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KYBERNETIKA — VOLUME 29 (1993), NUMBER 2, PAGES 166-179 

A METHOD OF DETECTING CHANGES 
IN THE BEHAVIOUR OF A RANDOM SEQUENCE 
BASED ON THE BAYES APPROACH 

J I Ř Í MICHÁLEK AND J I Ř Í SKŘIVÁNEK 

A method for the detection of changes in the behaviour of a locally stationary sequence 
is presented. A change can occur either as an abrupt jump in mean value or as a change 
in the spectral density function. The detection of changes is based on the Bayes approach. 
The suggested method is compared with a classical method based on maximal likelihood 
ratio and is presented by several numerical simulations. 

1. INTRODUCTION 

The problem of the detection of changes in the behaviour of time series has been 
very intensively studied during last fifteen years because this is a part of mathemat
ical statistics having immediate application in practice, e. g. in technical diagnosis. 
The detection of changes in the behaviour of a time series belongs to the testing 
hypotheses region as we are testing the simple hypothesis "no change" versus the 
composed alternative hypothesis "a change occurred". With respect to the alterna
tive hypothesis, which permits a possible change at every time instant in the future, 
the uniformly best test does not exist, in general that would be analogical to the 
classical Neyman-Pearson test. One can speak about an asymptotically best test as 
shown by Deshayes and Picard in Basseville and Benveniste [1]. This asymptotically 
optimal test is given by the generalized likelihood ratio but the precise knowledge 
of models before a change and after a change is assumed. Such a result is very 
interesting from the theoretical point of view, but in a practical case we usually 
don't know almost anything about an observed time series. One can find a series of 
different methods in the literature because of the nonexistence of an optimal test in 
a finite time period. We refer the reader for a better acquaintance to some survey 
paper dealing with the detection problem, e.g. Kligiene and Telksnys [3], Basseville 
and Benveniste [1], Nikoforov [6], Willsky [9]. A usual approach is based on the 
assumption that we know a mathematical model describing the situation before a 
change. Under the presence of a change in its behavior, e. g. in the change of its 
mean value in case when a change has occurred. In practice parameters defining a 
model before a change are supplied by suitable statistical estimates. The method 
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discussed in the paper is based on the Bayes approach for solving statistical decision 
problems. Firstly, the simplest case consisting of mutually independent observations 
before and also after a change is solved. Then, the proposed method is applied to 
the detection of changes in the behavior of a locally stationary sequence, which is 
a sequence consisting of mutually uonoverlapping time intervals within which such 
a sequence is weakly stationary. The time instants separating adjoing intervals are 
the instants of changes that, have to be detected. 

2. THEORETICAL BACKGROUND 

First, we shall consider the case with mutually independent observations x\,..., xn, 
where n represents time. We shall assume that the observations before a change are 
generated according to a probability density function /(•) and after a change accord
ing to (/(•). The time instant of a change is not known and can occur quite arbitrarily. 
Under this situation we have at disposal the observations x = ( i | , x^,. • •, xn) and 
we have to decide whether a change has occurred or not. If a change is detected 
we also have to estimate the time of change. Summarizing this situation we have n 
possibilities in the composed alternative hypothesis: when at the time j a change 
occurs the corresponding common probability density function for x has the form 

i - i 

/i(x) = n ! " ( ^ ) n ^ ) i = 2,3,...,n 
l=\ l=j 

and 

fl(x) = f[g(x(). 
t=i 

The hypothesis is created by the only probability density function 

f„+i(x) = f[f(xi). 
t=\ 

As we wish to follow the Bayes approach we need to determine a prior distribution 
function for a possible time of change. Let ])j, j = 1, 2 , . . . , n + 1 present probability 
of occurring a change at the time j . The time n + 1 means evidently no change has 
occurred during the time period j = 1,2,..., n. Surely, we must demand 

n + l 

£!>; = !• 
i = i 

Let dj be the decision that a change occurred at the time j . The decision rfn+i 
means, of course, no change was detected. Let (.(•, •) be the loss function that is 
given by 
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where #,• *-* /;(x) and 6{j is the Kronecker symbol. We look for a Bayes decision 
rule {<p(i\x)Yi=i , where <p{i\x) is the conditional probability of the acceptation of r/,; 
under the observation x. The conditional risk function can be then expressed as 

WMW) = 2>(0., <*;)£-< Mil*)} = 
3=1 

= 1 - E6i{<p(x\x)}. 

Thus, the expected value of R {(?;, <p(-\x)} with respect to a prior distribution {pj }".!. 
is equal to 

r({pj}7£, V(-Ix)) = 1 - X > E,>fj|x)}. (1) 
i = i 

The Bayesian decision rule must minimize (1). The answer is given by the following 

decision function $(x): 

$(x) = {$(j |x) : j= l , 2 , . . . , n + l } 

where <I>(?"|x) = 0 if and only if 

Pi fi(x) < j max s {Pj fj(x)} . 
~}*i 

In other words, if 

P.o/.„(x) > Pj fj(x) 

for each j = 1,2,... , n, n + 1, j ^ .'o, then 

*(t'o|x) = 1 

n+1 
as we demand ^ ^(ilx) = 1. 

» = i 

The proof of optimality is very easy and can be dropped out. Next, we shall show 
how this Bayesian decision rule can be used for the construction of a stopping rule. 
A change is detected at the time instant n if and only if 

Pn/«(--)>l<max.7iW- . (2) 
~i*n 

Let us suppose for simplicity /j(x) > 0 for every x and every j , then condition (2) 
can be rewritten as 

1> PI rf»(f£) 
P- i j /(^) 

for each j = I, 2 , . . . , n — 1 and simultaneously 

Pg 9(xn) > j 
Pn+i / ( a r n ) 
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From these facts we immediately see that a change is not detected up to the time n 
including if and only if 

max U fipi)< + 
l<J<n\pn+ltJ:f(Xt)j 

As long as we find such a time instant io for which 

_____ fr _____ > i 
Pn+X 1 1 /(*-) " 

then a change in the behaviour of the observed sequence is detected. The decision 
rule derived from the Bayes approach is described detailly in the following 

Lemma 1. Let f(x), g(x) > 0 for every real x, for simplicity. Then, we accept the 
decision dj0 (jo = 1,2,... n + 1) if and only if the following inequalities hold true: 

for io = 1 i_i 

_ 1 T T ^ 4 > 1 for each i = 2 , 3 , . . . , n , n + l 
Pi t~i f(X£) 

foг 1 < io < n + 1 

Pio TT фt) 
— U TT^ > 1 f o r e a c h 3 = jo + 1, • • •, n, n + 1 
Pi t=io "Xl> 

and simultaneously 
i o - i 

for io = n + 1 

H T T ^ _ ) > 1 foreachi = l , 2 , . . . , i o - l 
Pjo tJj f(XV 

g(xt) 
_ _ _ L _ T T ^ > 1 f o r e a c h i = l , 2 , . . . , n . 
Pn + l tJj K*t) 

P r o o f . The proof of Lemma 1 is very simple and can be omitted because it 
immediately follows from the Bayesian decision rule function. • 

Lemma 1 automatically answers the question about an estimate of a possible 
time of change. If a change is detected at the time io then the instant io is the very 
estimate of the time of change because it was chosen on the basis of the maximal 
aposteriori conditional probability $(io|x) given by the Bayesian rule. 

Now, we shall show an application of the above decision rule to the most important 
case. Let /(•) be the probability density function of the distribution _V(0,1) and 
let g(-) correspond to the distribution N(fi,<r2). Then, we find out after simple 
computation that we accept the decision dj0, jo _ {2,3,.. .,n - l ,n} if for each 
J > jo 

g (4 _Sй^) >„£+(,-«__. 
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holds true and simultaneously for each j < j0 

^(,l_fc_lo!)<ll4 + a_io)ln,2. 

The decision c/i will be accepted when the following inequality will hold true for 
each j > 1, namely 

£('.---ii--)>-tf+«-«-••• 
£=1 

The decision rfn+i will state, i.e. no change was detected if for each j = 1, 2 , . . . , n 
the inequality 

£ fx|„(£i^l!)<in% + (n + i_ i),n f f 2 

is true. Although the above given decision procedure is based on the precise knowl
edge of the alternative hypothesis, i.e. the parameters fi, a2 must be known, in 
practice, where usually //,, a2 are unknown the suggested approach can be used. 
Very often, within the observation of changes in a technological process, we know 
some admissible changes, which can be reflected in changes of parameters /J, a2. 
These values can be then used in the construction of suitable decision rules. In this 
way, a collection of parallel decision rules with different values of /(, <r2 can be used 
in practice. 

Next, we shall compare the test given by Lemma 1 with the test derived from 
the likelihood ratio. The test based on the maximal likelihood ratio is given by the 
function A(x) defined on a sample space of x = {x\, x%,..., x.n) 

sup /(x,(?) 
A(x)= * e H 

sup / (x , 6)' 
96HUA 

where 6 is a parameter, H is a hypothesis and A is an alternative hypothesis. Surely, 
0 < A(x) < 1. The critical region of the maximal likelihood ratio is given by the 
test function $(x) where 

<I>(x) = 1 iff A(x) < da 

$(x) = 0 iff A(x) > da 

$(x) = /( iff A(x) = da, 

the constants /(, da are determined so that 

E9{$(x)} < a 

for each 0 £ H. In our case we have II = {n + 1} and A = {1, 2 , . . . , n) as possible 
lime instants of the change. For simplicity, we shall assume stochastic independence 
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among observations. Then, with a probability density function /(•) before a change 
and with </(•) after a change the ratio, A(x) can be expressed as 

A(x)= /"<*> 
max {/,(x) | 

, -<i<»+i v , v ' ;
 m a x j l t Y i 

if we suppose again / n + i ( x ) > 0. From (3) we immediately see that 

A(x) = l iff fn+1(x) > maxjf^x)} 

and otherwise 

/=jo J V ' 'i*io ' 

Here, we see a close connection with the Bayesian test that considers the uniform 
prior distribution {Pj}".tj- The first kind error of this maximal likelihood ratio test 
equals 

P „ { x : A(x) < da} < Pa {x : A(x) < 1} 

because da < 1. But, P„ {x : A(x) < 1} expresses the probability of the first kind 
error for the Bayesian test having the uniform prior distribution. This fact says 
that the Bayesian test has larger probability of "false alarms" than the test based 
on the maximal likelihood ratio. On the other hand, the Bayesian test possesses 
the advantage of the explicit form over the maximal likelihood ratio test where the 
problem is to evaluate the values /(. da. Further, the probability of the second kind 
errors behaves quite on the contrary. Let j 6 A (alternative hypothesis), then the 
probability of second kind error equals 

ft (or) = P, {x : A(x) > da} > P3 {x : A(x) = 1} . 

The right hand side is nothing else but the probability of second kind error of the 
Bayesian test. From these reasons both the tests are not comparable. If there exists 
a € (0, 1) such that 

o = P „ { x : A(x) = l } , 

then both the tests would be identical. 

3. APPLICATION TO LOCALLY STATIONARY SEQUENCES 

A locally stationary sequences is a random sequence that consists of mutually inde
pendent weakly stationary parts; i.e. there are time intervals nonoverlapping each 
other within which the sequence is weakly stationary. We don't know the mean 
values and spectral density functions and we don't know either, of course, the be
ginnings and the ends of individual stationary parts. The problem is how to detect 
possible changes in the mean values or in spectral densities when a realization of a 
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locally stationary sequence passes from one stationary part to another one. In prac
tice such a sequence we can meet seldomly because of the existence of a temporary 
section between two adjoing stationary parts. But, like the first approximation to the 
reality such a statistical model is admissible. As we know nothing about stationary 
sections the basic idea is to approximate the observed sequence by a suitable sta
tionary sequence, which would be the most "similar" to realizations. Let us assume 
each stationary section is regular and Gaussian, later the assumption on Gaussiality 
will be dropped out. A suitable approximation will be the class of autoregressive 
sequences. At this moment we must solve the problem of the order for autoregres
sive model and then the problem of estimates of unknown parameters describing an 
autoregressive model. The order p can be estimated by the classical Akaike criterion 
and can be adapted with the running time. Let us imagine, at the time instant n we 
have the observations _i, __,.. ., _„ belonging to a stationary section. The construc
tion of a suitable autoregressive model will be given in the following steps. First, we 
must estimate the order p, e. g. as explained earlier. Secondly, we must estimate un
known mean value. Here, the arithmetic mean value seems to be admissible because 
of strong consistence in every case. In the third step, we need estimates of unknown 
autoregressive coefficients a i , a . , . . . ,a p, a forming the autoregressive model 

v 
(xt+i - /*)+ ] T a* (__+i_ * -ft) = cr£i+1 

fcs-l 

with a standard Gaussian white noise {£1} and mean value \.i. On the basis of obser
vations _ i , _ _ , . . . , ~n we shall construct estimates of unknown covariance function 
Rk, k € {—p, —p+ 1 , . . . , — 1 , 0 , 1 , . . . ,p}. For our purpose it is convenient to choose 
the estimates of the form 

n-k 
&* = -^(xi+k-x)(xi-x) k = 0,l,2,...,p 

Rk = R-k k = -P,-p+l,...,-l 

and x is the arithmetic mean. This form of estimates Rk is chosen quite deliber

ately because then the Toeplitz matrix lit = \ Rj-k ( is positive definite wi th 

probability one. We shall look for an autoregressive model having the same mean 
value as x and the same covariance function as Rj, j — {—p, — p + 1 , . . . , 0',... ,p}. 
Michalek in [5] showed that this problem can be unambiguously solved among all 
the autoregressive model of the order p and further, this solution minimizes the 
so called asymptotic /-divergence rate. The asymptotic /-divergence rate is de
rived from /-divergence between two stationary Gaussian measure and can serve as 
a similarity measure among Gaussian stationary measures, in more detail see the 
monograph by Vajda [8]. For a better orientation we present here the explicit form 
of the asymptotic /-divergence rate. 

Lemma 2. Let {Pn, Qn}n°=1 be Gaussian stationary measures generated by regu
lar stationary sequences {XJ}"=1, {__}"_ 1 respectively. Then under the assumption 
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Pn ~ Qn for each n 6 N there exists the limit 

l i m ^ ( l n ! 7 p r } = A I R ™) = 
n-̂ oo n ( dQn J 
-(«__-mg)» 1 / ' ( / J__._ l n _^_ 1 

A-J-w\<PQ </>Q 
2 tтЗ. 4тr 

where mp, TJJQ are mean values, y>p, £>Q spectral spectral densities and a"q is the 
dispersion of the best one step ahead prediction for the sequence {yj}fLi-

P r o o f . See Vajda [8], pp. 343-344. D 

The quantity I(P\Q) possesses some properties reminding a metric except the 
triangular inequality, in general. But, in every case I(P\Q) > 0, I(P\Q) = 0 iff 
P = Q. Sometimes one can use a symmetric version 

7(P,Q)=l-7(p\Q)+l-7(Q\P). 

When the measure P is determined in a some suitable sense by observations X\,... ,xn, 
let us denote it as P, and the measure Q is determined by the autoregressive model 
with coefficients ( l , a i , 0 2 , . . .,ap,cp), denoted as Qa, the quantity I(P\Qa) can be 
used for the construction of so called minimal distance estimate (1, a\, 62, • • • ,ap, ap), 
i.e. 

argmin 7(P\Qa) = (l,a\,a2,.. .,ap,ap) (*) 

where Ap is the set of all the autoregressive models of the order p. 

Choosing P ~ (x, <fi(-)), x is the arithmetic mean of xi,x2, • • •, xn and 

j=~p 

is a sample spectral density function, the estimates (*) can be given in the explicit 
form determined by the Yule-Walker equations, i.e. 

p 

J2^jPk-j = 0 A = 1,2,....-», 
i=o 

p 

_C «i 4' = °l 
j = 0 

(see [5]). In practice, these equations can be evaluated very effectively by the so 
called Levinson algorithm, see e.g. [7]. In this way we described the procedure 
of constructing the most similar autoregressive model to the observed sequence. 
In the case that the observations X\,x2,...,xn are not Gaussian we can consider 
the obtained estimates (1, a . , . . . , ap, aP) as a projection of the measure P into the 
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family of Gaussian autoregressive models Ap. This possibility is based on the results 
due to [4] where it is proved it for Gauss-Markov random fields, which contain 
autoregressive models as a special case. Using the approximating autoregressive 
model we can construct a predictor in the form 

p 

Xn + 1 - * = - ] T hj (Zn + l-j - x). 
i=i 

Roughly speaking, if the residua zi~ xt — x.i behave "reasonably", i.e. with mean 
zero and are mutually independent, then there is a hope to assume that stationarity 
is not violated. By means of the residua {ei} the detection of changes for a locally 
stationary sequence can be transformed into the case of the detection of changes in 
mean value and dispersion for mutually independent observation as described in the 
previous part. 

4. DESCRIPTION OF METHOD 

Let us observe a locally stationary sequence without knowing any next information. 
The method of detection is based on the principle of two windows moving over ob
servations. A detecting window is shorter (about 20 samples) and contains the latest 
observations. The other window, used for identification contains all the remaining 
observations. This situation is typical before any change. Under the validity of 
hypothesis "no change" all the observation inside the identificating window forms 
a section of a weakly stationary sequence and by use of the previous approximat
ing procedure we can find the most suitable autoregressive model, which order p is 
determined in every step, e. g. by the Akaike criterion as mentioned above. The 
estimates 5i, aj, • • • ,ap, ap are evaluated by the Levinson algorithm, which is very 
fast and stable. Using the one step ahead predictor xn+1 we obtain the correspond
ing residuum en+1 = xn+\ — xn+1 for each xn+1 from a detecting window. When 
no change occurs inside the detecting window the probability distribution function 
of {en+1/ap} must be very close to N(0,1). Now, if we choose an alternative hy
pothesis, let's say N(^,a2), we can detect a possible change using the Bayesian 
approach explained earlier. As for the choice of the parameters fi, a2 this problem 
must be solved individually for every situation. For the better ability of detect
ing changes one could consider a collection of parameters fn, a2, i — 1,2, ...,M, 
and test the simple hypothesis "no change" simultaneously versus the alternatives 
N(in,a2), i — 1,2, ...,M. In this way, different values for /. can express the dif
ferent intensity of abrupt jumps in mean value. It would be possible, of course, to 
consider the shortest detecting window containing the last observation only. In this 
situation we would make decision based on one residuum only. Such an approach is 
more or less identical with method proposed by in [2], but this method is critized in 
Basseville and Benveniste [1] because its reaction on a change is very slow and the 
proposed test is almost "blind". From this reason one can recommend a longer de
tecting window, cca 20 - 30 samples. As long as no change is detected, the detecting 
window is shifted forward without changing its length, i. e. the newest observation is 
added and the oldest one is dropped out and added to the identificating window. In 
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this way the windows are moving over observations. As long as a change is detected, 
the procedure stops and everything starts from the beginning. As we see changes 
coming very quickly one after the other cannot be well detected in this way. But, 
this is a disadvantage of every method for detection based on moving windows. We 
need, in every case a sufficiently long time interval for the good identification of a 
stationary section before a change. In practice, it seems to be reasonable to confirm 
every detection of change by detections in next detecting windows. This measure 
decreases the number of false alarms. On practical experience, the rule 3 is recom
mended, i.e., a change is detected if this change is confirmed at least by 3 detections 
coming one after the other. 

5. RESULTS OF SIMULATIONS 

The proposed method was verified by simulated data, which consisted of autore-
gressive models. Our method was compared with the classical method based on the 
X2-statistics, i.e. the sum of squared rezidua belonging to a detecting window must 
be distributed according to x2-distribution under the validity of the hypothesis "no 
change". For our purposes we constructed realizations of locally weakly stationary 
sequences with two sections having the length 500 observations, i.e. the change was 
starting with the sample 501 in every case. We compared autoregressive sequences 
from the order p = 0 up to p = 3. The detection of change was based on the rule 
"3" to decrease the number of false alarms. The obtained realizations are depicted 
in Figures 1,2,3,4,5. We shall present all simulated models: 

p = 0 

p = i 
p = 2 
p = 3 

Series A + B 
Series A + C 
Series 1 a 2 
Series 5 a б 
Series 9 a 10 

1. section 
iV(0,l) -white noise 
;Y(0,1)-white noise 
r „ + 1 + 0 , 6 r „ = e n + 1 

r „ + 1 - 0 , 3 r „ - 0 , 3 r „ _ i = e„ + i 
r „ + 1 - 0,85r„ + 0 , 2 5 r „ _ i -

- 0 , 0 6 r n _ 2 = e n + i 

2. section 
JV(1,1) - white noise 
JV(0,2) - white noise 
xn + l + 0 , l r „ = 2en + ! 

r n + i - 0,5a:- - 0,5_n_] = 2 e „ + 1 

r „ + 1 - l , 3 3 r n + 0,45_„_ 1 + 
+ 0 , 0 4 _ n _ 2 = 2e„+i 

During simulations the parameters standing in the Bayesian decision rule were 
changed to find out their influence on the behaviour of the test. We also carried 
out experiments with the length of the detecting window. The obtained results are 
summarized in the following Table 1. 

Table l . 1 

Series A + B 

L Џ o-2 

20 0,00 4,00 

20 0,00 2,00 

20 0,00 3,00 

20 0,00 5,00 

20 0,00 9,00 

20 0,00 4,00 

Bayes test 

false alarms delay 

0 5 
1 5 

1 5 

0 5 
0 oo 

0 5 

X -tests 

false alarms 
0 
0 
0 
0 
0 
0 

de l a y ' 
24 oo 
24 oo 

24 oo 

24 oo 

24 oo 

1 Co ,.. change was not detected 
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Series A + C 

Series 1 a 2 

Series 5 a 6 

Series 9 a 10 

L џ *2 

20 0,00 4,00 

20 0,10 5,00 

20 0,10 4,00 

25 0,10 4,00 

15 0,10 5,00 

20 0,00 4,00 j 

20 1,00 9,00 

20 1,00 16,00 

20 1,00 25,00 

20 1,00 36,00 

20 1.00 49,00 

20 1,00 100,00 ; 

20 1,00 400,00 | 

20 1,00 900,00 

20 1,00 36,00 

20 1,00 16,00 

20 1,00 9,00 

20 1,00 4,00 

50 1,00 3,00 

30 1,00 3,00 

20 1,00 3,00 

15 1,00 3,00 

10 1,00 3,00 

5 1,00 3,00 

20 1,00 10000 

30 1,00 9,00 

20 1,00 0,04 

20 1,00 0,01 

20 0,50 0,04 

20 1,00 0,04 

20 1,00 0,01 
20 1,00 36,00 

20 1,00 9,00 

20 1,00 0,04 
20 0,50 0,04 

20 1,50 0,04 

20 1,50 1,00 

20 2,00 4,00 

20 0,50 1,00 

20 1,00 90,00 

20 1,00 2,00 

20 1,00 4,00 

20 1,00 9,00 

30 1,00 9,00 

20 1,00 90,00 
20 1,00 9,00 

20 1,00 25,00 

Bayes test 1 

false alaгms delay 
0 5 
0 5 
0 5 

0 5 

0 5 
0 5 

2 4 

0 6 . 

0 6 
0 6 
0 6 

0 6 
0 6 

0 6 
0 4 
0 4 
0 4 

1 4 
2 0 

2 0 

3 0 
3 0 • 

2 0 

3 0 
0 11 

0 oo 

2 oo 

1 27 

1 6 
0 35 
0 6 
0 oo 

0 oo 

0 1 
2 6 

0 1 
2 0 

0 0 

6 0 

0 16 
3 0 

2 0 

1 0 

0 0 

0 0 
0 0 

0 0 

X -tests 
false alarms 

0 
0 
0 
0 
0 
0 
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Шlliŕ 

Fig. 1. 

Fig. з 
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F i g . 4 . 

F i g . 5. 

6. CONCLUSIONS 

The results obtained by simulations show that the Bayesian test is in general'better 
than the test based on x2-statistic. Although the Bayesian test has a larger number 
of false alarms, but the difference is not so big, its ability for detecting changes is 
much more better than the x2-test, which is in some situations actually "blind". The 
conclusions following from the simulations can be summarized in the rule the greater 
a the smaller number of false alarms. We can recommend quite unambiguously for 
practice: in case we don't know anything about the "intensity" of a possible change 
there is necessary to use a set of parallel Bayesian tests with different ^s and tr's. 

(Received June 11, 1992.) 
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