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K Y B E R N E T I K A - V O L U M E 22 (1986) , N U M B E R 5 

CHARACTERIZATION OF A DENSITY BY MINIMIZING 
THE LOGARITHMIC INFORMATION OF DEGREE q 

FRANQUIBERTO PESSOA 

We define the logarithmic information of degree q of a random variable X, the probability 
density / of which is given. In a class of probability densities having some particular properties, 
we look for that one minimizing this information. We first obtain an extension of an inequality 
of Nagy [3], which gives the expected result in a particular case. 

1. INTRODUCTION 

We consider the probability space (R, 38, P) where 38 is the Borel cr-algebra of the 
subsets of R and P is the probability law of a random variable X which we suppose 
absolutely continuous with regard to Lebesgue measure. We denote by j the proba­
bility density of P with respect to this measure. 

In [2] Bouchon and Pessoa have defined the logarithmic information of degree q 
of a random variable and obtained non-additivity relations linking this information 
with the classic Fisher information and the mean Fisher's information of degree q. 
We shall give later the definition of the logarithmic information of degree q and, 
in a class of densities we will look for that one minimizing this information. 

2. FUNDAMENTAL INEQUALITY 

Let h(x) be a function defined and continuous on R. We denote by E(h) the set 
of points where the function admits a maximum or a minimum. In the case where 
the function h is differentiable in every point of R — E(h), E(h) being supposed 
finite, we prove an inequality concerning the function h and the set E(h). This ine­
quality is actually an extension of an inequality of Nagy (cf. [1] page 167). We first 
prove the following lemma: 

Lemma 1.1. We suppose that the function h is strictly positive, that the set E(h) 
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has a finite number k of elements and that J'+^ h(x) dx < oo. Then k is necessarily 
an odd number. 

Proof. We denote by xt < ... < xk the points of E(h). Then xx and xk are neces­
sarily points where the function admits a maximum, since otherwise the integral 
would not be finite. The function being continuous by hypothesis, the points xh 

i = 1, . . . , k are alternatively the points of maximum and minimum respectively. 
We can conclude that k is necessarily an odd number. • 

Theorem 1.2. We suppose that h(x) > 0 for every xe R and that E(h) = 
= {x 1 ; . . . , xk} c R, where k is a positive integer. If the function h is differentiable 
on R — E(h) and if the integrals 

í °°/i(x)«dx and í æ |/г'(x)|" dx 
J — 00 J — co 

exist for q > 0 and p = 1, then 

/C+o5 \(P-1)/P //•+<» \l/p 9 k 

(1) (J h(x)«dxj (J |*'(x)|'dxj ^ £ ( - i y + 1 n o ­

where r = (p - 1) qjp + 1, the equality holding if and only if /i" and |h'|p are 

positively proportional almost everywhere. 
Proof. From Holder's inequality we have 

c+oo / r + o ° \ ( P - D / P //•+«> v/* 
(2) h(x)(p-1),,/p|/i'(x)|dx^ ( h(x)«dx) ( ^ ' ( x ^ d x ) 

We denote 

(3) J(h, p, q) = f °° h(x)(p-1)?/p \h'(x)\ dx 

and suppose that xx < . . . < xk. Then, taking into account the sign of derivative h! 
in each of the considered intervals, we have 

J(h, p, q) = P ft(xy-»«" h'(x) dx + E ( - l ) ' p 1 /t(x)(p"1)9iP h'(x) dx + 
J -00 J * i 

+ f+°° fe(x)('-"«/P fc'(x) dx = f {[/,(x)1+(p-1)« /P]ioo + 
Jxk (P - 1) 9 + J» 

+ Z1(-i) i[Hx)1 + ( p-1 )' / pE+ 1 + [%) 1 + ( p - l k / p ]r} -

H- {h(x01+(p"1)9/p.+ I ( - i У [ Ч ^ i + i ) 1 + ( p " 1 ) î / p - л W 1 + ( p " 1 ) в У ' , ] } = 

(P - 1 ) ű + P 

І(-l) г + 1/г(x г)
1 + (p-1)í/p 

( p - -)« + P i=1 
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Then 

(4) J(h,p,q)^-i(-l)l+1h(Xiy 
r ;=i 

where 

r-iE^LUl 
P 

If we replace (4) in (2) and (3) we obtain the expected result. The case where the 

equality holds is an immediate consequence of Holder's inequality. • 

In the sequel we study the particular case where p = q, q >_ 1. 
In this case we have 

/_•+<- \ ( _ - D / _ //•+<- \ i /« 9 _ 
(5) (J h(x)"dxj y |h ' (x)|"dxj s _ - I i ( - l ) I + 1 M * « ) € 

the equality holding in (5) if and only if 

\h'(x)\~ch(x) 

almost everywhere on R, where c is a positive constant. 

Then, we have a.e. 

(6) h'(x) = c h(x) if x 6 ] - oo, *_ [U f U / 2[x2„, x2B+1D 
n = 1 

< t - 1 ) / 2 

ft'(x) = - c h(x) if x e ( U [x2„_., x2„[) U [*_, + oo[ 

By solving these equations and denoting by 1^ the characteristic function of a set 
A <= ff, we obtain 

(7) *(*) = (« ! ] - » » +*jE A l[x_„,__„+l[») e " + 

( * - l ) / 2 

+ ( I y » W l , ^ ) + ^W+.^))«"a 

n = 1 

where a, /?„, y„ and d are arbitrary constants linked together by the following relation, 
which is a consequence of the continuity of h: 

(8) y_ - a e2cxi = /?_ e2c*2 

.„ = /?_ e2c*2" = /?„__ e2 c*2- ' 2 ^ n ^ (k - l)/2 

•5 - / - u - iW_e2«* 
Therefore 

(9) a = j__ e2c<*--"> 

/?„__ = /?_ e
2 c t o"-X 2"- l ) 2 __ « g (fc - l)/2 

/ 5 ( _ - D / 2 = ^ e - 2 ^ 
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From this recurrent relation we get 

(10) a.«a«p(2e£(-iyx.) 
i = i 

k 

jg„ = <5exp(2c £ ( - - ) ' *f)> « = 1, • • - , ( & - l ) / 2 
i = 2 n + l 

if we substitute (10) in relation (8) we have 
k 

(11) 7„ = <5exp(2c £ ( - l ) ' x . ) , n - 1, ...,(fc - l)/2 
i = 2n 

and by replacing (10) and (11) in (7) we obtain 
k ( fc- l ) /2 k 

(12) h(x) = a ( e x p ( 2 c X ( - i y x ; ) 1,-^x) + I exp(2c £ ( - l ) ' x ( ) . 
i = l n = l i = 2 n + l 

( k - l ) / 2 It 

• l[x2„.x2„+l[W)ecx + <5( £ exp(2c J ( - l ) ' x , ) W,-,,*.„[(*) + W ^ * ) ) - = " " * * 
n = 1 i = 2n 

Thus, in the case where p = a we get the functions h satisfying the equality in (1). 

3. MINIMIZATION OF THE LOGARITHMIC INFORMATION 
OF DEGREE q 

In this part we define the logarithmic information of degree a of a random variable, 
the probability law of which is absolutely continuous with respect to Lebesgue's 
measure. 

By using the result obtained in the previous part we get a density minimizing 
this information in a class of densities having a given mode. 

Definition 1.3. Let 5 be a real number, q > 1. The logaritmic information of 
degree a of a random variable X with a probability density f(x) is defined by 

(13) M/)=riii^ivwdx 
J - a , I dx I 

We suppose that the set £ ( / ) of points where the density admits a maximum or 
a minimum is finite, and we note 

E(f) = {au...,ak}, fee A/* 

We further suppose that / is positive and continuous for every x e f i and that 
it is differentiable on R — £(/)• 

We note, for every x e tt, 

(14) . h(x) = qf(xyi« 

From inequality (5) we obtain 

(15) f" \^M\f(x)Ax = 2<(£(-iy+1/(*,.)<) 
I dx i=i 
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the equality holding, from (12), if and only if 

(16) /(*) = (^Y{[exp(2qc£(-1)4) h-„*fr) + 

+ kf\xp(2qc i (-l)'ai)l[.an,a2n+l[(x)]e«« + 
n = l i = 2 « + l 

+ [' X,/2exp(2gc £ (-1) ; at) W.._ t o t(x) + lt(,t,+ _,L(x)] e " ^ 
n = l i = 2n 

where <5 and c are arbitrary positive constants. 
Since J + " /(x) dx = 1 , we get 

^ \ " _ ££ 

vJ 2£(_1y+lexp((_iy+lflcflj).exP(2^£(-iya,) 
i = l J = i 

Writing ac = A the equality holds in (15) if and only if 

(17) /(*) = \ {[exp(tt£(-l)4)-]-->.. , .(*) + 
A ;=i 

+ "£/2exP(2A £ ( - 1 ) 4 ) W.. 2„+ l [W]e^ + 
n = l i = 2 n + l 

+ f I / 2exp(2A i£n(-l) i a.) W - . ^ t M + W + . tM] e-Ax} 

where A is a positive constant and 

(18) ^ - ^ r L _ 
2K-iy+1exp((-iy+1Aai + 2AK-iya,) 

; = i j = ; 

Let fc be an odd number, at < ... < ak real numbers and a±,..., <xk positive real 
numbers such that, for every i = 1, ...,(fc — l)/2, a2; < min (a2i_1; a2i+1). We 
denote by 3F{ax,..., ak, a1;..., <xk} the set of probability densities such that, if/be­
longs to this set, then / is positive and continuous on R differentiable on R — E(f), 
with £(/) = {ar, ..., ak} and/(a;) = a; for every i = 1, ..., fc. 

We have the following result: 

Theorem 1.3. Let fc be an odd number, ax < ... < ak real numbers and al5 ..., <xk 

positive real numbers such that, for every i = 1, ...,(fc — l)/2, a2; < min(a2;_1, 
a2;+1). In the set f { . „ ..., ak, <xt,. ., ak}, the probability density given by formulas 

k 

(17) and (18) by taking X = 2 £ ( - l ) ' + 1 <x„minimizes the logarithmic information 
of degree q. 1=1 

k 

Proof. From the previous results we have only to prove that X = 2 £ (-1) ' + 1 a;. 
i = i 
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The density / being continuous, it is easy to see that, for every i = 1, . . . , k, 

«. = i exp ( ( - l ) i + 1 la, + 2X £ ( - 1 / a ;) 
A j=i 

Therefore, from the value of A given by (18), we get 

A = £ ( - I ) ' + I « , . . • 
i = 1 

Particularly we have 

Corollary 3.1. In the class of unimodal positive and continuous densities having 

a given mode m, differentiable in every point x #= m, and the value of which equals a 

at the point m, the density 

f(x) = a exp( — 2%\x — m\) 

minimizes the logarithmic information of degree q. 

(Received March 26, 1985.) 
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