natural number n for which / ̂  2" and a one-to-one mapping .9 

of B to {0, 1}". Then we find a vector of LP-expressions such that ptj = p,KajWbj), 

where p^^at)&(,bj) is a member from P$. 

Example 1. Consider a probabilistic operator with the characteristic matrix 

(Pii.—,Pis\ 
p* = M ; fc = 3, / = 5 . 

\P3L--;P35/ 

Then n = 3, m = 2, / — 1 = 4 and 

J7 
G, G2 G3 

1111 1 1 1 
1110 1 0 0 
1101 0 1 0 
1011 0 0 1 
01ПÌ 

. . . .} 0 0 0 

Then G1(>')= yx &y2 &y3, G2(y) = ^ &y3 &y4 and G30) = yx &y2 &y4. To obtain Gv G2 

and G3 in a simple form we construct 3 in another way: S(6X) = (1,1, 1), 9{b2) = (1, 0, 0), etc.; 
we construct y/ in the usual way. For x(at) we obtain equations 

e l e 2 E 3 e 4 = Pn , 

£ le2e3(l - e4) = pi2 , 

e l e2( l - e
3 ) E4 = Pi3 > 

e l ( l ~ E2) e3E4 = Pi\ • 

e i = (Pn + Pn) (Pn + Pi3) (Pa + Pi^P2^, 

e2 = (Pn + Pu)'1 Pn, 

e3 = (Pn + Pi3yl Pn, 

e4 = (Pn + Pn)'1 Pn-



For / ' = 1, ...,k we obtain p\, ...,p\ 1 and therefore the characteristic vectors of # . , ...,<£, 247 
P<t> = (-Pi> •••'?{) • The desired vector of LP-expressions has the following vector of LP-forms: 

/ F 1 ( x ) & F 2 ( x ) & F 3 ( ^ 
F (^ )= F1(x)&F3(o:)&F4(x) 

^M&F^&F^*} 

For the construction of the corresponding net it is possible to use elements of fork-
junction: (1) In the nets corresponding to _>l5 ..., $i-i we can use the same method 
as in the case of a net with binary output (see above). (2) In the nets corresponding 
to <Pj,..., 4>,_j we can use common subnets corresponding to subexpressions 
x2

lJ & ... & x*™' which in all Fu ..., F , _ . are identical. (3) The vector of LP-expres
sions was constructed so that the subexpressions substituted in distinct expressions 
G,, ..., G„ in the places of yu ..., y,_t are structurally equivalent (therefore func
tionally equivalent). Then we need only one (Z - l)-tuple of the nets corresponding 
to 0U ..., _•,_!_. 

Example 2. Let k = 6,1 = 5, then m = 3, n = 3 and 

6 

r, = V v>i£A'')& G'i(x2> * 3 > . 

where 

G';(^2' ; t :3)= * 2 2 ' & * 3 3 ' -

This example is continuation of Example 1, only the number of inputs is changed. The corres
ponding net is drawn in Fig. 2. 

Let us now consider the numbers of used elements. Consider a probabilistic opera
tor with I-valued output and k-valued input. The realizing net will consist: (l) Z — 1 
nets corresponding'to _>., ..., <P,-j, (2) n nets corresponding to Gu ..., G„. 

(1) The common subnets for Q>,, ..., $ ,_ ! have the number of elements corres
ponding to & equal to (m — 2) k and every <Pj has in addition k elements correspond
ing to &. Then D(1)(&) _ (m - 2) k + (I - l) k = fc(m - 3). For every net the 
number of elements v is equal to k — 1, then Z) (1)(v) g (Z - 1) (A: - 1). We use 
the negationes only on the input variables, then D ( 1 / ~ ) = m. 

(2) We know that it is possible to express every boolean function G in the form 
Vc(cr)=iyT1 & •••&yT-V- Therefore for the given table of values of the function 
we can construct a logical expression. With the help of minimalization (see, e.g., [7]) 
we obtain 

Gt(y) = (yt &y2&y3& y4) & ((y5 & y6) v y 7 ) , 

G2(y) = (yi & y2 & y5 & _v6) & ((y3 & y«) v y-i) -

o3(y) = (yi &y3&y5& y6) & ((y. & y4) v y 7 ) , 



Lir~riT_, 



if the table is e.g., 

1111111 I 1 1 Э(bt) 
1111110 1 1 0 Э(b2) 
1111101 1 0 1 Э(bг) 
1111011 1 0 0 Э(b4) 

1110111 0 1 1 Э(b5) 

1101111 0 1 0 »(b6) 
1011111 0 0 1 Э(b ) 

0111111 \ 

I 0 0 0 Э(Ь ) 

(the usual coding for A, B, n = 4). Minimalization is possible because we choose 

the value of functions equal to 0 for y equals to (0111111) and any other vector 

with two or more zeros. 

Analogously if n is a higher number. Then: (a) all negationes are omitted, (b) every 

Gj contains 2 " _ 1 & connectives and less then 2"~2 conjuctive members (each with 

2"-i _ 3-j v a r i a bles) and each with 2 " _ 1 - 4 connectives. Then for Gj we have 

Dj(&) _ 2"- 1 + 2"- 1 - 3 + (2"-1 - 4)(2"~ 2 - 2) . 

Without minimalization it would be Dj(&) _ 2 " _ 1 — 2". Analogously we obtain 

Dj(v) _ 2"- 1 - 1 

Conclusion 1. The realizing net for a probabilistic operator with /c-valued input 

and /-valued output needs the following numbers of elements: 

D(&) _ k(m + / - 3) + n(2"~1 - 2" + 2 2"~ 3 + l ) , 

D(v) _ (/ - 1) (fc - 1) + n(2"" 2 - 1) , 

D(~) _ m , 

D(q>) _ k(l - 1) . 

In particular cases, some simplifications are possible. 

Theorem 3. Consider a stochastic matrix P of the type /ex/ . Suppose that there 

exists vectors p 1 , ..., p ' _ 1 , p' = (p[, ..., p'k)
T, such that 

Pu = П PÏ 
r , B ( r , j ) = l r 

П ( i - P Й . 
l(r,j) = 0 

where B(r, j) is the r-th member of binary form of j - 1. 

Then we can find a vector of LP-expressions <& = [F, QF, ^> f] such that P = P0 



-50 and if F = (F, , ..., F„) (2" = I), then 

Pa f l pXffi> Q\r) f o r e v e r y i = i, • • •, fc, i = i, • •., z 
r = l 

(£,- = (Cj, ..., £") is binary form of j — 1, <7; is binary form of i — 1) . 
In the realization using this theorem we have the following 

£>(&) = fc(m + n - 2 ) , 

D(v ) = n(fc - 1), 

P ( ~ ) ^ m , 

D(<p) = fc(n - 1) . 

Consider now the realization of the stochastic automata. Given Mealy stochastic 
automaton, A = {a,, ..., ak}, B = [bx, ..., bt} Q = (fl;, ..., as), and transition matri
ces 

Pi - (pf.,j) , ^2 = 0 0 > 

i = 1, ..., fc; p = 1, ..., s; 7 = 1, ..., Z; q = 1, ..., s , 

let m, n, r be the smallest natural numbers for which fc = 2m, Z g 2", s = 2 r; we can 
define three one-to-one mappings \J/: A -» {0, l} m , 9: B -> {0, 1}" and T: g -> {0, l } r 

and find a vector of LP-expressions # = [F, £2f, ^>f] such that 

0) F = ( F 1 ( x , 3 , ) , F 2 ( x , J ) ) , 

where 

Ft(x, y) = (F.(x, y), ..., Fn(x, y)) , F2(x, y) = (G,(x, y), ..., Gr(x, y)), 

where p£>t and pj, t are members of the characteristic matrices of <Pj and <1>2, and 

(iii) -P0(r; ©) = JP.>I(7I ; to . ) . P#a(y-; a>2) • 

For the nets realizing 4>j and 4»2 we can use common subnets realizing subex
pressions like 

(5) x£
2

2 , '&. . .&x^"'&/2 ' ' " + 2 &.. .&>'fm + r 

without violating the condition of stochastical independence. 

For # j. we then obtain the following numbers of used elements 

D.(&) = ks(m + r + I - 3) + n(2"~l - 2" + 22"~3 + 1) , 

D . ( v ) = (fcs - 1)(Z - 1) + n(2"~2 - 1), 

D . (~ ) = m + r , D,(<p) = fcs(/ - l) , 



for # 2 we obtain 

£>2(&) S ks(m + r + s - 3) + r(2r~l - 2r + 2r'3 + 1), 

£>2(v) S (ks - 1) (s - 1) + r(2 r"2 - 1) , 

D2(~) Sm + r, D2(cp) g ks(s - 1). 

It is not possible to make the number of probabilistic connectives needed for 
realization lower without further conditions concerning some probabilistic character
istic of the automaton; the number corresponds to the number of independent sto
chastic parametres. This fact is also true for other estimates of the number of pro
babilistic connectives in Part I of this paper. 

Conclusion 2. If we consider the common subnets for the nets corresponding to (5) 
then we have: 

£>(&) ^ fcs((max (m, r) + I + s - 3) 

+ n(2"~l - 2" + 2 2 " - 3 + 1) 

+ r(2r~l -2r + 22r~3 + 1), 

D(v) ^ (ks - 1) (I + s - 2) + n(2n~2 - 1) + r(2r~2 - 1) , 

D(~) ^ m + r, D(<p) ^ (ks - 1) (I + s - 2) . 

For a general stochastic automaton we cannot separate nets for outputs and states. 
We have the four-dimensional array 

P={Pi,P,J,q), 

i = 1, ..., fc; p = 1, . . . , s; j = 1, ...,l; q = 1, ..., s . 

We must define one-to-one mappings i]/, 9, co as in the preceding case and we can 
find a vector of LP-expressions <P, where F = (Fu F2), Ft = (Ft(x, y), ..., Fn(x, y)), 

F2 = (G1(x,y),...,Gr(x,y), 

such that 
„ _ n»(bj)Mqq) 
Pi,p,j.q — *V(<u),t(qp/ • 

We can find this vector in the following way: we construct new alphabets 

A' = tfA) x t(e) , A' _ {0, l } m + r , a;,p = (>(a,.), <<?„)) , 

and 

B' = 9(B) x t(e) , B' _ {0, 1}" + -, b)A = (9(bj), r(qq)) , 



252 and we obtain then a matrix P' = (p{fp) where p\r'* = pitPt}A. According to Theorem 2 
we can find a vector of LP-expressions <P such that 

I^ = *V[\4',B' • 

Conclusion 3. We obtain the following estimates of the numbers of used elements: 

D(&) < ks(m + r - Is - 3) + (n + r) (2" + < - 2 - 2" + r + 22(" + r>~3 + 1), 

D(v) < (si - 1) (sk - 1) + (n + r) ( 2 " + r - 2 + 1), 

D(~) = m + r and Z)((?) < sk(sl - l ) . 

We have proved that, if we have the partition of the set of all probabilistic operators 
(or stochastic automata) according to probabilistic equivalence, then it is possible 
to find a representative of every class from the set of vectors of LP-expressions formed 
with help of &, v , ~ and stochastically independent probabilistic connectives 
(in the case of stochastic automata moreover, we need to use delay elements). 

II. REALIZATION OF PROBABILISTIC CONNECTIVES 

In the previous part of this paper we assumed the probabilistic connectives (realiz
ing elements) with all possible probabilistic parametres. We will now turn our atten
tion to the case when we have only independent probabilistic connectives with given 
and equal probabilistic parametres. 

The expression of the form <p;(xj) will now be called the elementary LP-expression. 

Theorem 4. Consider an elementary LP-expression <p;(x), pvt = (0, p ;). 

We can find (in a finite number of steps) a stochastically independent LP-expres
sion $ (in SPDNF) containing only probabilistic connectives cp with probabilistic 
parametres (0, 0T) such that P0(Q1) = 0 and J P ^ ^ J — p\ <. e0, where e0 is a given 
real number, e0 > 0. 

Proof. Denote 

q>^(x) =cp1(x)&...&(pb(x), 

VV(X) = <Pi(x) v . . . v ^ ( x ) , 

where (pu...,(pb have equal probabilistic parametres and are stochastically inde
pendent. We try to find <P of the form 

F(x) ~ V"1 <p(x) v Vb2 (P(2)(x) v V"3 <P0)(x) v . . . 

We proceed in the following way: 

1) by: we compute succesivelly P(y 6 q>(\) = 1), b = 0, 1, . . . until we find bt such 
that P(Vbl <pQ) = 1) < P < P(V*1 + 1 <p(\) = 1), 



2) b2: we compute succesively P(\/b> <p(l) v \/b <p(2,(l) = 1) for b = 0, 1 , . . . 
until we find b2 such that 

p(v6' <K0 v v 6 2 <P ( 2 ) 0) = i) ^ P < f(v6 1 <P(0 v v b 2 + 1 <P(2)(0 = 0 • 

Analogously we find b3, b4, ... until we find k such that |P(V61 <P(0 v • • • v V"' • 

. <^>(l) = 1) - p| < so-

We must prove that such a k exist (that there is a finite number of steps). We have 

p(v6>0) v ... v vft>(,)(0 = 1)<P(V*>0) v ••• v V*,+ V°(l)-- 0-

because P((p(l)(i) = l) = 0-1 > 0 and (p(^+i(i) = 1 do not imply V6 ' <K0 v ••• 
. . . v V i > ( , ) ( l ) = 1. 

1) For the first step we have 

(6); P (V + 1 cp(l) = 1) = P(V <P(1) = 1) + 10"1 - i o - lP(V° <p(l) = 1) . 

Remark that P(V" <P(0 = 0 = P (if t'l 1S n o t f ° u n d yet> i-e-> a = &i) a n d t n u s t n e 

right hand side of (6) is greather or equal to P(y (p(i) = 1) + 10"1 + 10" lp. Then 
P ( V + 1 <p(i) = 0 - P ( V > 0 ) = 0 = 10_1(1 - p), and after the finite number 
of steps p must be surpassed. 

2) We have, analogously, for the Z-th step 

(7) 

p(vfci <K0 v ... v v"+1 <?(,)0) = 0 - P(V*' K 0 v ••• v va<p(,)(0 = 0 = 
^ i o - ' ( i - p ) . 

3) W e h a v e P ( V " > ( 0 v . . . v Vfc, + 1 <P(,)(0 = l)-P(\/b' <K0 v . . . v V*> ( , )(1) = 
= 1) < 10" ' and .then it is sufficient to make k number of steps, where k is such 
a number that 10_fc < E0 • 

In the last step is better to choose bY = b[ or bx = b\ + 1 according to, such 
a case for which ^(V*" <p(l) ••• = 1| — p) is smaller. The error is then less or equal 
to iHT* . 

The estimation of the number of used elements: 

We have 

6. < 10p(l - p)-1 , bj <: 10(1 - p)'1 

for j = 2,..., k - 1 and bk g 10(1 - p)"1 + 1. Then 

(8) £>(&) S fe - 1 + il0fc(fe - 1) (1 - p)"1 , 

D(v)<l + I0(p + (k- 1))(1 - p ) " 1 , 

D(q>) <k+ I0(p + k(k - 1)) (1 - pT1 . 



We have to find k such that ^ lO - * = e, then k = [ - log2e + 1] (the integer part 
of the number). For p > 0-5 it is better to construct F = ~F', where F' is the ex
pression for 1 — p. We assume then p = 0-5. 

Conclusion 5. The we obtain the following estimates: 

D(&) = [ - l o g 2 e ] ( l + 10[-log2e + 1]), 

D ( v ) = 1 + 20( | + [- log2e]) , D(~) = 1 

and 

D(ę) = [ - log2є + 1] + 10(1 + [- log2є] [- log2є + 1]) . 

The proof of estimate (8): Denote the increase of probability in the case of transi

tion from b to b + 1 by Ab. For the first step: 10" 1

 = Ab = 1 0 _ 1 ( l - p). Let us 

denote the number of members in the disjunction needed for the minimal increase 

as b\, for the maximal increase as b'[. We have then (b\ + l) 10~1(1 — p) = p — 

= b\ 10- J(1 - p), and thus b\ = 10p(l - p)"1, and b'{ = lOp - 1. Therefore 

10p(l - p)-1

 = b1 = 10p - 1. We obtain 1 0 " ' = Ab = 10"'(1 - p) for the l-th 

step and it implies 

bt = b\ = 10"\p - P(\/bi cp(l) v .. . 

. . . v V i " - I < P ( i ) ( i ) = i ) ( i - p ) - 1 = i o ( i - P ) " 1 . 

For the k-th step bk g 1 + 10(1 - p ) " 1 . Then 

D(&) ^(k-^+^jW^-p)-1, 
J = I 

D ( v ) _. k + b . - 1 + b2 - 1 + . . . + bk - 1 S 

= k + 10p(l - p)"1 - 1 + (10(1 - p ) " 1 - l)(fc - 2) + 10(1 - p)'1 

and 

D(<p) = fej + 2ft2 + ... + kbk = 

S 10p(l - p)'1 + X j 10(1 - p)"1 + fe . D 
J = I 

Some other methods of the synthesis are given by R. L. Schirtladze in [9] and [10], 

and by J. Wartfield in [11]. All these methods are based on "white sources", i.e., 

on probabilistic connectives with parametres (p0, p0). 

Remark I. The method suggested in Part II of this paper can be modified in the 

following way (using the notions from [10]): we substitute (pi(q>i- x ( . . . (<Pi(x)) • • •)) for 

<p(i)(x) (note that P^^cpt_,(... ( ^ ( l ) ) ...)) = 1 = 10"*). Then D(&) = 0, but the 

LP-expression is not in SPDNF. 



In [11] D(&) ^ k02
k0, D ( v ) ^ 2k0, D(~) S K2*0) and D(<p) ^ k0 + 1 is obtained 255 

for the number of used elements, if k0 = [log s/log 2]. 

Some more general considerations are contained in paper [9]. This paper deals 
with connectives with parametres (p0, p0) where p0 e (0, 1), and solves the problem 
of how for every p e (0, l) to find a logical expression f(x) such that \p — P(f((pi, ... 
..., cp„) = l | S e, where <pu ..., cpnare stochastically independent and have character
istic vectors (p0, p0). The estimate of used elements is then (in our form): 

D(&) ^ i(n - 1) <n - 2) , 

D ( v ) ^ n - 1 , 

D(~) = i ( « - l ) ( « - 2 ) , 
and 

D(<p) = « , 

where n 5= H(E, p0), if n(e, p0) = max («(e), n(p0)), where n(e) = [ l + log (2ejp0) : 
: log (1 - p0)] , n(p0) - [|log2 (1 - po)!"1] for p0 s (0, *>, and „(E) = [1 + log . 
. (2e/(l - Po))/log Pol n(Po) = [|log2 Pol"1] for p0 e <*, 1). 

Remark 2. It is possible to generalize Theorem 4 for connectives cpu ..., cpn with 
PIPj = (0, p0) (in this theorem we used p0 = 0T). Then we have 

P(V f l+1 <*>(!) = 1) - P{Y?(-) = 1) = Po(l - P) 

and 

P(V"' <p(l) v ... v V" + 1 <P<0(1) = 1) - P(Wbl <P(0 v ... v V > ( 0 ( 1 ) = 1) = 

= Po(l - P) 

in the proof. 

It is necessary to find k for which \p0 ^ s. The estimate of the number of used 
elements is then 

D(&) 5g fc0 + — /c0(fc0 + ) , 
2p0 

D(v)S 1 + lPo( l + fco) 

and 

D(<p) ^ fc0 + — (1 + i/c0(/c0 + 1)), 
Po 

where 

K = [log 2£/log po] • 

For the method modified as in Remark 1 we have D(&) = 0 . 



For illustration, we can now make a comparison of the method mentioned above. 
We denote Wartfield's method W, Schirtladze's method S, our method from Theorem 
4 (or modified by Remark 2) as 1, and this method modified by Remark 1 (or modi
fied by Remarks 1 and 2) as 2. We obtain the following tables: 

Forp 0 = 0 1 : 

e = 0001 £ = 00001 

1 2 S 1 2 s 

D(&) ѓ 32 0 1553 43 0 3081 

D(v)ѓ 51 51 58 71 71 79 

Ð(~) ăi 1 1 1553 1 1 3081 
D(ę) ѓ 73 73 59 134 134 80 

*o = 2 n ѓ 59 *o = 3 яŞ 80 

for p0 = 0-5 and £ = 0-0001: 

1 2 S w 

D(&) ѓ 276 0 45 106 496 

D(V)£ 51 51 11 8 192 
Z>(~) g 1 1 45 4 096 
D(ę) g 279 279 12 14 

k0 = = 2 яš 12 k0= 13 

The last problem is this: we realize probabilistic connectives with an error. We ask 
how big this error can be provided the error of the whole net realizing a probabilistic 
operator should be lower then e0 given in advance. 

For the operator with binary output we could require the satisfaction of the fol
lowing condition: 

X P(x = a) \P'(a, Q.) - pa\ g s0 . 

We will require a stronger condition: 

(9) \P'(a, Ox) - p„\ S £0 for every a e ij/(A). 

Our realizing LP-expression (l) is such that to satisfy (9) it is sufficient that |p ; - p„\ 5£ 

= e (a is binary form of i — 1). For the probabilistic operator we will require 

Ipjg., - * J S* «o for i-l,...,k,j-l,...,l. 



If \P'r(\j/(a^\ Q\) — prÁ <£ e (r = 1, . . . , /— 1), where p; are solutions of equations 257 
(3), then 

| n I J
r W « . ) ; í 2 i ) - P n | á 

g ( / - l ) e + ( / _ l ) e
2 + . . . + ( / - l ) e ' " 2 + 6 ' - 1 = ( ž ~ l ) ( l - £ ' ~ 2 ) s 

1 - e 

if we neglect e'""1. Then we need (/ - l) e(l - e '~2)( l - e ) _ 1 52 e0. A sufficient 
condition is (/ — 1) e(l - e ) _ 1 ;g E0 (thus we eliminate the influence of having 
neglected e i _ 1 , and we obtain a :£ e0//; for stochastic automaton we obtain fol
lowing inequality: e 52 e0//s. 

(Received January 3, 1972.) 
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