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KYBERNETIKA — VOLUME 12(1976), NUMBER 2

On Linear Inversion of Moving Averages,
Discrete Equalizers and “Whitening” Filters,
and the Related Difference Equations

and Infinite Systems of Linear Equations

Lupvik PROUZA

Connections of difference equations methods of solution of some inversion problems with the
theory of infinite systems of linear equations are investigated.

1. INTRODUCTION

In this article, some generalization of the results of [1] arc presented. In chap. 2,
the problem formulation of inversion with a finite weighting sequence filter from [1]
is extended to colored input sequences and the relation to the Kolmogorov-Wiener
problem of interpolation is shown.

In chap. 3, a difference equations method, used in special cases in [2] and [3],
of solving the inversion problem with a white input sequence, is investigated in detail *
for the finite length weighting sequence inversion filter. In chap. 4, the difference
equations method is extended to the case of the length of the inversion filter weighting
sequence tending to infinity, assuming that B(z) from (13) possesses at most simple
roots on the uvnit circle C,.

In chap. 5, the relation of the results of chap. 4 to [4; 5] is briefly examined. It
may be shown that the general theory of [4; 5] is easily applicable to the problems
of [6; 7] in the case of B(z) # 0 on C,. For B(z) = 0 on C,, recent results exist
[8; 9], but they cannot be applied directly to the respective Theorems of chap. 4.
The important conditions 2/(z) # 0 on C, and ind «/(z) = 0 of the general theory
are shown for &/(z) = B(z) to be identical with the Nyquist stability criterion.

2. PROBLEM FORMULATION — FINITE CASE

Let {x(t)}, (t = 0 + 1, +2,...) be a complex random weakly stationary sequence.
Let the sequence {&(?)} be formed from {x(#)} by the finite moving average

(1) &) = bo x(f) + by x(t — 1) + oo + by x(t — h),

where 1 = 1 is natural, b; are complex, b, # 0, b, + 0.
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¢
Let N be a given natural number, N = h. We will form the finite moving average
)} Xyt = T) = ayo &(t) + ay, &t — 1) + ... + ayy &t — N),

where Tis natural, 0 S T N + h.
We seek ayy, ..., dyy so that
(3) E{[xﬁ(t - T) — x(t — T)[z} = ®(ayo, ..., ayy) = min,

where E denotes the mean value. {x3(r)} will be called linear inversion of {&()}.

Denoting
@ E[x()5(t — D] = ;. 1=0,%1,...,
) E[E(t) &t — ] = Ry, [=0, +1. ...

(where X means the complex conjugate to x) then the necessary and sufficient condi-
tions for {a;} (we omit the first subscripts for the sake of simplicity) to satisfy (3)

are the equations

(6) Roap + R_ja; + ... + R_yay = E[&) x(t — T)],
Ryas + Ry1a, + ... + Roay = E[&t — N)x(t — T)].

With the notations

(M ui =bibo+ ...+ bby_;, Jj=01,..h,
by =0y,

ones obtains

®) R; = Qe yujity + oo + Qito + -+ + Chrjlon

and )

9 E[&(t — ) x(t = T)] = Doo—gsj + .o + Bul-rissy

Thus especially if {x(f)} is white and normed (g, = 1) then instead of (6) one has
(10) Holg + pio1@; + ...+ p_yay = by,
PnGo + fy-18y + .o + foay = br_y

with p; = 0 forj > h, b; = 0 forj > h and for j < 0.
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1
(i = L CLOFCLS
] 21 J ¢, z
where
(12) Alz) = ap + a;z7' + ...+ a7V,
13) B(z) = by + byz™! + ...+ bzt
(14 @) = ¥ e

and C, is the unit circle.
From (11), the relation of the inversion problem to the Kolmogorov-Wiener
interpolation problem

(15)

L,j o7 = ()2 1(2) % = min

2mi J, z

is apparent. In the later, one seeks /(z) with the supplementary condition that the
coefficient of z~7 in the Laurent expansion of /(z) is zero. In the former, the supple-
mentary conditions is that s#(z) = A(z) B(z) possesses the factor B(z) or, by other
words, /(z) possesses all roots of B(z).

3. DIFFERENCE EQUATION METHOD OF SOLUTION
OF THE INVERSION PROBLEM FOR FINITE N

In what follows, we will be interested mainly in the system (10). The determinant
of (10) (and also of (6)) is positive, being the principal minor of a (Hermite) positive
definite correlation matrix. Thus (10) has a unique solution.

For N substantially greater than h, this solution may be found with advantage by
a finite difference equation method. As it will be shown, instead of a system of N
linear equations, only a linear homogeneous difference equation of the order 2k
with 2k boundary conditions is to be solved. '

Case 1. Let T < h. Then, we write instead of (10)

(16) Wl + o+ Hoag + .+ uoga, = by,
[ T 2T oot by = bo,
=0,

[ T R N 2 ST IR Rl (X P

Huln—n +ootHtoay Flogayy g+ poane, =0
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Comparing (16) with (10), one sees that in (16) in the last h equations, the terms
Ay 15 - Gy appear and to be compatible with (10) the conditions

(17) Ayyy = Ayiz = ... = dyy; =0

must be added. Furthermore, one must deﬁne

(18) .y =a_,=...=0a 4474, =0,

as is seen from the equations following in (16) that with b, on the right side. The set

in (18) may be empty.

Finally, one adds — by, ..., — b, to the first, second, ..., equations in (16) getting
zeros on the right sides and one defines a_, 1, ..., a_; with the aid of the equations

(19) Hyl -yt 1 = —by,
M@ pyr-1 + ﬂh—{‘hh-w = —by,
Pl —p + Hh»1:a—h+1 + . My ey = —br.
By these definitions one adds — br, ..., — by on the left side also, moreover, with

the aid of boundary conditions.

Since p, #+ 0, these equations possess unique solution.

Thus, one has replaced the system (10) via a one-to-one correspondence by the
homogeneous difference equation

(20) Wy + Ph—1Gpey + oo T Ry, =0

.of the order 2k and the boundary conditions (17), (18) and those resulting from (19).

Now, since (10) has solution, this solution satisfies (20) with the above boundary
conditions. Thus (20) with the given boundary conditions has at least one solution.

Supposing that there were two distinct solutions in the range ay, ..., ay ard
remembering the one-to-one correspondence of (10} and (20), (17), (18), (19), these
two solutions were also solution of (10), which is impossible.

Thus aq, ..., ay from (20) with the given boundary conditions form the unique
solution of (10). Since N > h, one has at least 2k successive values “on the left”
available as initial conditions to (20). Thus it is obvious that (20) with the given
boundary conditions has a unique solution.




Case 2. Let 1t < T < 3h-1. Then (10) is

- /=Db, for T=h,
(21) Holo + H_1ay + ..o + U_pay = br<: O’ for T>h,

Hr—udo + MPy_p—10; + ... + p_yar = by,

My oy F oo+ Hoyarey = Do,

M@r iy + oo F foglrapey =0,

My -yt oo+ gy = 0.

Now, we will consider the equations beginning with the first one after that with b,
on the right side as the homogeneous difference equation (20) and we attach h
boundary conditions (17) to it.

Since ayp_;4 is the first term expressible with the aid of the characteristic roots
of (20), we consider a, ..., a;_, as unknowns. Thus, one has 2h + T—h + 1 =
=T+ h + 1 unknowns and with the first T+ 1 equations in (21) T+ h + 1
condition equations.

It can be shown by similar reasoning as in case 1 that this system has the same
unique solution as (10).

Note that since T < 3h — 1, one has to solve less than 4h equations. The case 2
may be, alternatively, treated similarly to the following case 3, but then 4h equations
were to be solved. This seems not to be advantageous.

Case 3. Let T = 3h — 1. From (10), we pass to the difference equation (20) with
boundary conditions (17) and

(22) a_;=a_,=..=a_,=0.

Showing only the “midle part” of the sequence of equations (10) representing (20),
one has

(23) H@r—ap—y + .o + pigaroy; =0,
M2y + oo popdr =b,+0,
Moy F o pogary, =by ¥ 0,

y@r—pey F oot f8rige1=0,

Hylyr—y +o a1 =0,

Hpdr | ot pog@re =0,

107
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Now, we will express the term a;_, and the preceding ones with the aid of the
characteristic roots and 2h unknown constants (coefficients). The term a; and the
following ones will be expressed with the aid of the characteristic roots and other
2h constants. Thus, one has 4h unknowns and 2/ boundary conditions (17) and (22).
The remaining 2h conditions will be taken from (23) beginning with the equation
with b, on the right (since the preceding equation will be satisfied with arbitrary
constants) and ending with the last but one equation (since the following one will
be satisfied with arbitrary constants).

Now, the fact that every solution of the difference equation with the given boundary
conditions is simultaneously solution of (10) is obvious. Thus the system has no
more than one solution. But taking a;_,, ..., ar_,, from the “middle” of (23) (i.e.
of (10)) as initial conditions, one sees that (since 4, # 0) ar_,;-, is uniquely defined
from the difference equation and thus must be the same as that given by (10). In this
way, one comes back to a, and, by similar reasoning with ay, ..., dr4 ;- as initial
conditions, to ay. Thus the difference equation problem has the same solution as

(10).
4. DIFFERENCE EQUATIONS METHOD FOR N — w0

The characteristic equation to (20) is

(24) M(z) =p gzt = B(z) B(z‘l) =0,
where
(25) B(z"')=bo + byz + ... + b,2".

If (24) has a root {, it has also the root {~!, thus the roots of (24) occur in Fejér-
Riesz pairs.

The solution of (20) is a linear combination of the 2k particular solutions of the
form

(26) ol m? 'l

{ being a | + l-tuple root of (24).

Let (24) posses on C, at most double roots. Let us arrange the summands in the
linear combination representing the solution of (20) so that firstly the summands
formed from (26) pertaining to the roots lying inside of C, in some fixed sequence
occur, then the summands pertaining to the roots on C, follows so that firstly all
terms the form (" and then the terms of the form n{" occur. Finally, there follow
the summands pertaining to the roots outside of C,.
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coefficients of the summands of the first group will be denoted A4;, A,, ..., 4,
those of the summands of the second group B,, B,, ..., B,.

In what follows only the case 1 of the chapter 3 will be considered in detail, the
other cases will be leaved to the reader.

Also, since the general formulas in the case of multiple roots of (24) are quite
intractable, the reader is for insight in what follows referred to [l, formulas (31),
(2)1

The system of equations for 4;, B; is formed by the boundary conditions a_,,
Aopits oo Gegs Ayggs ooo ONape

One knows that the system possesses a unique solution and thus aiso a nonzero

. determinant. We will express this determinant with the aid of the Laplace expansion
similarly as in [ 1] with minors from the first & rows and the remaining h rows.

Lemma 1. Let B(z) possess on C; at most simple roots. Then in the Laplace ex-
pansion of the determinant of the equations system for 4;, B; the term d given by
the product of the first minor from first h rows and the last minor 4 from the last & ?
rows is dominant in the sense that ‘

@7) limd,{d =0,

N- o

where d; is any other term of the Laplace expansion.

Proof. The first minor from the first & rows is independent from N and distinct
from 0, since analogously as in [1] taking out proper factors a determinant is obtained
known from the theory of linear difference equations to be distinct from 0 (see [10,
p. 335 f1.]).

The last minor 4 from the last h rows has for a (I + I)-tuple root { outside C, the
columns :

(28) N+ (N + 1) N+t (N + 1)2 N (N + 1)1 L
G (N + 2) (N2 (N + 2)2 A ...,(N + 2): GAE

R (N 4 BYEVHE (N 4+ R EPR (N + R O

Taking out from each column the common factor {¥*1, there remain the columns |

(@) 1, N+1).1, (NP+2N.1+DL, 0 L N+,
L (N+2).L (N*4+2N 24290 L (N +2).¢,

CoL (N )00 (NP 4 2N B B2 O (N 4 RYL
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Now, from the known rules on determinants, there is clear that one can omit N
in the brackets in the second column, in the brackets in the third column one can
omit N2 + 2Nj (j = 1, ..., h), etc. Thus in the minor there remain the columns
(30) 1, 1.1, 1*.1, .., 1.1,

¢, 2.¢ 2704 L, 20,
I L SN UV
For { on C,, which is double in (24), the respective column in 4 has the terms

(31) (N + 1) FGARS (N + 2) GAET (N + k) eNHh

Taking out the factor (N + 1) {¥** there remains

N+2 N+h
N+1" 777 N+1

(32) _ 1,

From (30) and (32) there is seen that after taking out the respective factors there
remains from 4 a determinant having for N — o0 a known nonzero determinant
as the limit (see [10]).

Thus for N sufficiently great this determinant is certainly distinct from 0 and the
respective term of the Laplace expansion is also distinct from 0.

Let us consider other terms of the Laplace expansion. For these terms, at least
one column of 4 must be replaced by a column choosen from the first & columns.
Let us denote the respective root of (24) by .

Clearly for all { from 4

(33 [nf <<l
or
(39 [l =]

but in this last case |7| = I and the respective column has the terms
(35) gV g2 N
according to our arrangement of columns.

Now, with (33) one gets for each fixed k

N
(36) lim lﬂL.M:O.

oo [¢Y




Moreover, it is seen from (31) and (35) that in the case (34) the factor N + 1 is
lost. This completes the proof. .

Theorem 1. Let B(z) possess on C; at most simple roots. Then

(37 limB; =0, (j=1,2,...,h)
N-owo
and
(38) 3imAj =A}, (i=12..h
N—=w

where A} are solution of the equations system

(39) nitat + oAy
ntAT 4 oAy

f

a

l
=

I
B
!

where #; are the roots of (24) inside and on Cj, arranged according to what follows
after (26) and a_,, ..., a_, are defined by (18), (19).

Proof. To compute B; according to Cramer’s rule, the respective numerator
determinant has all terms of the Laplace expansion of lower order than the “domi-
nant” term of Lemma 1. This gives (37). Further, we pose (37) in the first s equations
for computing 4;, B;. From this substitution, (39) follows at once.

Theorem 2. Let B(z) posses on C, at most simple roots. Then the “limit” weighting
sequence {a,} formed with

(40) a, = Ay + ... + Apf}

is solution of the infinite equations system

(41) : Holg +poga; 4 ...=bp,
Mg+ pody b ...=br,
Br@o  + pr_1Gy + ... = by,

Hre1o + pray  +...=0,

and is bounded.

Proof. For the infinite system (41) the conditions (17) vanish and from (18) with
Bf =0 (j=1,...,h) one gets (39) for A]. The boundedness of the solution is
obvious.

111
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Theorem 3. Let B(z) posses all roots only inside C; or on Cy, the last ones being
simple. Then the formal inversion

z—l

(42) A(z) = =~
B(z)
gives the same sequence {a,} as the system (41).

Proof. Forming from (42) the infinite equations system one finds it equivalent
with the difference equation

43) boa, + byay,—y + ... + bya,, =0
with the characteristic equation
(44) B(z)z" =0

and with the initial conditions a_,, ..., a_, given by (18), (19). Since the roots of
(44) lie only inside or on C,, the last ones being simple, the  equations to find the
coefficients G; of

@) - a, = Gyl + ... + Gy

are the same as in (39). From this and Theorem 2 the proof is completed.

Example 1. Let
(46) &) = x(1) — 2x(t — 1),

thus bg =1, by = =2, h=1,T=0, gy =5, i = =2, y; =0 for j > 1. The
system (41) is

() Say — 2a, -1,
o — 2ay + 5a, — 2a, =0,

—2a, + 5a, —2a; =0,

From (18), (19) there is a_; = 1/2 and since the roots of the characteristic equa-
tion are 1 = 1/2, { = 2, one gets from (39) AT = 1/4. Thus from (40)

(48) a, = (1212, n=01,..




In[1, p. 232]. Example 2, we have found for finite N 113

22N+ D)=n _ on

#9) W= e _

and thus

(50) lima, = (1j2)"*2.
N-oow

Example 2. Let
(51) &) = x(1) — x(t — 1),

thus by =1, by = ~1,h=1, T=0, yo =2, uy = -1, y; =0 for j > 1. The
system (41) is
(52) 2ay — ay =1,

—ay + 2a; — a, =0,

—~ ay +2a,—a;=0,
From (18), (19), there is a_, = 1. The characteristic equation has double root
n = 1. From (39), one gets 47 = 1. Thus from (40) ‘
(53) a,=1, n=01,...

In [1, p. 232]. Example 3, we have found for finite N

(54) a=NFl-n
N+2
and thus
(55) lima, = 1.
Nooo

Note that in [1], the relations (50) and (55) have been shown without connection
to the solution of infinite systems of equations.

The example 1 is covered by a Theorem of Walsh (see [1] p. 238, formula (84),
p. 237, formula (77)). To the example 2, this Theorem cannot be applied without
generalization since it supposes no roots of the characteristic equation lying on C,.
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OF LINEAR EQUATIONS

A general theory of infinite systems of linear equations with a Toeplitz matrix
can be found in [4; 5], covering the situation with no roots of characteristic equation
on C;.

For this situation, a theory of approximation of the solution of infinite system
with solutions of “truncated” systems for N — oo is constructed in [5].

For the system (41) with arbitrary T and no roots of M(z) in (24) on Cy, the two
fundamental conditions of solvability are

(56) M(z)+0 on C,,
(57) ' ind M(z) = [arg M(e“)]5-_, = 0.

Both are fulfilled, the first one by supposition and the second one because
M(exp if) is in this case a positive Fejér trigonometric polynomial. Thus the general
theory can be easily applied to our infinite system.

For the infinite analog of (6), to remain in the frame of [4], there may be shown
easily with the aid of (8), (9) that the conditions

(58) ’ jj_mlejl <,
(59) f(z) #0 on C(f(z) defined in (14)),
(60) M(z) 0 on C,

are sufficient. However, to solve the equations system by the simple methods of
preceding chapters, f(exp i) has to be a positive Fejér trigonometric polynomial.

The case of roots of the characteristic equation lying on C, has been treated in
[8; 97, but the results there of cannot be applied directly to our case.

Let us now investigate in some detail the role of the conditions the specialized
version of which are (56), (57).

Let

-1

61) | X(z)=:_[4j¥a

1
= —‘~B(z) - Y(z)

. Y(z) =




where 4 # 0 is a complex number and B(z) is defined in (13). Supposing Y(z) be the
Z-transform of an input sequence, X(z) being the same for the output, one sees from
the right side of (61) that for / = 0 the inversion of the relation Y(z) = X(z) B(z)
would result. In the middle of (61), an approximate inversion is realized with |1] < 1.

Comparing the coefficients in the expansion of (61) one gets

(62) . (bo — 1) xo = Yo
bixe + (bo - /1).\'1 =DVi>

byxo + byxy + (bg — )X, =y,
This is an infinite system of equations and its characteristic function in the sense
of [4] is
(63) BL) = (bo — 4) + byl + ... + bl" = B(z) — 4,
thus

(64) v a0 = -1[1 L3 '):l .

Now, for (62) to posses an unique solution for arbitrary bounded {y,} the necessary
and sufficient conditions are

(63) ()

#0 on Cy,
(66) ind B() = [arg (") 5-- = 0.

From (64), (65) there follows (with z = {™')

(67) ‘[I“IEB(Z) +0 for z on C,.

Furthermore, from (64)
(68) arg #(0) = arg (—2) + arg [1 - % B(z):l .

Moving { on C, in the positive sense results in moving z in the negative sense.
The corresponding vectors from the origin to #(() and to 1 — B(z)/4 are moving
in the same sense and differ by a constant angle as is seen from (68).

5
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Let us formulate the analogy of the Nyquist stability criterion to our case (see [11,
p. 61, Theorem 5, 14]):

The relation (61) is stable if and only if

a) the vector v from the origin to the point 1 — B(exp i0)/4 has for every 6 a non-
zero length and

b) moving @in z = exp i0 trough the interval { —, ©} in negative sense the number
of complete rotations of the vector v is zero.

But a) is (67), thus also (65), and b) is (66) (with the aid of (68)).

Thus, in our special case the conditions (65), (66), and the Nyquist stability crite-
rion are identical.

Since in the theory of infinite systems of linear equations more general matrices
than lower triangular ‘ones — corresponding to physical realizable relations — are
admissible, one may say that the fundamental conditions responding to (65), (66)
represent an extension of the Nyquist stability criterion to systems more general than
the physically realizable ones.

6. CONCLUDING REMARKS

In the present article, the results of [1] have been extended in various directions
and their relations to the general theory of infinite systems of linear equations with
Toeplitz matrix [4; 5] have been shortly discussed.

It seems. that the extension of the Wiener-Hopf method to the case of the charac-
teristic equation having roots on C; will play an important role in better handling
various summation and numerical integration methods, resonant discrete filters,
and the applications there of.

{Received February 21, 1973.)
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