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KYBERNETIKA CISLO 4, ROČNÍK 3/1967 

Set-Theoretical Operations on k-multiple 
Languages 

JAROSLAV KRÁL 

It is shown that the class of A:-multiple languages (see [1]) is closed under formation of finite 
unions and intersections. The two types of complements are /c-multiple modulo e. The class of 
^-multiple modulo e languages is closed under the formation of finite unions, not, however, 
under formation of intersections and complements. 

The fc-multiple automaton was introduced in [1] as a generalization of the concept 
of finite automaton and as a device for the recognition of the so called fc-multiple 
languages. For our purposes we reformulate here some definitions from [1]. 

Definition 1 (Culik). The fc-multiple automaton A is defined by the (fc + 4)-
tuple <V(1), V(2), ..., Vm, I, <t>, i0, E> where 

V(i), i = 1, 2, ..., fc, are finite nonvoid sets called alphabets, elements of V(l) are 
called symbols; 

/ is a finite nonvoid set called the set of internal states of A; 
<P, the transition function, is a transformation from I ® V(1) ® .. . ® V(lt) into I, 

® denotes the cartesian product; 
j 0 , the initial state, is an element oil; 
F, the set of final states, is a subset of/. 
A is a device which can be in some internal state i e /. This device has k inputs. After 

reading vu ..., vk by inputs of A, the internal state i of A is changed to i u il = 
= <P(i, vu v2,..., vk). A can be therefore interpreted as a finite automaton with fc in
puts instead of one. 

Definition 2. We say that a string 

A —- A i x 2 • • • AcAc-j. i • • • *^2s * " * **k$ 

is acceptable by a fc-multiple automaton A if the expression 

<£(#(. . . <P($(i0, Wj), w2) . . . ) , ws) , 



where w; = (x;, xs+i, x2s+i, ..., x ( ik_1)s+i), has a meaning and defines some state 
from F. The string, the length of which is not the multiple of fc, is not acceptable by 
the definition. 

For a fc-multiple automaton A and for an fc-tuple x of symbols we shall use the terms 
such as "x is read by A", "x puts A into state i" and so on in the similar sense as 
for a finite automaton. 

Definition 3. fc-multiple language Lk is a set of all strings which are acceptable by 
some fc-multiple automaton A. The automaton A will be called the automaton of Lk. 

Theorem 1. Intersection or union of two k-multiple languages is a k-multiple 
language. 

This is p roved by a slight modification of the proof that the union or intersection 
of two regular events is a regular event again; see [2] or [6]. 

Definition 4. Complement Lk of the fc-multiple language Lk is the set 

Lk=V*-Lk, 

where V* is the set of all strings over V = V(1) u V(2) u ... u V(k). 

Example 1. Set L2 = {a"b"; n >, 0} is the two-multiple language (see [l]) . But 

L2 = {a, b}* - L2 

and L2 contains the set {a"; n > 0}, i.e. the strings the lenghts of which are not even 
and we have at once: 

Corollary 1. Complement of the fc-multiple language Lk is not necessarily a fc-mul
tiple language. 

Definition 4a. The component complement Lk of the fc-multiple language Lk is the 
set of all strings x $ Lk of the form dtd2 ...dk,dte V(0* for i = 1, 2, 3 , . . . , fc. 

Henceforward in this paper by A = <V (1 ),..., Vik),I, i0, F} an automaton of Lk 

will be denoted. 

Example 2. L2 = {a"bm; m =(= n; m, n >. 0} is component complement of L2 = 
= {a"b"; n > 0} and it follows. 

Corollary 2. Component complement tk of k-multiple language Lk is not necessarily 
a fc-multiple language. 

Definition 5. Let V(1),..., V(J° be alphabets not containing e. A set Lk of the strings 
of the form dxd2 ... dk,dte V(i)*, i = 1, 2 , . . . , fc, is a fc-multiple modulo e language 
if and only if there exists a fc-multiple language L'k with alphabets V(,) u {e} so that 
for every x e Lk there is a y e Lk for which x = y (mod e) (i.e. x is equal to the y in the 
sense of a free semigroup with the identity symbol e generating y) and vice versa 



for every y e L'k there exists x e Lk so that y = x(mod e). In other words Lk is 317 
k-multiple modulo e if every string of Lk belongs to a k-multiple language Lk if a suit
able insertion of e's is done and vice versa by erasing e's in arbitrary y e L'k a string 
x e Lk is obtained. 

Theorem 2. Lfc is a k-multiple modulo e language. 

Proof. We shall construct a k-multiple automaton 

A0 = <V°, V°,..., V°,I°, <P°, i°0,F°y, V° = F u {e} 

which accepts Lk. Each string x e Lk is expressible in the form 

(2.1) x = d1d2d3...dk 

where d; are strings over F = V(1) u V(2) u ... u V(k) and if x has the length 
sk + j , j < k then d1( d2,..., dj have the length s + 1 and dJ+1, ..., dk have the 
length s. We shall construct A0 so that A0 accepts only the strings x of the form 
(i = 0 ,1 ,2 ,3 , . . . ) : 

(2.2) x° = d.e'd^ ... d/dj+.e^1 ...dke
i+i , 

where eI + 1 = e'e, i > 0, e° is an empty string and dx has the same meaning as in 
(2.1). It follows that the alphabets V(i) of A0 are for all i = 1, 2 , . . . , k equall to V° = 
= V u {e}. The construction of <P°, 1° and E° is now straightforward although 
rather cumbersome. 

If an automaton A of Lk is given by <V(1), ..., V(k\ I, 4>, i0 F} we put i0 = i0, 

7° = I u {i*; w = 2, 3, ..., k - 1} u {iB} u {i,} 

where all i*, w = 2, 3, ..., k — 1, i, do not belong to I. <P° coincides with $ on 
I ® V(1) ® .. . ® V(fc). *°(i, i7t, u2 , . . . , vk) = i, for »!, v2,..., vk * e and either i = 
= i; or i e / and <P°(i, B19 . . . , i^) is undefined, i.e. A0 is in the state i, if a symbol not 
belonging to V(i) has already been read by i-th input and the symbol e has not been 
read yet. 

<P°(i, vi,..., vw, e, e, ...., e) = i* for w = 2, 3 , . . . , k — 1 and i el or i = i, (i.e. 
the reading of the last but one fc-tuple of symbols is realized); 

<P°(i, e, e, ..., e) — i for all i el° (i.e. reading of (e, e, ..., e) causes no change of 
the internal state of A0). 

In all other cases $°(i, vx, v2, ..., vk) = iD. 
Putting i0 = i0 and 

F° = (/ - F) u {i,} u {/*; w = 2, 3, ..., k - 1} 

we see that A0 has all desired properties. 



318 Theorem 3. tk is a k-multiple modulo e language. 
Proof. We shall construct a /omultiple automaton 

A" = <V°, V°,..., V°, Ic, * ' , i%, Fcy 

which accepts Lk. (For the meaning of V° see the proof of the previous theorem.) 
First we shall construct a fc-multiple automaton A which accepts the set L°k

d of 
strings being expressible in the form 

x = d1d2...dk, 

d; is a string over V(i) for i = 1, 2 , . . . , k. Let 

(3.1) A = <V°, V0,..., V°,l,&, i0,Fy 

A is constructed in order to accept only the strings of the form (2.2). The construction 
of A is a simple matter if alphabets V(i) are mutually disjoint or if all V(l) coincide. 
In the general case the construction is more difficult. As the construction of A is 
rather cumbersome its main ideas will only be indicated. All alphabets of A are iden
tical and equal to V°. If x e L°k

d is expressed in the form x = dtd2 ... dk where the 
lenghts of d; are s or s + 1, then xJ = d[d'2 ...d{eL°k

d for j = 1, 2, ..., s + 1, 
where (as well as below) d\ denotes the string formed by the first;' symbols of dh 

If follows that after reading xJ there exists a finite set Bj of vectors b = (bh ..., bk) 
where bt = q( if symbols from V(9i) can be read by the i-th input, i = 1, 2 , . . . , k, 
so that 

xJ + 1 =dJ+1d{+1 ...d{+1 

remains a member of L°k
d. 

Obviously BJ+1 having the same meaning for xJ + 1 as Bj for xJ is a subset of Bj. 
Now let J contain the states of the form iB where B is one of the above mentioned sets. 
Let <I>(iBj, Vi, .-., Vt) = ijjj.+ ( where xJ + 1 = dJ

1v1d2v2 ... dkvk, Bj containing a vector 
t = (iu ..., t„) so that vt e V(ri) for i = 1, 2, ..., k. We note that these relations have 
a meaning as Bj + l is uniquely determined by Bj and vu v2,..., vk. If Bj does not con
tain any vector of such a property some "absorbent" state iD is reached i.e. for iD it 
is true that $(iD, vu v2,..., vk) = iD for all (vu v2,..., vk). The set of all iB is finite 
and it can be shown that adding some auxiliary states and putting i0 = iBo, B0 = 
= {(f1; t2,..., tk); 1 g fj g t2 S ••• S= tk g k) it is possible to construct A of all 
desired properties. 

Let us now construct the automaton Ac. The set of its states is formed by the set of 
pairs of the form (ilt i2> where i1 e I and i2 el and by some additional states (i.e. 
the states of Ac are „pairs of states" of A and an automaton A of Lk and some aditio-
nal states). 

Let v = (vuv2, ...,vk) and 

$c«h, ii\ y) = <#(.i, y), ®{iz, ')> (3.2) 

if both <P and $ are defined; 



4>c(i, e, e, ..., e) = i (3.3) 

for all i e Ic 

$c«h, i2>, v) = <*(i t , v), , » (3.4) 
if $(i2, v) is not defined; 

Fc = {<>!, i2>; *i 6 !S ia i F} u {<i l t iF>; i t e F} . (3.5) 

It is easily seen that Ac has the desired properties as a state from Tc cannot be 
reached if x e Lk (see (3.3) and (3.4)) or if x is not expressible in the form dxd2 ... dk 

where d ; is a string over V(l> for i = 1,2, ..., k (see properties of A). 

Theorem 5. The union of two k-multiple modulo e languages is a k-multiple 
modulo e language. 

The proof is similar to the proof of the theorem 1. The only difference is that 
instead of considering strings x we consider the strings x' obtaining from x by con
venient insertion of e's. 

Example 3. Let us have two-multiple modulo e languages: 

Lj = {a"bncm; m, n > 0} 

which is accepted by the two multiple automaton <{a} u {e}, {b, c, e}, {Sx, S2, S3}, 
<2>, Sx, {Sx, S2}> where $(S%, a, b) = Sv <P(S«, e, c) = $(S2 , e, c) = S2, <Z>(S, e, c) = 
= S for all S, #( , , ) = S3 in all other cases and 

L2 = {amb"cn; m, n > 0} 

which is accepted by the similar automaton. But then 

Lt n L2 = {a"£nc"; n > 0} 

is a three-multiple modulo e language, not a two-multiple modulo e language. It 
follows 

Corollary 3. The intersection of two languages which are k-multiple modulo e is 
not necessarily a k-multiple modulo e language. 

Corollary 4. The complement of k-multiple modulo e language is not necessarily 
a k-multiple modulo e. By the complement of Lk we mean the set 

lk=C-Lk 

where C is the set of all strings over V. 

Proof. We note that for every two sets A, B 

A nB = (Ac u Bc)c, 



320 where ( )c denotes the complement and that the assertion of the theorem follows 

from corollary 3 and theorem 5. 

Corollary 5. The component complement Lk of k-multiple modulo e language, 

Le. the set 

Lk = C - Lk, 

where C = {d; d = dyd2 ... dk, dt is for i = 1, 2,..., k a string over V0'} is not 

necessarily a k-multiple modulo e language. 

The proof is the same as the proof of the previous corollary. 

(Received June 1st, 1966.) 
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Množinové operace nad Á>násobnými jazyky 

JAROSLAV KRÁL 

V článku jsou zkoumány tak zvané násobné jazyky tj. jazyky akceptovatelné tzv. 

násobnými automaty (viz [1]), jež jsou zobecněním tzv. regulárních výrazů. Je do

kázáno, že třída násobných jazyků je uzavřena vůči průniku a sjednocení, ale nikoliv 

vůči doplňku. Třída fc-násobných modulo e jazyků je uzavřena vůči sjednocení, ale 

nikoliv vůči průniku a tedy ani doplňku. 

Jaroslav Král, prom. matematik. Ústav výpočtové techniky ČSAV-ČVUT, Horská 3, Praha 2. 
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