
Kybernetika

Evžen Kindler
Programming means for simulation of logical networks. II

Kybernetika, Vol. 9 (1973), No. 1, (11)--29

Persistent URL: http://dml.cz/dmlcz/124653

Terms of use:
© Institute of Information Theory and Automation AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124653
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 1

Programming Means for Simulation
of Logical Networks II

EVZEN KlNDLER

The serie of papers contains the information about programming means which enable to
program the models of logical networks also for the non-computer-oriented users. The present
part is directed for the second generation computers. There is presented a simulation program­
ming system oriented to the considered class of problems — its language and compiler into
an algorithmical language. A description of a programming methodics follows which enables
to use the system COSMO for simulation of logical networks though it has been originally
determined to continuous problems.

3. SIMULATION OF LOGICAL NETWORKS AT SECOND GENERATION
COMPUTERS

3.1. The first generation of automatic computers is represented by a lot of com­
puters in the first decade of years following the invention of the first automatic
computer. One can approximate the decade by the years 1950-1960. The develop­
ment of other facilities has caused that a new type of computers was studied, which
has got the foundations for the concept of the second generation automatic computer.
We have used the word type for the reason that there are much computers which
have some facilities and some properties of the second generation of the computers
while the other are from the first generation. There are even some computers with
certain aspects familiar with the third generation of computers through their basic
facilities are mixed of the both preceding generations. Therefore one must consider
the following statements as a basis which can be used for every computer proportion­
ally with its properties consistent with those that are accepted as typical for the second
generation. Nevertheless the computers produced between the years 1960 and 1970
satisfy a lot of the properties of the type of the second generation computers so that
the concept of them is accepted as a rather clear one by the people specialized for the
computing technique: the concept is as clear as much concepts used e.g. by biologists
in their systematics.

The computers of the second generation have the same properties as those of the
first generation, concerning the length of words by them processed (they are of
constant length, similar to the length in the first generation). The circuits of the
computers of the second generation are based no more at the electron tubes but
at transistors. The main internal memory is realized as a core memory while the
drums serve as auxiliary memory which is not directly used in the fast arithmetic
and control operations. The core memory has its capacity of about 10 000 words
(thus about 10 times greater than the capacity of internal storage in the first generation)
and its short access time causes that the computers of the second generations perform
tens of thousands arithmetic operations in a second. The capacity of the auxiliary
memory mediums is almost unlimitted: beside the mentioned drums there are the
magnetic tape units. The computers are so constructed that one can join new memory
units or input-output ones, too. The second generation computers are facilitated
by the operating systems which prefer the closed shop mode of the computer run:
the users give their demands in a form of a packet of punched cards (decks) con­
taining the programs, the data and the control cards which cause the demanded use
of them. The control cards contain also the information about the personality
of the user. The decks are transformed into a magnetic tape which is given to the
computer as the input file. The operating system reads the tape as its input data and
according to the control cards it switches various programs to satisfy the domanded
computation. It produces another file, so called output file, which is recorded during
the computation at another magnetic tape. When one computation is finished the
operating system reads immediately the following information at the input file so that
the computer does not wait. Its time is well used (excepting certain situations described
in the part concerning the third generation computers). The output file is taken
down after a long time and then it is let to be print; after printing a tape of paper
with text is received containing headings which can be well distinguished. The oper­
ators break the paper tape before such headings: as the headings contain also the
names of the users (known by the computer because of the control cards) one can
easily find his proper part of prints: there one can read the results, completed by
notes of the operating system in case of an error; other complements are also present,
as the price of computation, used memory, the time when the computation was
performed etc. The operating system performs naturally all evidence concerning
accounts.

3.2. The operating system can call in use the systems of automatic programming.
They are stored in a magnetic tape of the operating system and they can be used
by putting one control card into the deck of the user. The systems of automatic
programming are either those of algorithmic type or those of simulation type. The
first ones give nothing new for our subject, as they are only very powerful modific­
ations of the algorithmic languages for the first generation computers. The simulation
programming systems however carry new facilities in, even in the problem of simul­
ation of logical networks: the simulation programming systems work similarly

as the algorithmic ones (the program is described in so called programming language,
perforated and the translator or the compiler reading it, produces the program
in machine code), but the main difference is in the programming language in which
the program is described; while the algorithmic languages admit only that one describes
the sequence of demanded operations in more "readable" from than it would be
written in the machine code, in the simulation programming language we describe
the demands to the computer in the following way: the structure of the investigated
system is described, completed by eventual parameters, description of the situation
of the system is joint (the initial conditions, the duration of the computation, the
input information for the system etc.). The whole description is also completed by very
simple information which interest us and in which form it is to be printed (there are
suitable facilities to print tables, graphs, eventually to do a simple statistical analysis).
The description of much simulation languages is presented e.g. in [11], [12]; in the
last source there is a rich article [13] which serves as a survey in a great group of the
simulation languages.

3.3. After considerations done in the preceding part we can design a simple
programming system for simulation of logical networks. Let us mention that there
have been presented various propositions concerning programming languages never
realized: to propose a programming language is not difficult, but a relatively hard and
trouble work is to realize the translator which might translate the texts written in the
programming language into programs performable by a computer. In our case the
translation from the proposed simulation language into a first generation algorithmic
language can be described in few words, because in the first part the general
properties of the target programs (risen by such a translation) have been sufficiently
studied. The simulated system is described by a paragraph containing lines so that
one line corresponds to one neuron. There the neuron is described so that its order
number is given at the beginning of the line. Then two spaces follow after that
a letter is put. It means the type of the described neuron: G means a generator
(including inputs), D means a neuron with delay and E that without delay. The letter
is immediately followed by a stroke, which is followed by a number. It is a code
number for the function which is performed by the described neuron. We propose
the following correspondence between the code numbers and the operations:

0 — logical zero (identically generated at the output),
1 — logical one (identically generated at the output),
2 — identical mapping of the information entering at the first input of the declared

neuron,
3 — negation of the information entering at the first input of the declared neuron,
4 — conjunction,
5 — disjunction,
6 — implication,
7 — equivalence,

8 — symmetrical difference,
9 - Sheffer stroke,

10 — input unit,

etc. The numbers from 4 to 9 means the mentioned function at the first and second
input information. The language with the compiler can be arranged so that if the
number of inputs is greater than 2 the superfluous input informations are ignored.
The similar situation can be similarly solved for the unary operations (code numbers 2
and 3) in case that the number of the described neuron is greater than one. Also, for
generators the same relations can exist: if there are inputs which would enter into the
described generator they are ignored as they might not enter into the declared neuron.
Let us mention that the conception of a generator of a constant and the conception
of a neuron which reacts to any input information by generating a constant, which
lead to some sophisticated formulations in the first part have their analogies
which are however very comprehensible: thus one can write G/l or Ejl without any
error. Moreover it is possible to declare G/10 or E/10, it is possible to declare D/10.
While G/10 and E/10 are equivalent, D/10 means that a value is read from the input
medium but it comes into the simulated system with a delay of one step. Theoretically
one could omit the letter G completely from the proposed language using always
the latter E in place of it but it seems more suitable to let it: the language is therefore
more readable and the complications of the compiler (translator) caused by it can
be neglected.

After the code number a left parenthesis follows. In the same line the corresponding
right parenthesis must occur. Between both of them a list of input is written: any
input is identified by Ak where k is the order number of the neuron from which the
input comes; where there are more than one inputs they are distinguished by commas.
Thus the description of the logical network presented in the paragraph 2.H. is the
following:

8 G/10
5 El3(A6)
7 E/3(AA)
6 D/2(A1)
2 E/3(A1)
1 D/4(A$,A7)
3 E/5(A2, A5)
4 D/15(A8, A3,A5)

We suppose that the conjunction of three inputs is coded by 15. Let us mention that
the form of the texts occuring in the figure 3 is different from that of the'proposed
language: e.g. G8 occuring in the figure 3 means the third neuron which is a generator
while G/10 in the example just presented means that the generator performs the
action coded by 10; its order number is written before the letter.

3.4. In the preceding paragraph the means for the description of the simulated
network has been presented. Such a description forms thus a paragraph called body.

That name can be put before the description in a special line, forming a key word 15
for the computer (see later). But if we wish to simulate really a neuron network
we must describe the situation by means of other paragraphs that receives the com­
puter together with the body. Thus before the body it is suitable to present a para­
graph concerning the initial conditions, introduced by its key word which we propose
as INITIAL. Before this paragraph it is to be a heading of the whole description; there
the "global" information about the simulated system is to be presented, i.e. the
number of neurons in the simulated network and — facultatively — eventual variables
used in the description, so that one could use the algorithmic means (see further —
in the description of the program sections). The number of neurons can be determined
by a line (the initial line of the description for the computer):

NUMBER OF NEURONS k

where k is an integer. After the body it is suitable to put a paragraph which has at
least two lines: the first one has its form

FORMAT Akl Ak2 Aki ... Akn

It declares what is to be printed. Between any terms A/c; and Aki+1 more spaces
can be present. The corresponding simulating program prints the heading which
has the following form:

T Akl Ak2 Ak3 ... Akn

and under each identifier of the heading the same program prints in every step the
corresponding values of the identifier. The second line of the same paragraph has the
following form: either

REPEAT WHILE g IS GREATER THAN h

FINISH WHEN g IS GREATER THAN h

where g and h are identifiers or constants and the line means clearly the duration
of the simulation. It can be e.g.

FINISH WHEN T IS GREATER THAN 200
REPEAT WHILE AA IS GREATER THAN 0

The first example determines the duration of 200 steps, the second one determines
that the simulation must be finished when the fourth neuron emits logical one as the
output information. If the concluding action of the simulation has not to be the
only stop operation it can follow immediately the line determining the duration
of the simulation.

3.5. Thus a description of a simulation is a sequence of paragraphs initiated each
by its key word: NUMBER, BODY, INITIAL, FORMAT. REPEAT or FINISHED.
Each paragraph is clearly defined also for computer processing as an empty line

(or in the card mediums: an empty card) is present. The same signal follows the
last paragraph so that the end of the description is determined also clearly. Let us
present the whole description of the example presented in 2.11.:

NUMBER OF NEURONS 8

INITIAL
READ D
BODY
8 G/10

5 E/3(A6)
7 E/3(A4)
6 D/2(A\)
2 E/3(A\)
1 D/4(AS, Al)
3 E/5(A2, A5)
4 D/\5(AS, A3, A5)

FORMAT A\ A2 A3 A\ A5 A6 Al AS
FINISH WHEN T IS GREATER THAN D

3.6. The presented means are suitable for a pure simulation of pure logical networks
giving a table as the printed results. It is suitable for the specialists who are not
trained in usual programming techniques. But there are specialists who would like
to join certain actions specially prepared by them which are exceptional (e.g. special
processing of simulated values). Such specialists must know to determine they wishes
algorithmically, thus they must be educated in the algorithmic programming (i.e. they
must be programmers for the first generation computers; for the third generation
means the problem is completely different — see the fifth paragraph). The proposed
simulation language would be obliged to have facilities for easy synthesis of the
simulation means and the algorithmic ones so that the non-computer-oriented users
might use only the first means without complications. The non-standard actions
performed before the simulation can be simply programmed in the initial conditions;
they need no additional rules. The same situation is for the affairs concerning the
actions performed at the end of the simulation: the concluding action itself is an
algorithmic component. If one wish to let an action perform in every step of the
simulation he can join a paragraph headed PROGRAM containing the algorithmic
description of the demanded affaire. That paragraph can be put between the body
and the last paragraph or between the initial conditions and the body; the first
ordering causes that the algorithm is performed at the end of every step, the second
ordering means that the algorithm is performed at the beginning of every step.
We can admit to let perform an algorithm at the beginning of every step and another
algorithm at the end of every step by writing both the patterns of the described
algorithms at the corresponding places; one can even admit to let perform algorithmic
actions among segments of the step: thus the body can be divided into more para­
graphs (each headed by BODY) and among them the paragraphs headed PROGRAM
can be present. For the compiler (see further) it does no obstacles. Let us note that

in the algorithmic parts one can need new integers, new labels etc., eventually newly
identified by a letter. Thus — according to the used computer — it would be necessary
to introduce the new variables in the heading. Thus in the example presented in 3.5.
it would be the following heading:

NUMBER OF NEURONS 8
REAL D

Let us note that the only variables introduced automatically by the simulation system
are T for time and A\, A2, A3,... for the informations going through the system
(see the second part).

3.7. Let us describe the compiler (or the translator) which reads the perforated
descriptions of the simulations and generates an algorithmic program according
to them. In other words, in this paragraph the ideas of a program are presented
which translates the programs written in special second generation language for
the simulation of logical networks, into first generation algorithmic language so that
the target program performs the demanded simulation.

The translator is switched in several states. The initial state is called IN IT. When
the compiler is in it it reads the first line of the processed text. It omits the letters,
stores the integer which follows them in the address n of the translator. The same
translator then generates the first line of the target algorithmic program: it is a line
INTEGER T, An where after the letter A the integer stored at the address n is re­
produced. Then the translator assign one at its address k and is switched into the
state COPY.

In the state COPY the translator reads the following lines of the source text and
reproduces them into the taget text until an empty line is read. Then the state of the
translator is switched according to the address k: if its contents is 1 the new state
is HEAD; if it is 2 the new state is BODY; if it is 3 the new state is END. Let us describe
the mentioned stated:

In the state HEAD the instructions

r= o
GO TO 2

1: T = T

are generated. The last instruction is a dumb one indicating only the point of the
algorithm labelled by 1:, where it is to jump from the further parts of the program.
The instruction GO TO 2 prepares the printing of the heading during the simulation
(see the description of the state BODY). After the generating of the instructions
the contents of k is modified to be 2 and the translator is switched into the state BODY.

In the state BODY the translator reads the following line; if the first symbol is P
the read line contains the key word PROGRAM and the translator is switched into
the state COPY. If the first symbol is F the read line contains the key word FORMAT
and the following instructions are generated in the target text:

GO TO 3
2: PRINTLINE^...)

GO TO 1
3: PRINT T,5

The first presented instruction causes the jump to the last presented instruction; there­
fore the second instruction and the third one are omitted. They are performed after
the initial conditions, because they cause printing of the heading. The three points
in the parentheses in the second instructions mean the text which is to be printed;
it is the contents of the line just read from the source text, where the first word
FORMAT is replaced by the word TIME. Then the same text (excepting the word
TIME or FORMAT) is once more processed: the following text units Ar are put
into instructions PRINTAr,\; thus the instructions for printing the values indicated
in the heading are generated and sent to the target program. The instructions can
be completed by eventual instructions for spaces, if the terms of the heading are too
distant (the generating of them is evident, they rise by a mere counting of spaces).
After such a processing of the last term an instruction T = T + 1 is generated and
the following line of the source text is read. If it has a form

REPEAT WHILE g IS GREATER THAN h

the instruction

GO TO 1 IF g > h

is generated into the target program. If the read line has a form

FINISH WHEN g IS GREATER THAN h

the instruction

GO TO 1 IF g £ h

is generated into the target program. Then the contents of the address fc is modified
to be 3 and the translator is switched into the state COPY.

Let us return to the begin of the state BODY. In the line just read the letter B
can be present as the first symbol. In this case the line contents the key word BODY
and the state works by the following way: the next line of the source text is read;
if it is empty the translator jumps at the begin of the work in the stateBODY Otherwise
the first number (integer) is read and stored at the address e. The following two
spaces are omitting and the next letter is stored at the address d. The following
symbol — the stroke - is omitted and the next integer is stored at the address c.
Then the terms in the following parentheses — if they exist — are stored at the
addresses 61, 62, 63 , . . . , 6j where j is stored at the address which we can call also j .
If there are not terms in the parentheses in the processed line, the value of j is zero.
From the contents of the addresses 61, 62, 6 3 , . . . , c, d, e , j the instructions of the
target program are generated; it is a special problem which will be discussed in the
following paragraph.

The state END of the translator causes that the instruction STOP of the target
program is generated, followed by the signal of the end of the program; the translator
is switched into the state JiVJTand the translation is finished.

3.8. Let us consider the action of the state BODY of the compiler in case of proces­
sing of the paragraph body of the source text. Every non-empty line of that paragraph
is processed by the same way, the beginning of which has been described in the
preceding paragraph. Let us assume that the addresses b\, b2, ..., bf, c,f, d and e
corresponding to a line are assigned by the values. The translator generates from
them a pattern of the program corresponding to the declared neuron. The pattern
both the work of the translator can reflect the method of programming used in the
target program. That method can be distinguished by the type of ordering or by the
form of the patterns. The type of ordering can be the first one or the second one,
similarly as in the second part. The form of the patterns can be either simple or
composed. The simple form maps each neuron into a pattern programmed similarly
as in the second part. The terms in the parentheses, occuring in the source program
line occur in the instruction for the operation performed by the neuron, as well
as the term identifying the output information of the neuron. For example the
declaration

2 E/4(A3, A4)

is transformed into an instruction

A2 = A3, . A4

The second form of patterns — the composed one — organizes each pattern so that
it contains a kernel which is invariant for the same operations (e.g. for all the con-
juctions it is X\ — X2 . X3); this kernel is preceded by a sequence of assignement
from the terms identifying the inputs into the declared neuron for the special intro­
duced variables used in the kernel; the same kernel is followed by assignment of XI
for the variable which identifies the output information of the declared neuron.
Thus the simple form of patterns implies that the work of the translator is rather
complicated while the target programs are simple; the composed form of patterns
causes that a simplification of the translator has place but the target programs are
more expansive regarding the necessity of addresses and the run time during the
simulation. The composed form of patterns has no analogy in the first generation
computers because it would be evidently uneffective if one programs algorifhmically
by manual techniques. (In other words, the complication of translator has no import­
ant interpretation in the manual programming of algorithms.)

The complete number of combinations is therefore 4. We shall describe all of them
regarding also the eventualities of the neurons with delay and those without it.
In the paragraph 2.5 there have been presented various techniques of the program­
ming in case of the second type of ordering; we use the last technique of them as it
is evidently the most suitable one for to be automatized (see the discussion in the

mentioned paragraph). The composed form of patterns needs always however
introduction of auxiliary variables XI , X2, ...,Xn. It can be realized in the state
INITof the translation so that the first line of the target program is enriched:

INTEGER T, An, Xn

The translation of the mentioned example

2 E/4(A3, AA)

gives the following pattern if the composed form is applied:

X2 = A3 assigning of the first input value

X3 = AA assigning of the second input value
X\ = X2 . X3 the kernel fixed for all the code numbers 4
A2 = X\ assigning for the output value

Let us present the algorithms for each technique:

The composed patterns, the first type of ordering: For i = 1, 2 , . . . , / the instruc­
tions Xj = bi are generated where; = i + 1, X and = are the fixed symbols and bi
is a term copied from the corresponding address. Then the kernel according to the
contents of c is joined to the generated instructions. The kernel is followed by the
instruction Ae = XI where e denotes the copy of the contents of the address e.

The simple patterns, the first type of ordering:

The kernel is copied so that its fixed symbols are directly transferred into the
target program while the "parameters" are replaced: the parameters in the kernel
have the form ?i where i is a natural number (intuitively — the i-th operand)
and always when ?i is to be copied it is replaced by the contents of the address bi.
The kernel for the code number 4 has therefore the following form:

The kernel for the code number 5 has the following form, if using the binary operations
only:

X = 11.12
X = 11- X
1e = 12 + X

The interpretation of ?e is similar: the letter A followed by the contents of e is copied
instead ?e.

Let us mention that the kernels are prepared in the translator by the people who
have constructed it and the user have no necessity to meet them.

The composed patterns, the second type of ordering: The generation of the assign­
ments of the input values is performed in the same way as in the technique "composed
patterns, first type of ordering", as well as the copying of the kernel. After it the
instruction Be = XI is generated where BI, and = are the fixed symbols, e denotes
the copy of the contents of the address e. Then the translator tests the contents

of the address d: if it corresponds to the letter G or E the instruction Ae = XI is
joined to the pattern, where A, X, 1 and = are the fixed symbols and e is the same
as for the preceding instruction.

The simple patterns, the second type of ordering:

The translation is similar as in case of the first type of ordering for simple patterns;
also the kernels prepared a priori in the translator are the same. The difference
is in the interpretation of ?e, which is replaced in the generated pattern as Be (while ?
followed by digits is replaced by the letter A as in the first type of ordering), and in the
conclusion of the generation of the pattern: if the contents of d is the letter E or G
an instruction is joined: Ae = Be where e is interpreted as before.

Naturally the possibility of a slight simplification of the generating algorithms
exists, which idea is to use the figure §e or !e instead of ?e in the prepared kernels.
Then the interpretation of the first symbol is determined by it uniquely and does
not depend on the symbol which follows.

Of course the second type of ordering needs to introduce the variable J31, B2, ..., Bn
which can be done in the state INIT of the translator that instead of INTEGER T,
An, Xn the line INTEGER T, An, Xn, Bn is introduced in the case of the composed
form of patterns, or — in the case od simple form of patterns — the line INTEGER T,
An, Bn is generated instead of INTEGER T, An. Moreover the second type of
ordering must generate the sequence of instructions which perform the following
action

FOR I = 1 STEP 1 UNTIL n DO AI = BI

which is generated always after the last instruction for printing (thus before the
instruction T = T + l) . For this purpose the variable I must be introduced at the
beginning of the target program similarly as we have just mentioned about Bl,..., Bn.

3.9. We have proposed the language so that the translation of the body is rather
simple. We could modified the expression means so that the simulated logical system
would be more readable for the humans but the translation would be more complic­
ated; e.g. it would be possible to write

NEURON 6 BINARY CONJUNCTION

ITS INPUTS: FROM NEURON 2, FROM NEURON 4

instead of

6 E/4(A2, A4)

or
DELAY 5 NEGATION

ITS INPUT: FROM NEURON 5

instead of

5 D/3(A5)

or

GENERATOR 8 READ TAPE

instead of

8 G/10

but it is clear that the translation is complicated only by omitting the redundant
symbols and by replacing certain symbols by other ones (in case of code numbers
by a searching in a vocabulary), while other expression means are ordered in another
way that in the original proposal. Both the possibilities have their proper advantages
and disadvantages and it is difficult to decide which possibility is better (compare e.g.
with the versions of CSMP for various machines IBM which have similarly distincted
their languages although even the names of the programming system are the same —
see [13], [14]).

4. SIMULATION OF LOGICAL NETWORKS BY A CONTINUOUS
SIMULATION PROGRAMMING SYSTEM

4.1. The facility of simulation programming languages for the second generation
computers has a great advantage for the users, who need not to express their demand
algorithmically. Nevertheless any special language needs its corresponding trans­
lator which must be made and which needs a lot of a hard programming work.
To do a universal second generation language leeds to algorithmical languages:
but it returns to the first generation facilities. Thus a possibility is studied to use
a simulation language, which has been designed for a certain class of problems,
to another class of problems: in order to be efficient this affaire must satisfy one
of the following properties:

either there is a methodics of programming which enables easy and clear expressing
of the new problems demands in the programming language oriented for the original
class of problems;

or a new programming language can be designed so that it is oriented to the new
class of problems and that an automatic translation of it into an existing program­
ming language for simulation of certain class of systems is more simple as the trans­
lation of the new programming language into an algorithmic one.

The problems to which the original programming language is oriented can be
mathematically very different from those which ask the adaptation of it. We shall
present an example how to use a simulation programming system for -continuous
problems with certain specilization, in case that it is to simulate the logical networks.
The example is important not only for the reason that it forms certain external
analogy of the representation of the neuron networks by electrochemical continuous
systems in living organisms but also for its implementation: the continuous simulation
system has been implemented in the Biophysical Institute of Charles University

in Prague for problems of radiation biology and nuclear medicine, without regard's
to the neurophysiology, but then it has been discovered as appliable also in the last
branch.

4.2. The continuous simulation system is called COSMO which is an abbreviation
for the words Compartmental System Modelling. The system is implemented for the
computer ODRA 1013 (see [10]).

The system COSMO has been realized in the years 1967-1969 and it is still tested
to satisfy all the possible demands risen in the original array of problems (see [15],
[16], [17], [18], [19] and [20]). It is oriented to the class of simulations of com­
partmental systems. They are abstract systems risen by an idealization from the
real hydrodynamical networks. Compartment is a vessel where a liquid is present,
mixed homogeneously with certain substance, called tracer (e.g. a coloring substance,
a radiactive isotope). Into the vessel the same liquid comes containing the same
tracer but generally in another concentration. The entering liquid is supposed to be
immediately well mixed with the liquid which has remained in the vessel (it is the
first idealization). The liquid can go from any compartment into any compartment
through the channels; the size of the liquid which takes place in the channels is
neglected (another idealization). The flow rates in the channels can vary during the
time and the volumes of the compartments as well, though the greatest part of the
problems solved nowadays concerns the compartmental system with constant
parameters (see [21], [22]).

Using the language COSMO one describes the simulated compartmental system
in several paragraphs: each of them corresponds to a compartment; in the first line
of such a paragraph one writes the order number n of the described c impartment
by a line

COMPARTMENT n

which is followed by k lines each of which determines one input of the described
compartment; a line can have a form

FROM COMPARTMENT r = e

where the integer r is the order number of the compartment from which the substance
comes and e is an arithmetical expression determining the size which comes in the
actual step. When all the input channels have been described the output is determined
globally for the compartment (without eventual branching after leaving the com­
partment) in a line:

ITS OUTPUT = e

where e' is an arithmentic expression with the analogous meaning as e. The last line
determines the volume of the compartment:

ITS VOLUME = e"

There are various facilities to express the most probably properties by the human

words (without foimulas) or to omit them at all. All these possibilities are presented

in [16]. Let us only mention those which are important for our subject:

The time can proceed by varying steps; if the situation is "normal" (for us: if step

is equal to one) one must write the paragraph containing the only word TIME;

The variable concerning the fc-th compartment are Vk for its volume, Gk for its

input, Kk for its output (thus G4 means the size of the liquid which enters into the

fourth compartment in the actual step). The identification of tracer is given by putting

the letter H before the identifier (thus IIG4 means the size of the tracer which enters

the fourth compartment during the actual step).

To define a value which is more complicated that one arithmetic expression can

be done so that instead of the sign of equality a colon is written and then the defining

program follows, where the defined values is identified by X. Thus the declaration

ITS OUTPUT = 3-245 + K3 - K2/3

is equivalent to

ITS OUTPUT:

X = K2/3
X = K3 - X
X = 3-245 + X

The values Vk are assigned in the beginning by one while the other value are

assigned by zero.

The facilities for initial condition, for defining the duration of the simulation

and for the first information about the simulated system (the heading) are the same

as in the language designed in the preceding part. The description of printing tables

forms a special paragraph of the following form:

FORMAT

text, i.e. the heading of the table
asteriscs determining the positions of digits in the printed table.

In the table an asterisc corresponds to a digit, a space to a space and a decimal point

to the same decimal point. E.g.

FORMAT

T VЗ HV5 HK1

*** ** .*** . ***
In the language for the logical network simulation the last line is not necessary because

the printed values are only one and zero.

4.3. To use the system COSMO for programming the neuron network simulation

brings immediately various advantages if we compare it with the programming

in the algorithmic languages introduced in the part 2. Thus the heading of the descrip­

tion, containing the introducing of the number of compartments (neurons) can be used

without necessity of any modification, as well as the paragraphs for the initial condi­
tions and for the concluding section (here only another type of identifiers must
be written — without Aj it is to be Vj, as we shall demonstrate further). We can use
also the paragraph for the prints of the simulated results according to the rules
of COSMO: though it is a bit complicated if compared with the format-line described
in the preceding part, it causes no complication for the non-computer-oriented
users. If one wish to print the values of the time he must express it in the paragraph
for the printing of the results and befero it he must introduce a new paragraph
containing the only word TIME. Concerning the description of the neurons one
must present special methodics of programming:

4.4. The language COSMO has been designed for the problems concerning of the
mixing and the transport of matter, which satisfies certain physical laws. The proces­
sing of information which takes place in the logical networks satisfies other laws.
Thus one must describe the neurons as compartments with relations between input
and output adequate to those which hold in the neurons. Our situation is simplified
because of the absence of the tracer. Thus we can formulate a general rule for pro­
gramming any neuron which performs a function f(ViuVi2, ...,Vis) of the input
information comming from the neurons with their order numbers iu i2,..., is,
be the following way:

COMPARTMENT h
FROM COMPARTMENT h =f(Vi1, Vi2,..., Vis)
ITS OUTPUT = Gh
ITS VOLUME = Gh

where the first line introduces the order number of the declared neuron, the second
line contains formally the left hand side of the assignment (it can be placed any
integer less than the number of all neurons in the simulated system instead of h in it)
while the right hand side contains the function which is to be performed by the
declared neuron; the last two lines must be written as they are recommended.
The relations between the input and the output, regarding to the volume, do not
satisfy generally the law of conservation of matter but it causes no obstacles. If the
function / is more complicated so that it cannot be programmed in one expression
instead of the second line the following segment can be present:

FROM COMPARTMENT h:
program which computes f(Vix, Vi2, ..., Vis) assigning it for X

Let us present an example how to program a neuron enumerated by 5 which performs
the disjunction of the values comming from the neurons enumerated by 2 and 3:

COMPARTMENT 5
FROM COMPARTMENT 5 = VI + V3 - VI. VI
ITS OUTPUT = G5
ITS VOLUME = GS

26 or — as it has been implemented for the computer ODRA:

COMPARTMENT 5
FROM COMPARTMENT 5:
X = VI * K3
X =V2- X
X = X + V3

We can program in the same way also the generators, including inputs; the system

COSMO has however certain facilities for describing the inputs into the simulated

system. We shall illustrate how to have use of them in programming of generators

but we do not recommend it as it complicates the programming methodics. The

description of a generator performing a function g of time (which can be naturally

a fictive argument) can be formed either as

IN-COMPARTMENT h
ITS FLOW = g(T)

IN-COMPARTMENT h
ITS FLOW:

program which computes g(T) assigning it for X

Naturally the same element is described using the preceding meens (by means of

COMPARTMENT instead of IN-COMPARTMENT) where instead the function/

the function g(T) is written.

4.5. The system COSMO admits only the first type of order. Thus the problems

with transfers between Ai and Bi introduced in the preceding chapters has no analogy

here.

In COSMO one can omit all the redundant letters. Thus one can write F instead

of FROM COMPARTMENT, C instead of COMPARTMENT etc. One can change

the redundant letters for any other letters and spaces (to complete the description

by comments). The texts can be joined after the order number introduced in the

first line. We present the description of the example of 2.11 programed in COSMO;

at the left hand side there are used all the facilities for comments while at the right

hand side there are the corresponding texts written in the most short form:

NUMBER OF NEURONS 8
REAL E

INITIAL CONDITIONS
READ E

COMPARTMENT 8 READER
FROM COMPARTMENT 8:
READ X
ITS OUTPUT = G8
ITS VOLUME = G8

ІV8
REAL E

I
READ E

C8
F&:
READ X
ITS O = G8
ITS V = G8

COMPARTMENT 5 NEGATION C5
FROM COMPARTMENT 5 = 1 - V6 F5 = 1 - V6
ITS OUTPUT = G5 ITS O = (75
ITS VOLUME = (75 ITS V = G5

COMPARTMENT 7 NEGATION CI
FROM COMPARTMENT 7 = 1 - V4 Fl = 1 - V4
ITS OUTPUT = Gl ITS O = Gl
ITS VOLUME = Gl ITS V = Gl

COMPARTMENT 6 IDENTICAL C6
FROM COMPARTMENT 6 = V\ F6 = VI
ITS OUTPUT = G6 ITS O = G6
ITS VOLUME = G6 ITS V = G6

COMPARTMENT 2 NEGATION C2
FROM COMPARTMENT 2 = 1 — V\ F2 = 1 - V\
ITS OUTPUT = G2 ITS O = G2
ITS VOLUME = (72 ITS V = G2

COMPARTMENT 1 CONJUNCTION C\
FROM COMPARTMENT \ = VS * VI F\ = VS * VI
ITS OUTPUT = Gl ITS O = G\
ITS VOLUME = Gl ITS V = G\

COMPARTMENT 3 DISJUNCTION C3
FROM COMPARTMENT 3: F3:
X = V2 * V5 X = V2 * V5
X = V2- X X = V2— X
X = V5 + X X = V5 + X
ITS OUTPUT = G3 ITS O = G3
ITS VOLUME = G3 ITS V = G3

COMPARTMENT 4 CONJUNCTION OF THREE C4
FROM COMPARTMENT 4: F4:
X = V8 * V3 X = VS * V3
X = X* V5 X = X* V5
ITS OUTPUT = G4 ITS O = G4
ITS VOLUME = G4 ITS V = G4

TIME T

FORMAT

T V\ V2 Vi V4 V5 V6 VI V8
*** * * * * * * * *
FINISH WHEN T IS GREATER THAN E

The last four lines (beginning from FORMAT) cannot be sufficiently shortened.

4.6. Though the methodics for programming the simulation of logical networks
in COSMO is very simple we can give another programming tool which is more
suitable for the non-computer-oriented users. This mean is a programming language
similar to the special programming language for the simulation of logical networks

presented in the preceding paragraph. We present another one, which is from the
original slightly different but which can be simply translated into COSMO. The
differences from the original one are the following: only the first type of ordering
is admitted, the letter A used in the identifiers is here replaced by the letter V and the
prints are declared in a special paragraph which must satisfy the rules for the format
paragraph in COSMO. We see that the modifications cannot carry any obstacles
for any user.

The translator from the described language into COSMO is more simple that
the translator from the simulation language proposed in the third part into an
algorithmic language: the global logics of the translator gets a mere copying: the
translator copies the paragraphs for prints, for finishing together with the conclusion,
for initial conditions and the heading. Before copying of the last paragraph (or —
equivalently — after copying the paragraph for the prints) the translator generates
a new paragraph containing the only word TIME. One can compare the work
of this translator with that described in 3.7.

Concerning the translation of the body, the logics of the translator is similar
to that presented in 3.8 for the original translator, but certain details (concrete
strings of symbols by the translator generated) differ from the original one. Simi­
larly as in 3.8 we can assume that any line of the body has stored the essential
informations in the addresses bl, bl,..., bf, c, d, e and / of the translator. From
each such a vector a paragraph of a target text (in COSMO) is generated which has
the following form:

Ce or COMPARTMENT e
Fe: FROM COMPARTMENT e:
program pattern program pattern
ITS O = Ge ITS OUTPUT = Ge
ITS V = Ge ITS VOLUME = Ge

The left hand form is better because the target text does not come to any human
being. The right hand form is presented here only for better comprehension of the
reader.

Concerning the program pattern we can referenced all the discussions presented
in 3.8 (limited naturally to the possibilities of the first type of order), because the
program patterns in case of the present paragraph differ from those of 3.8 only so that
instead the letter A in the identifiers the letter Vis used.

The reader can imaginate the eventual modifications of the translator in case that
we would receive COSMO texts from the language of the third part without any
modifications (replacing all occurings of the letter A by the letter V, a slight trans­
lation of the format line).

The fact that the target language is COSMO permits us to introduce the facility
of omitting redundant texts also in the paragraphs which are copied into COSMO.

(Received February 24, 1972.)

REFERENCES

The list of references will be presented in the part III.

PhDr. RNDr. Evžen Kindler, CSc, Biofysikální ústav FVL UK (Biophysical Institute, Charles
University), Salmovská 3, 12000 Praha 2, Czechoslovakia.

		webmaster@dml.cz
	2012-06-04T22:54:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

