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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 1 

A Review of the Matrix Riccati Equation 
VLADIMÍR KUČERA 

This paper reviews some basic results regarding the matrix Riccati equation of the optimal 
control and filtering theory. The theoretical exposition is divided into three parts dealing respecti­
vely with the steady-state algebraic equation, the differential equation, and the asymptotic pro­
perties of the solution. At the end a survey of existing computational techniques is given. 

INTRODUCTION 

As usual, R denotes the field of real numbers, R" stands for the n-dimensional 
vector space over R, a prime denotes the transpose of a matrix, an asterisk denotes 
the complex conjugate transpose of a matrix, and P _ Q means that P — Q 
is hermitian or real symmetric nonnegative matrix. Square brackets represent matrices 
composed of the symbols inside. 

In order to get a better motivation for the problems to be discussed we first pose 
the underlying physical problem. 

Given the linear, continuous-time, constant system 

(1) ^ = Ax(t) + Bu(t), x(t0) = x0, 
at 

(2) y(t) = Hx(t), 

where x e R", u e Rr, and y e Rp are the state, the input, and the output of the system 
respectively and A, B, H are constant matrices over R of appropriate dimensions, 
find a control u(t) over t0 S- t _ tj which for any x 0 e R" minimizes the cost functional 

(3) / - ix'(tf) S x(tf) + i Hx'Qx + u'u) df. 
J to 

with S = 0, Q = 0. 



This problem is referred to as the least squares optimal control problem and 43 
it can be solved by the minimum principle of Pontryagin [ l ] , [19], [29], [32], by the 
dynamic programming of Bellman [1], [3], [7], [15], [19], [32] or by the second 
method of Lyapunov [33]. 

The minimum value f0 of (3) is given as 

(4) A = M'o) I'(to) *(to) 

and it is attained if and only if the control 

(5) u(t)=-B'P(t)x(t) 

is used. Here P is an n x n matrix solution of the Riccati differential equation 

(6) - — = -P(t) BB' P(t) + P(t) A + A' P(t) + Q , 
df 

P(tr) = S . 

Note that this equation must be solved backward from ff to f0 in order to obtain 
the optimal control. 

One special case is frequent in applications, namely ff -» oo, the so called regulator 
problem. In this particular case it may happen that P(t) approaches a finite constant, 
P r o , as ff -* oo, or, equivalently, as t -» — oo in (6). Then 

(7) A = ix'(to) I5*, *(to) ; 

the control law 

(8) u(t) = -B'Pxx(t) 

is independent of time and Pm satisfies the quadratic algebraic equation 

(9) -PBB'P + PA + A'P + Q = 0 . 

In the sections to follow we first investigate the algebraic equation (9), then the 
differential equation (6) and the asymptotic behaviour of the solution of (6) as 
t-* — oo. Finally some computing techniques for both equation (6) and (9) are 
surveyed. 

THE QUADRATIC EQUATION 

The matrix equation (9) has been extensively studied [6], [16], [22], [23], [26], 
[30], [36]. It is well-known that it can possess a variety of solutions. First of all (9) 
may have no solution at all. If it does have one, there can be both real and complex 
solutions, some of them being hermitian or symmetric. There can be even infinitely 
many solutions. Due to the underlying physical problem, however, only nonnegative 



44 solutions are of interest to us. Therefore, we are mainly concerned with the existence 

and uniqueness of such a solution. 

In this section we summarize some long-standing as well as recent results [22], 

[23], [26], [30] on (9) which will prove useful later. First of all, write 

Q = C'C, S = D'D . 

Then X is said to be an uncontrollable eigenvalue [13], [22] of the pair (A, B) if there 

exists a row vector w + 0 such that wA = Xw and wB = 0. Similarly, X is an un-

observable eigenvalue of the pair (C, A) if there exists a vector z + 0 such that 

Az = Xz and Cz = 0. 

The pair (A, B) is said to be stabilizable [35] if a matrix L over R exists such 

that A + BL is stable (i.e., all its eigenvalues have negative real parts), or, equi­

valent^, if the unstable eigenvalues of (A, B) are controllable [13], [35]. 

Analogically, the pair (C, A) is defined to be detectable [35] if a matrix F over R 

exists such that EC + A is stable, or, if the unstable eigenvalues of (C, A) are observ­

able [13], [35]. 

A nonnegative solution of (9) is said to be an optimizing solution [28] if it yields 

the optimal control (8); it is called a stabilizing solution [28] if the control (8) 

is stable. We shall denote these solutions P0 and Ps, respectively. 

Further we introduce the 2n x 2n matrix 

« --ice,--:*} 
Unless otherwise stated we shall henceforth assume that the M matrix is diagonaliz-

able, that is, it has 2n eigenvectors. This assumption is made for the sake of simplicity 

and is by no means essential. 

Let 

Mat = X-fii, rtM = X^i, i - 1, 2,.. ., 2n , 

and write 

- й - rK:ľ 
where xt e R", y{ e R", ute R" and vt e R". 

Thus the at is a column vector whereas the r ; is a row vector. They are sometimes 
called the right and the left eigenvectors of M, respectively. 

It is well-known that the eigenvectors can be chosen so that 

(H) rtaj - 0 . , i+j, 

* 0 , i=j. 

The following seems to have been proved first in [10], [26] and [30]. 



Theorem 1. Each solution P of (9) has the form 

(12) P = YX-i , 

where 

X = [xux2,...,x„], 

Y = | > i , y2, • • -, yn] 

correspond to such a choice of eigenvalues Xu X2, ...,X„ of M that X"1 exists. 

Converselly, all solutions are generated in this way. 

Proof. Let P satisfies (9) and set 

K = A - BB'P, 

the closed-loop system matrix. Then we infer from (9) that 

PK = - Q - A'P 

and hence 

Let 

J = X~lKX = diag(A., A2, •••, X„) 

be the Jordan canonical form of K and set PX = Y Then (13) yields 

(14) M Й-Й'-
Й Since J is diagonal, the columns of constitute the eigenvectors of M associated 

with XUX2,...,X„ and P = YX~\ 
The converse can be proved by reversing the arguments. • 

Corollary. The matrix K = A — BB'P given by the solution (12) has the eigen­

values X-t associated with the eigenvectors xt, i = 1, 2,.. ., n. 

Proof. The J matrix is the Jordan form of K and X is the associated transformation 

matrix. • 

Theorem 2. Let Xt be an eigenvalue of M and l the corresponding right eigen-

vector. Then —Xt is an eigenvalue of M and ' ' the corresponding lefteigen-

L *d 



Proof. By direct verification, making use of the identity 

ИГK;-:] 
and the fact that a left eigenvector of M associated with X is a transposed right 

eigenvector of M' associated with X. • 

Note that M being a real matrix, its eigenvalues occur in quadruples {X, X*, 

-X, -X*). 

The procedure described in Theorem 1 is the time-domain counterpart of the 

spectral factorization in the frequency domain. 

We also point out that there can exist at most one stabilizing solution due to the 

symmetry of the eigenvalues of M. If P s = YX~X is such a solution, then the matrix 

Z*Yishermitian [30]. 

The following fundamental theoiems originated in [22], [23], [24]. 

Theorem 3. The stabilizing solution of {9) exists if and only if(A,B) is stabilizable 

and Re X 4= Ojor all eigenvalues X of M. 

Proof. Necessity: Suppose the stabilizing solution P s exists. It is associated with n 

stable eigenvalues of M and hence no eigenvalue can have zero real part due to their 

symmetrical distribution about the imaginary axis. 

Moreover, the matrix L = —B'PS stabilizes A + BL, i.e., the pair {A, B) 

is stabilizable. 

Sufficiency: Suppose the hypothesis holds and let no stabilizing solution exist. 

Then either (i) we cannot choose n stable eigenvalues of M, a contradiction, or (ii) 

we can do so but the X matrix in (14) is singular. 

If (ii) is the case, write z for any nonzero vector of Jr{X), the null space of X. 

Since X*Y = Y*X, we have 

(15) 0 = Y*Xz = X*Yz . 

By virtue of (10) and (14), 

(16) AX - BB'Y = XJ , 

-C'CX-A'Y =YJ. 

The first equation yields 

z*Y*AZz - z*Y*BB'Yz = z*Y*XJz 

and hence by (15) and by the definition of z 

(17) B'Yz = 0 . 

But 

0 = AXz - BB'Yz = XJz , 



which means that JV{X) is a J-invariant subspace of R". Hence there exists at least 47 
one nonzero vector 1 e JV{X) such that 

(18) Jz = jxz 

where fi coincides with one of the stable eigenvalues of M. 
The second equation (16) postmultiplied by 2 yields 

(19) -A'Yz = YJz . 

Collecting (17) through (19) gives us 

{Yz)' A = ->i{Yz)', Re (- /.) > 0 , 

{Yz)' B = 0 . 

Thus (A, B) is not stabilizable, contradicting our hypothesis. • 

Theorem 4. The stabilizing solution is the only nonnegative solution of (9) if 
and only if {C, A) is detectable. 

Proof. Sufficiency: Assuming (C, A) detectable we shall demonstrate that any 
solution P of (9) is the stabilizing solution. Suppose to the contrary that a X exists 
such that 

Kz = Xz , Re X = 0 , K = A - BB'P . 

On rearranging equation (9) reads 

PBB'P + PK+ K'P + C'C = 0 

and hence 

{X + X*) z*Pz = -z*PBB'Pz - z*C'Cz . 

Since X + X* — 2 Re X = 0, the left hand side of this equation is nonnegative, 
while the right hand side is nonpositive. Therefore either is zero and 

B'Pz = 0 , 

Cz = 0 , 

which in turn implies 

Az = Xz , Re X = 0 , 

Cz = 0 . 

Thus (C, A) is not detectable contradicting our hypothesis. Hence K is stable. 
However, there is at most one stabilizing solution, i.e., the solution P is unique. 

For another proof refer to [36]. 

Necessity: By contradiction, suppose an undetectable eigenvalue Xi of (C, A) 



exists. We shall show the existence of at least two nonnegative solutions of equation 
(9). One of them is the stabilizing solution P s = YX~l by hypothesis. 

To form another solution P , = Yi-XT/1 we substitute the eigenvector * I of M 

[ x ~| -° -1 

1 associated with — A,, thus obtaining 
yd 

X, = [z1,x2,...,x„-], Y1^[p,ylt...,y„-. 
Also set 

X = [x2,...,xn], t=[y2,. . . , > • „ ] . 
Now Theorem 2 along with (11) implies that 

[ z ? , 0 * ] | ~ ~ y i l = 0 , i = 2,3,...,n. 

Hence z*f = 0 and 

(20) ^ = r o , f j - r o ' ° > j ^ 
v ; Lo> x*f] L°> £*?J 
because X*Y = 0. 

To prove that X± is nonsingular, suppose the contrary is true. Then a vector v =f= 0 
exists such that z, = j£u and, consequently, 

0 = z*? = v*X*f; 

that is, det X*f = 0. Observing that det X*fis a principal minor of the nonnegative 
matrix X*Y, it is easy to see that 

[xu X]*fv = X*(fv) = 0 . 

This is a contradiction, however, as X is nonsingular and fv 4= 0. 
Thus P , does exist and is different from P s because it corresponds to a different 

n—tuple of eigenvalues of M. • 

Theorem 5. Stabilizability of (A, B) and detectability of (C, A) is necessary 
and sufficient for equation (9) to have a unique nonnegative solution which stabilizes 
the closed-loop system. 

Proof. Sufficiency part is a well-established result in [36]; it can also be inferred 
from Theorems 3 and 4. 

Necessity part is a simple consequence of Theorems 3 and 4. • 

We note that optimality does not necessarily imply stability. Indeed, the optimizing 
solution minimizes the cost functional whereas the stabilizing solution makes the 
closed-lopp stable, and this is quite a different property. However, in control appli­
cations an optimal system which is stable as well is desirable. Conditions for this case 
to hold have been stated in Theorem 5, first published in [22]. 



Further we turn our attention to the situation when these conditions are not 
in force. If (C, A) is detectable and (A, B) is not stabilizable, no nonnegative solution 
of (9) exists. Indeed, (C, A) detectable implies by Theorem 4 that all solutions are 
the stabilizing solutions. But such a solution does not exist by Theorem 3. 

Further let (A, B) be stabilizable and (C, A) be not necessarily detectable. In this 
case we characterize all nonnegative solutions of (9), see [23], [24]. 

Let Xt, X2, ••-, Xp, p ^ 0, be those eigenvalues of M that are also the undetectable 
eigenvalues of (C, A), i.e., 

AZ; = XiZi , 

CZ; = 0 . 

R e 2 ( > 0 , i = l,2,..., p. 

An eigenvalue A of A is called cyclic if any two eigenvectors of A associated with X 
are linearly dependent. We restrict ourselves to the cyclic Xb i = 1, 2 , . . . , p. Under 
this condition equation (9) has only a finite number of nonnegative solutions [23], 
[24]. Otherwise nondenumerable many nonnegative solutions exist as the example 
A = B = I, C = 0, w > 1 shows, see [23], [24] for details. 

Define 

(21) <€ = {XUX2,...,X„} 

and write <€k, k = 1, 2, ... for the subsets of <€. Note that all -X„ i = 1,2, ...,p 
must be used to form the stabilizing solution if it exists, since Re (-A;) < 0. 

Write Pk for the solution of (9) which is generated from the stabilizing solution 
by replacing all —Xi with Xh Xt e <£k. 

The theorems below have originally been proven in [23], [24]. 

Theorem 6. Suppose the stabilizing solution of equation (9) exists. Then the set 
of all Pkform the class of all nonnegative solutions of (9), and there are exactly 2P 

such solutions. 

Proof. Existence of all Pk can be proved in an identical manner as the existence 
of Pj in the "if" part of the proof of Theorem 4. 

To see that no other nonnegative solution of (9) exists, firstly substitute an eigen­
value X e <€ for the eigenvalue — X. Arguing as in [23] we conclude that either X*Y >. 0 
or X is singular and hence the corresponding solution cannot be nonnegative. 

Secondly make the substitution of an eigenvalue X, Re X ^ 0, for an eigenvalue p, 
Rep < 0, -n =t= X. Applying (11) and Theorem 2 we conclude that X*Y4= Y*X 
and such a solution cannot be nonnegative, either. 

The number of solutions follows from the fact that there are 2P subsets of a set 
consisting of p elements. • 

Remark. If the M matrix is not diagonalizable, a more refined analysis in [23] 



50 shows that, in general, there exist 

fhi + s.) 
i = l 

nonnegative solutions, where 

Czi+j = 0 , jf = 0, 1 , . . . , s( - 1 , 

* 0 , j = Si 

and 
Azi + j = A;Z; , j = 0 , 

= ^ i + j + Zi + j - l , J = 1, 2, ..., S; - 1 . 

Theorem 7. Any two nonnegative solutions Pk, P ( of (9) satisfy 

(22) Pk = Pt if and only if <$k s V,. 

Otherwise speaking, the set of all noiinegative solutions constitute a distributive 
lattice with respect to the partial ordering ^ . P0is the smallest nonnegative solution 
(the zero element of the latice) and Ps is the largest nonnegative solution (the 
identity element of the lattice). 

Proof. The claim hinges on the observation that the family of subsets %k constitute 
a distributive lattice with respect to the partial ordering by inclusion and that (22) 
is an isomorphism. 

In particular, c€k = 0 implies Pk = Ps whereas Vk = (6 implies Pk = P0. 
The relation (22) itself follows from (20). • 

Note that if (C, A) is detectable then V = 0 and hence P0 = Ps. However, (C, A) 
undetectable implies that V 4= 0 and hence P„ =£ Ps; the two solutions never coincide: 

The physical interpretation of different real nonnegative solutions is as follows [26]. 
Each nonnegative solution is a conditionally optimizing solution of (9), the condition 
being a certain degree of stability. Specifically, Pk stabilizes the undetectable eigen­
values of (C, A) included in <%k and no others. Equation (9) thus contains the optimal 
solutions for all degrees of stability [23], [24], [26]. The idea that the more unde­
tectable eigenvalues is stabilized the higher is the cost f is made rigorous via the 
concept of lattice. 

THE DIFFERENTIAL EQUATION 

In this section we summarize some fundamental results on the Riccati equation (6) 
which are scattered in the literature [1], [6], [8], [9], [15], [17], [19], [20], [32], [36]. 

The well-known theorem on differential equations guarantees only local existence 
and uniqueness for the solution of (6); without further analysis we cannot conclude 
existence over t0 = t ^ t{ because of the phenomenon of finite escape time. 

Nonetheless, the following is proved in [6], [8], [9], [15], [36]. 



Theorem 8. Let P(t, S, t() be the solution of (6) which passes through S at t = t(. 
Then given any t0, P(t, S, t() exists and is unique on t0 S= t :§ tt regardless of S. 

Proof. In view of the local existence the P(t, S, t() exists for some t ^ t(. 
Let ^(f, t() be the transition matrix of A. Then 

P(t, S, t() = W'(t, tt) S T(t, tt) + 

+ fV ( f , T) [Q - P(T, S, I,) BB' P(r, S, iv)] W(t, T) dx ^ 

^ W'(t, t() S V(t, t() + f V(f, t) 6 y(t, T) dr , 

which can be verified by elementary differentiation. The a priori upper bound above 
provides a Lipschitz constant on any finite interval t0 g t g tt no matter how large. 
Hence P(t, S, t() exists and is unique globally for any S. • 

Theorem 9. For any t0 S t ^ tf 0«d any S ji 0, 

(23) P(r, S, tf) ^ 0 . 

Proof. If P(t, S, t() satisfies (6), then P*(t, S, t() does so. Hence P(t, S, t() is 
a hermitian matrix. Moreover, using (4), we obtain (23) since 

/„ = min / ^ 0 . • 

Theorem 10. The solution P of (6) enjoys the following properties: 

(24) P(t0, 0, f,) S P(t0, 0, h) 

for any t0 S ti ^ t2, 

(25) % 0 , l t ) ^ ( f l ! 0 , ( t ) 

for any t( 5£ t2 <; ff, 

(26) P(t, Su t() S P(t, S2, t() 

for any nonnegative S( :g S2 and t ^ t(. 

Proof. Regarding (24), we have 

x0 P(t0, 0, t() x0 = min (x'Qx + u'u) dt ^ 
u J to 

g min (x'Qx + u'u) dt = 
" J to 

= x0 P(f0, 0, t2) x0 

for any x0 e R". 



52 Regarding (25), the substitution tt — t = T in (3), gives us 

P(t0, 0, tt) = P(0, 0, ff - t0) 

and hence (25) follows from (24) on identifying t0 with tx and f2 in turn. 
Finally, (26) is obvious since increasing the terminal penalty results in increased 

cost functional (3). 
We conclude this section by emphasizing that we are not concerned with stability 

of the optimal closed-loop system since the control problem is defined over a finite 
interval. 

ASYMPTOTIC BEHAVIOUR OF THE SOLUTION 

Now we let ff -* oo and investigate the properties of P(t) over the half-line t0 = 

< t < oo. Since the Riccati equation coefficients are independent of time, P(t0, S, ff) = 
= P(0, S, ff — f0) and it makes no difference to consider t -» — oo and the half-line 
— oo < f < ff instead. The first arrangement reflects the time evolution of the 
system, whereas the other is convenient from the computational point of view. 

It is easy to see that additional assumptions will be required to keep P(f) from 
passing off to infinity. 

Theorem 11. If (A, B) is stabilizable, then the solution P(t, S, ff) of (6) is bounded 
on — oo < f < ff regardless of S and ff. 

Proof. Consider a control 

u(t) = Lx(t), t0<t', 

such that the closed-loop system matrix A + BL is stable. Then 

x'0 P(t0, S, ff) x0 = min [x'(ff) S x(tt) + (x'Qx + u'u) df] < 
" J <0 

< f (x'Qx + u'u) df = x'0 W(t0, t) x0 

J to 

since x(t{) -> 0 as ff -* oo, and x0 = x0. 

Here IV(f0, f) is a finite matrix over R for any f < ff. Hence P(f0, S, f) is bounded 
from above for any f0, any f0 < f < co, and any S. 

Equivalently, P(f, S, ff) is bounded for any ff, any — oo < f = ff, and any S. • 
Theorem 11 is proved in [36] without any appeal to variational ideas. Our proof, 

however, is considerably simpler and more intuitive. 

First the asymptotic properties of P(f, 0, ff) will be discussed and existence of an 
equilibrium solution of (6) deduced, see [15], [36]. 



Theorem 12. If (A, B) is stabilizable, then 

lim P(t, 0, t{) = PK , 
<->-CO 

a finite nonnegative matrix. 

Moreover, POT is a fixed point solution of (6), 

P„ = P(t, Px, t{). 

Proof. By Theorem 10, (25), P(t, 0, rf) is monotone nondecreasing in t in the 
ordering of nonnegative matrices. Further Theorem 11 implies that P(t, 0, tt) is 
bounded from above and consequently there exists a finite matrix Px — 0 so that 
P(f, 0, tf) - ^ P t t as f-> - o o . 

Since P ^ is independent of t, it satisfies both (6) and (9), that is, PM = 
= P(t, Px, t{). D 

We remark that even if the stabilizing solution P s of (9) exists, Pm = P s need 
not be true. Naturally, there arises the question: To which nonnegative solution 
of (9) does P(t, 0, ff) converge? The answer is contained in the two theorems below 
[26], [36]. 

Theorem 13. / / (A, B) is stabilizable, then 

Px=Pa-

Proof. Since S ^ 0, we infer from Theorem 10, (26) that P(t, S, t{) = P(t, 0, tf) 
for any S. Thus, as t -> — oo, P(t, 0, t{) -> P0, the smallest nonnegative solution 
of (9). D 

Theorem 14. If (A, B) is stabilizable and (C, A) is detectable, then 

PK= Po = ps. 

Proof. By hypothesis Theorem 5 implies that equation (9) possesses the unique 
nonnegative solution P„ = Ps. Thus the claim follows from Theorem 13. ' • 

Now we generalize and consider the asymptotic behaviour of P(t, S, t{) rather 
than of P(t, 0, tf). Theorem 12 is not known to hold for arbitrary nonzero S = 0 
as yet, even though some conjectures so that effect has been made [26]. The dif­
ficulty stems from the fact that P(f, S, t{) is not monotone nondecreasing in t. 

We avoid the impasse by assuming that not only (A, B) is stabilizable but also 
Re X 4= 0 for all eigenvalues X of M. This is equivalent to the assumption that P s 

exists. 

Thus we are ready to prove the original results of this paper. 



54 Theorem 15. If P s exists then 

lim P(t, S, t{) = Px , 
f-»-oo 

a finite nonnegative matrix. 
Moreover, P m is a fixed point solution of (6), 

P m = P(t, Px, t{) . 

Proof. For S = 0 the theorem reduces to Theorem 12. Thus it will suffice to show 
that the term x'(t{) S x(t{) approaches zero as tf -» oo. 

By the assumption of Re X 4= 0 this term goes either to zero or to infinity. The 
latter case is not possible, however, since by Theorem 11 the cost is bounded from 
above. • 

Observe again that, in general, Px need not coincide with either P s or P0. And 
again we ask: To which nonnegative solution of (9) does P(t, S, ff) converge? 

We have to take S = D'D into account. Let p,u \i2,..., nq, q = 0, be those eigen­
values of M that are also the undetectable eigenvalues of (D, A), i.e., 

Azt = HiZf, 

Dz{ = 0 , 

Re ^ = 0 , i = 1, 2 , . . . . q. 

Define 

in accordance with (21). 

Theorem 16. i / P s exists then 

P*=Pk 

if and only if 
<£k = «" n 9 . 

Thus P(t) can be made to approach any nonnegative solution Pk of (9) by taking 
an appropriate S. 

Proof. To demonstrate the interaction of S and Q assume first that all undetectable 
eigenvalues Xt of (C, A) belong to <?, where Si corresponds to an arbitrary S ^ 0. 
Then Dzt = 0 and hence 

lim P(t, S, tf) = lim P(t, 0, ff) = P0 
«-»-» t-+-oo 

by Theorem 13. Note that P0 is generated by the set ^ = ^ n S. 
Second, let one undetectable eigenvalue Xt of (C, A) does not belong to S. Then 

Dzx 4= 0 and 
lim P(t, S, tf) = P j 



where P t is generated by the set <€x =
 e€ — {Aj = <& n 9. It is so since otherwise 

the cost would be infinite due to the term x'(tr) D'D x(t(). 
Consequently, Px = Pk if and only if <€k = <€ n 9. • 

Observe that Px is the smallest nonnegative solution of the lattice generated by the 
set <€ n 9 rather than by the <€ itself. 

Theorem 17. If (A, B) is stabilizable and (C, A) is detectable, then 

px= p o = p s 

for any S >. 0. 

Proof. By Theorem 5, equation (9) has the unique nonnegative solution P„ = P s . 
Thus our claim is proved by referring to Theorem 16. • 

From the computational viewpoint Theorem 16 renders it possible to find an S 
such that P(t, S, t() will approach a desired equilibrium solution P^ . In particular, 

P K = P s if and only if <$ n 9 = 0 
and 

The relation 
px = Po if and only if <€ n 9 = <£ . 

lim P(t, S,t() = Pko<g n 9 = <€k 

is an equivalence and, therefore, it induces a decomposition of the cone of non-
negative matrices S into equivalence classes. Each class contains those S that make 
P(t, S, t{) converge towards a particular Pk. Thus we see that Px is not a continuous 
function of 5 [26]. This is an observation of crucial importance in computations. 

COMPUTATIONAL TECHNIQUES 

This section is concerned with the computational aspects. Various techniques 
of finding a solution to equations (6) and (9) are reviewed. It is very difficult to label 
a particular method as being superior to the others. Each method may prove better 
in one application but it may fail in another. Our aim is to bring the most important 
methods to the reader's attention and indicate their applicability, advantages and 
objections. 

Computing the solutions of the algebraic equation 

(j) Eigenvector Solution 

This method has been reported in [2], [10], [12], [23], [26], [27], [30] and its 
essentials are stated in Theorem 1. Apart from its theoretical importance, it is com­
putationally promissing as efficient and accurate algorithms to compute eigenvalues 
of a matrix are now available. 



56 This is the only method for computing any solution of (9), no matter whether 
it is nonnegative or not. 

(it) Iterative Solution 

This technique has been first reported in [4], [20], [21] and is believed to be one 
of the best methods to find the stabilizing solution of (9). It is assumed that (9) 
possesses a unique nonnegative (stabilizing) solution Ps, which is being found by 
successive linear approximations. 

Let Pj, j = 0, 1 , . . . be the unique nonnegative solution of the linear algebraic 
equation 

(27) PJKJ + K'JPJ + C'C + L'JLJ = 0 

where, recursively, 

Lj = -B'Pj^, j = 1 ,2 , . . . , 

Kj = A + BLj 

and where L0 is chosen such that the matrix K0 = A + BL0 is stable. Then 

Ps^Pj+1 ^Pj^..., j = 0,1,..., 
and 

(28) lim Pj = Ps. 
j'-*co 

Indeed, K0 being stable, (27) has a unique nonnegative solution P0 . This yields a Kx 

and, in turn, a Pt. A little manipulation with the associated cost functionals reveals 
that Ps i^ Pi <z P0. P t being bounded, Kt is stable etc. A theorem on monotonic 
convergence of nonnegative matrices guarantees the existence of a limit. Then (27) 
is identical to (9) when j -> oo and (28) holds by uniqueness of Ps. 

The method provides monotonic and quadratic convergence. In fact, it is an 
ingenious modification of Newton's method reported in [5]. 

(iii) Solution Using the Sign Function 

This method is described in [31] and can be viewed as a simplification of (i) to find 
the stabilizing solution. 

The matrix function sign Z is defined in [31] by 

signZ = lim Z t + 1 , 
fc-»oo 

where 

z^i-K-^ + z*"*1). fc-o,i,..., 
z0 = z. 

Define also 
sign* Z = i ( 7 + s ignZ) . 



Then assuming K = A — BB'P is stable and defining a matrix V by 

KV + VK' + BB' = 0, 
it is easy to check that 

r/, -V i p . o - ip -VP,V - | 
[_p, / - pVJ Lo, -K'J L-p. I J 

Hence 

~--fc;:^T-r_-
~l_-(I-pF)p> /-pVJ 

and P follows immediately if V~i exists. 
Note that M is not taken through a complete spectral factorization, but into two 

parts only. 
Computing the solution of the differential equation 

(iv) Transition Matrix Solution 

This old method was rediscovered in [8], [9], [15], [25]. It is important from the 
theoretical standpoint since it enables us to solve analytically equation (6) even 
in the time-varying case. However, analytic solutions can be found only in exceptional 
cases. 

Denote 
(29) p(t) = P(i)x(t). 
Then 

(30) A M = ^ P . . l 
dtlpj UoJ 

by virture of (9), and the transversality condition becomes 

(31) p(t{) = S x(t{). 

Let <P(t, t{) be the transition matrix for (30), i.e., 

(32) [X01 __[-<_,(.t{), *12(t,t{)irx(t{)i 
K UoJ L*2i(t,tt),*22(utt)]\j(tt)j 
where the 4>tJ(t, t{) are n x n submatrices formed by partitioning <P. Then (29), 
(31) and (32) gives 

p(r, s, t{) = [__,(,, <f) + $22(t, t{) S] [_ tt(t, t{) + $i2(t, t{) sy1. 



5 8 (v) Negative Exponential Solution 

This technique, reported first in [34], bypasses one difficulty arising in (iv), namely, 
that <P(t, ff) contains stable as well as unstable modes. As time proceeds, the unstable 
modes tend to dominate and accuracy is at stake. 

The basic trick is to recast the equations so that only negative exponentials occur 
in computations. 

Write 

for a 2« x 2n matrix that diagonalizes M, 

\WU, W12l 

[w21, w22\ 
i M, 

Lo, -J\ 
and set 

(33) £]--« 
Then 

and by (33), 

where 

Denoting 

Yx(tt)l = rc-^-'\ o irx(t)i 

ml Lo, e-c<HL/Xíf)J 

p(tt)~Rx(tt) 

R = -[W22 - SW12Y
X [W21 - SWtl] . 

G(t, ř f) = t''tft.-nR(rHu-t> t 

we finally get by (29) 

P(t, S, tt) = [W21+ W22 G(t, tt)] {Wtl + W12 G(t, t ^ 1 . 

The steady-state solution Px is obtained as 

Px = lim P(t, S, ff) = W21W^ , 
f-»-oo 

which is identical to equation (12). 

(vi) Solution Via Numerical Integration 

This is perhaps the most natural numerical technique to obtain the transient 
solution of (6). Usually the Runge-Kutta method is applied [18]. The method can 
also be applied to compute a desired steady-state solution as a function of P(tt) = S, 
see Theorem 16. However, for this purpose the numerical integration is time consum­
ing and not very accurate. 



ТаЫе 1. 

Nonnegative Solutions of Algebraic Equation (9) 

Re X Ф 0 for all X Re X — 0 for some X 

(A, B) stabilizable 
(C, A) detectable 

Ps exists and it is the unique nonnegative solution, 
Ps =P0 

(A, B) stabilizable 
(C, A) not detectable 

Ps exists, there are other 
nonnegative solutions, 

P*4=Fo 

Ps does not exist, there 
are other nonnegative 
solutions 

(A, B) not stabilizable 
(C, A) detectable 

No nonnegative solution exists including Ps and P0 

(A, B) not stabilizable 
(C, A) not detectable 

Ps does not exist, other nonnegative solutions may 
or may not exist 

Asymptotic Properties of Solutions to Riccati Equation (6) 

t{ -»• 00 

t{ finite 5 = 0 
S Ф O 

t{ finite 5 = 0 
Re X Ф 0 

for all X 

ReA = 0 

for some X 

t{ finite 

(A, B) stabilizable 
(C, A) detectable 

Pm exists, Pm = P0 = Ps There is al-
ways 
a unique 
solution 
P(t) and 
it is non-
negative 

(A, B) stabilizable 
(C, A) not detectable 

Pm exists, 
pm = p „ 

* Ps 

Pm exists, 
Pm = any 
nonnegative 
solution 
depending on 5 

1 

There is al-
ways 
a unique 
solution 
P(t) and 
it is non-
negative 

(A, B) not stabilizable 
(C, A) detectable 

Pm does not exist 

There is al-
ways 
a unique 
solution 
P(t) and 
it is non-
negative 

(A, B) not stabilizable 

(C, A) not detectable 
Pm may or may not exist 

There is al-
ways 
a unique 
solution 
P(t) and 
it is non-
negative 



To conclude this section we mention yet another group of methods to solve (9). 
The common feature is that equation (9) is transformed into a recurrent algebraic 
equation [14] whose solution coincides with the unique nonnegative solution of (9). 
The resulting matrix recurrent equation is then straightforward to solve. 

CONCLUSIONS 

The reader will have noticed that the interrelations of different nonnegative 
solutions of (9) are quite complicated. Letting ff -> oo and studying the asymptotic 
behaviour of (6) makes the matters even worse. Therefore the following Tables 1 
and 2 are provided to summarize the results for equations (9) and (6), respectively. 

We also stress that the aim of the paper was to study the matrix Riccati equation 
in general and not to restrict ourselves to common engineering applications. This 
approach in turn provides a deep insight into the problem of least squares control 
and the engineer is well prepared to cope with ill-behaved solutions. 

(Received June 5, 1972.) 
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