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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 1 

Programming Means for Simulation 
of Logical Networks II 

EVZEN KlNDLER 

The serie of papers contains the information about programming means which enable to 
program the models of logical networks also for the non-computer-oriented users. The present 
part is directed for the second generation computers. There is presented a simulation program­
ming system oriented to the considered class of problems — its language and compiler into 
an algorithmical language. A description of a programming methodics follows which enables 
to use the system COSMO for simulation of logical networks though it has been originally 
determined to continuous problems. 

3. SIMULATION OF LOGICAL NETWORKS AT SECOND GENERATION 
COMPUTERS 

3.1. The first generation of automatic computers is represented by a lot of com­
puters in the first decade of years following the invention of the first automatic 
computer. One can approximate the decade by the years 1950-1960. The develop­
ment of other facilities has caused that a new type of computers was studied, which 
has got the foundations for the concept of the second generation automatic computer. 
We have used the word type for the reason that there are much computers which 
have some facilities and some properties of the second generation of the computers 
while the other are from the first generation. There are even some computers with 
certain aspects familiar with the third generation of computers through their basic 
facilities are mixed of the both preceding generations. Therefore one must consider 
the following statements as a basis which can be used for every computer proportion­
ally with its properties consistent with those that are accepted as typical for the second 
generation. Nevertheless the computers produced between the years 1960 and 1970 
satisfy a lot of the properties of the type of the second generation computers so that 
the concept of them is accepted as a rather clear one by the people specialized for the 
computing technique: the concept is as clear as much concepts used e.g. by biologists 
in their systematics. 



The computers of the second generation have the same properties as those of the 
first generation, concerning the length of words by them processed (they are of 
constant length, similar to the length in the first generation). The circuits of the 
computers of the second generation are based no more at the electron tubes but 
at transistors. The main internal memory is realized as a core memory while the 
drums serve as auxiliary memory which is not directly used in the fast arithmetic 
and control operations. The core memory has its capacity of about 10 000 words 
(thus about 10 times greater than the capacity of internal storage in the first generation) 
and its short access time causes that the computers of the second generations perform 
tens of thousands arithmetic operations in a second. The capacity of the auxiliary 
memory mediums is almost unlimitted: beside the mentioned drums there are the 
magnetic tape units. The computers are so constructed that one can join new memory 
units or input-output ones, too. The second generation computers are facilitated 
by the operating systems which prefer the closed shop mode of the computer run: 
the users give their demands in a form of a packet of punched cards (decks) con­
taining the programs, the data and the control cards which cause the demanded use 
of them. The control cards contain also the information about the personality 
of the user. The decks are transformed into a magnetic tape which is given to the 
computer as the input file. The operating system reads the tape as its input data and 
according to the control cards it switches various programs to satisfy the domanded 
computation. It produces another file, so called output file, which is recorded during 
the computation at another magnetic tape. When one computation is finished the 
operating system reads immediately the following information at the input file so that 
the computer does not wait. Its time is well used (excepting certain situations described 
in the part concerning the third generation computers). The output file is taken 
down after a long time and then it is let to be print; after printing a tape of paper 
with text is received containing headings which can be well distinguished. The oper­
ators break the paper tape before such headings: as the headings contain also the 
names of the users (known by the computer because of the control cards) one can 
easily find his proper part of prints: there one can read the results, completed by 
notes of the operating system in case of an error; other complements are also present, 
as the price of computation, used memory, the time when the computation was 
performed etc. The operating system performs naturally all evidence concerning 
accounts. 

3.2. The operating system can call in use the systems of automatic programming. 
They are stored in a magnetic tape of the operating system and they can be used 
by putting one control card into the deck of the user. The systems of automatic 
programming are either those of algorithmic type or those of simulation type. The 
first ones give nothing new for our subject, as they are only very powerful modific­
ations of the algorithmic languages for the first generation computers. The simulation 
programming systems however carry new facilities in, even in the problem of simul­
ation of logical networks: the simulation programming systems work similarly 



as the algorithmic ones (the program is described in so called programming language, 
perforated and the translator or the compiler reading it, produces the program 
in machine code), but the main difference is in the programming language in which 
the program is described; while the algorithmic languages admit only that one describes 
the sequence of demanded operations in more "readable" from than it would be 
written in the machine code, in the simulation programming language we describe 
the demands to the computer in the following way: the structure of the investigated 
system is described, completed by eventual parameters, description of the situation 
of the system is joint (the initial conditions, the duration of the computation, the 
input information for the system etc.). The whole description is also completed by very 
simple information which interest us and in which form it is to be printed (there are 
suitable facilities to print tables, graphs, eventually to do a simple statistical analysis). 
The description of much simulation languages is presented e.g. in [11], [12]; in the 
last source there is a rich article [13] which serves as a survey in a great group of the 
simulation languages. 

3.3. After considerations done in the preceding part we can design a simple 
programming system for simulation of logical networks. Let us mention that there 
have been presented various propositions concerning programming languages never 
realized: to propose a programming language is not difficult, but a relatively hard and 
trouble work is to realize the translator which might translate the texts written in the 
programming language into programs performable by a computer. In our case the 
translation from the proposed simulation language into a first generation algorithmic 
language can be described in few words, because in the first part the general 
properties of the target programs (risen by such a translation) have been sufficiently 
studied. The simulated system is described by a paragraph containing lines so that 
one line corresponds to one neuron. There the neuron is described so that its order 
number is given at the beginning of the line. Then two spaces follow after that 
a letter is put. It means the type of the described neuron: G means a generator 
(including inputs), D means a neuron with delay and E that without delay. The letter 
is immediately followed by a stroke, which is followed by a number. It is a code 
number for the function which is performed by the described neuron. We propose 
the following correspondence between the code numbers and the operations: 

0 — logical zero (identically generated at the output), 
1 — logical one (identically generated at the output), 
2 — identical mapping of the information entering at the first input of the declared 

neuron, 
3 — negation of the information entering at the first input of the declared neuron, 
4 — conjunction, 
5 — disjunction, 
6 — implication, 
7 — equivalence, 



8 — symmetrical difference, 
9 - Sheffer stroke, 

10 — input unit, 

etc. The numbers from 4 to 9 means the mentioned function at the first and second 
input information. The language with the compiler can be arranged so that if the 
number of inputs is greater than 2 the superfluous input informations are ignored. 
The similar situation can be similarly solved for the unary operations (code numbers 2 
and 3) in case that the number of the described neuron is greater than one. Also, for 
generators the same relations can exist: if there are inputs which would enter into the 
described generator they are ignored as they might not enter into the declared neuron. 
Let us mention that the conception of a generator of a constant and the conception 
of a neuron which reacts to any input information by generating a constant, which 
lead to some sophisticated formulations in the first part have their analogies 
which are however very comprehensible: thus one can write G/l or Ejl without any 
error. Moreover it is possible to declare G/10 or E/10, it is possible to declare D/10. 
While G/10 and E/10 are equivalent, D/10 means that a value is read from the input 
medium but it comes into the simulated system with a delay of one step. Theoretically 
one could omit the letter G completely from the proposed language using always 
the latter E in place of it but it seems more suitable to let it: the language is therefore 
more readable and the complications of the compiler (translator) caused by it can 
be neglected. 

After the code number a left parenthesis follows. In the same line the corresponding 
right parenthesis must occur. Between both of them a list of input is written: any 
input is identified by Ak where k is the order number of the neuron from which the 
input comes; where there are more than one inputs they are distinguished by commas. 
Thus the description of the logical network presented in the paragraph 2.H. is the 
following: 

8 G/10 
5 El3(A6) 
7 E/3(AA) 
6 D/2(A1) 
2 E/3(A1) 
1 D/4(A$,A7) 
3 E/5(A2, A5) 
4 D/15(A8, A3,A5) 

We suppose that the conjunction of three inputs is coded by 15. Let us mention that 
the form of the texts occuring in the figure 3 is different from that of the'proposed 
language: e.g. G8 occuring in the figure 3 means the third neuron which is a generator 
while G/10 in the example just presented means that the generator performs the 
action coded by 10; its order number is written before the letter. 

3.4. In the preceding paragraph the means for the description of the simulated 
network has been presented. Such a description forms thus a paragraph called body. 



That name can be put before the description in a special line, forming a key word 15 
for the computer (see later). But if we wish to simulate really a neuron network 
we must describe the situation by means of other paragraphs that receives the com­
puter together with the body. Thus before the body it is suitable to present a para­
graph concerning the initial conditions, introduced by its key word which we propose 
as INITIAL. Before this paragraph it is to be a heading of the whole description; there 
the "global" information about the simulated system is to be presented, i.e. the 
number of neurons in the simulated network and — facultatively — eventual variables 
used in the description, so that one could use the algorithmic means (see further — 
in the description of the program sections). The number of neurons can be determined 
by a line (the initial line of the description for the computer): 

NUMBER OF NEURONS k 

where k is an integer. After the body it is suitable to put a paragraph which has at 
least two lines: the first one has its form 

FORMAT Akl Ak2 Aki ... Akn 

It declares what is to be printed. Between any terms A/c; and Aki+1 more spaces 
can be present. The corresponding simulating program prints the heading which 
has the following form: 

T Akl Ak2 Ak3 ... Akn 

and under each identifier of the heading the same program prints in every step the 
corresponding values of the identifier. The second line of the same paragraph has the 
following form: either 

REPEAT WHILE g IS GREATER THAN h 

FINISH WHEN g IS GREATER THAN h 

where g and h are identifiers or constants and the line means clearly the duration 
of the simulation. It can be e.g. 

FINISH WHEN T IS GREATER THAN 200 
REPEAT WHILE AA IS GREATER THAN 0 

The first example determines the duration of 200 steps, the second one determines 
that the simulation must be finished when the fourth neuron emits logical one as the 
output information. If the concluding action of the simulation has not to be the 
only stop operation it can follow immediately the line determining the duration 
of the simulation. 

3.5. Thus a description of a simulation is a sequence of paragraphs initiated each 
by its key word: NUMBER, BODY, INITIAL, FORMAT. REPEAT or FINISHED. 
Each paragraph is clearly defined also for computer processing as an empty line 



(or in the card mediums: an empty card) is present. The same signal follows the 
last paragraph so that the end of the description is determined also clearly. Let us 
present the whole description of the example presented in 2.11.: 

NUMBER OF NEURONS 8 

INITIAL 
READ D 
BODY 
8 G/10 

5 E/3(A6) 
7 E/3(A4) 
6 D/2(A\) 
2 E/3(A\) 
1 D/4(AS, Al) 
3 E/5(A2, A5) 
4 D/\5(AS, A3, A5) 

FORMAT A\ A2 A3 A\ A5 A6 Al AS 
FINISH WHEN T IS GREATER THAN D 

3.6. The presented means are suitable for a pure simulation of pure logical networks 
giving a table as the printed results. It is suitable for the specialists who are not 
trained in usual programming techniques. But there are specialists who would like 
to join certain actions specially prepared by them which are exceptional (e.g. special 
processing of simulated values). Such specialists must know to determine they wishes 
algorithmically, thus they must be educated in the algorithmic programming (i.e. they 
must be programmers for the first generation computers; for the third generation 
means the problem is completely different — see the fifth paragraph). The proposed 
simulation language would be obliged to have facilities for easy synthesis of the 
simulation means and the algorithmic ones so that the non-computer-oriented users 
might use only the first means without complications. The non-standard actions 
performed before the simulation can be simply programmed in the initial conditions; 
they need no additional rules. The same situation is for the affairs concerning the 
actions performed at the end of the simulation: the concluding action itself is an 
algorithmic component. If one wish to let an action perform in every step of the 
simulation he can join a paragraph headed PROGRAM containing the algorithmic 
description of the demanded affaire. That paragraph can be put between the body 
and the last paragraph or between the initial conditions and the body; the first 
ordering causes that the algorithm is performed at the end of every step, the second 
ordering means that the algorithm is performed at the beginning of every step. 
We can admit to let perform an algorithm at the beginning of every step and another 
algorithm at the end of every step by writing both the patterns of the described 
algorithms at the corresponding places; one can even admit to let perform algorithmic 
actions among segments of the step: thus the body can be divided into more para­
graphs (each headed by BODY) and among them the paragraphs headed PROGRAM 
can be present. For the compiler (see further) it does no obstacles. Let us note that 



in the algorithmic parts one can need new integers, new labels etc., eventually newly 
identified by a letter. Thus — according to the used computer — it would be necessary 
to introduce the new variables in the heading. Thus in the example presented in 3.5. 
it would be the following heading: 

NUMBER OF NEURONS 8 
REAL D 

Let us note that the only variables introduced automatically by the simulation system 
are T for time and A\, A2, A3,... for the informations going through the system 
(see the second part). 

3.7. Let us describe the compiler (or the translator) which reads the perforated 
descriptions of the simulations and generates an algorithmic program according 
to them. In other words, in this paragraph the ideas of a program are presented 
which translates the programs written in special second generation language for 
the simulation of logical networks, into first generation algorithmic language so that 
the target program performs the demanded simulation. 

The translator is switched in several states. The initial state is called IN IT. When 
the compiler is in it it reads the first line of the processed text. It omits the letters, 
stores the integer which follows them in the address n of the translator. The same 
translator then generates the first line of the target algorithmic program: it is a line 
INTEGER T, An where after the letter A the integer stored at the address n is re­
produced. Then the translator assign one at its address k and is switched into the 
state COPY. 

In the state COPY the translator reads the following lines of the source text and 
reproduces them into the taget text until an empty line is read. Then the state of the 
translator is switched according to the address k: if its contents is 1 the new state 
is HEAD; if it is 2 the new state is BODY; if it is 3 the new state is END. Let us describe 
the mentioned stated: 

In the state HEAD the instructions 

r= o 
GO TO 2 

1: T = T 

are generated. The last instruction is a dumb one indicating only the point of the 
algorithm labelled by 1:, where it is to jump from the further parts of the program. 
The instruction GO TO 2 prepares the printing of the heading during the simulation 
(see the description of the state BODY). After the generating of the instructions 
the contents of k is modified to be 2 and the translator is switched into the state BODY. 

In the state BODY the translator reads the following line; if the first symbol is P 
the read line contains the key word PROGRAM and the translator is switched into 
the state COPY. If the first symbol is F the read line contains the key word FORMAT 
and the following instructions are generated in the target text: 



GO TO 3 
2: PRINTLINE^...) 

GO TO 1 
3: PRINT T,5 

The first presented instruction causes the jump to the last presented instruction; there­
fore the second instruction and the third one are omitted. They are performed after 
the initial conditions, because they cause printing of the heading. The three points 
in the parentheses in the second instructions mean the text which is to be printed; 
it is the contents of the line just read from the source text, where the first word 
FORMAT is replaced by the word TIME. Then the same text (excepting the word 
TIME or FORMAT) is once more processed: the following text units Ar are put 
into instructions PRINTAr,\; thus the instructions for printing the values indicated 
in the heading are generated and sent to the target program. The instructions can 
be completed by eventual instructions for spaces, if the terms of the heading are too 
distant (the generating of them is evident, they rise by a mere counting of spaces). 
After such a processing of the last term an instruction T = T + 1 is generated and 
the following line of the source text is read. If it has a form 

REPEAT WHILE g IS GREATER THAN h 

the instruction 

GO TO 1 IF g > h 

is generated into the target program. If the read line has a form 

FINISH WHEN g IS GREATER THAN h 

the instruction 

GO TO 1 IF g £ h 

is generated into the target program. Then the contents of the address fc is modified 
to be 3 and the translator is switched into the state COPY. 

Let us return to the begin of the state BODY. In the line just read the letter B 
can be present as the first symbol. In this case the line contents the key word BODY 
and the state works by the following way: the next line of the source text is read; 
if it is empty the translator jumps at the begin of the work in the stateBODY Otherwise 
the first number (integer) is read and stored at the address e. The following two 
spaces are omitting and the next letter is stored at the address d. The following 
symbol — the stroke - is omitted and the next integer is stored at the address c. 
Then the terms in the following parentheses — if they exist — are stored at the 
addresses 61, 62, 63 , . . . , 6j where j is stored at the address which we can call also j . 
If there are not terms in the parentheses in the processed line, the value of j is zero. 
From the contents of the addresses 61, 62, 6 3 , . . . , c, d, e , j the instructions of the 
target program are generated; it is a special problem which will be discussed in the 
following paragraph. 



The state END of the translator causes that the instruction STOP of the target 
program is generated, followed by the signal of the end of the program; the translator 
is switched into the state JiVJTand the translation is finished. 

3.8. Let us consider the action of the state BODY of the compiler in case of proces­
sing of the paragraph body of the source text. Every non-empty line of that paragraph 
is processed by the same way, the beginning of which has been described in the 
preceding paragraph. Let us assume that the addresses b\, b2, ..., bf, c,f, d and e 
corresponding to a line are assigned by the values. The translator generates from 
them a pattern of the program corresponding to the declared neuron. The pattern 
both the work of the translator can reflect the method of programming used in the 
target program. That method can be distinguished by the type of ordering or by the 
form of the patterns. The type of ordering can be the first one or the second one, 
similarly as in the second part. The form of the patterns can be either simple or 
composed. The simple form maps each neuron into a pattern programmed similarly 
as in the second part. The terms in the parentheses, occuring in the source program 
line occur in the instruction for the operation performed by the neuron, as well 
as the term identifying the output information of the neuron. For example the 
declaration 

2 E/4(A3, A4) 

is transformed into an instruction 

A2 = A3, . A4 

The second form of patterns — the composed one — organizes each pattern so that 
it contains a kernel which is invariant for the same operations (e.g. for all the con-
juctions it is X\ — X2 . X3); this kernel is preceded by a sequence of assignement 
from the terms identifying the inputs into the declared neuron for the special intro­
duced variables used in the kernel; the same kernel is followed by assignment of XI 
for the variable which identifies the output information of the declared neuron. 
Thus the simple form of patterns implies that the work of the translator is rather 
complicated while the target programs are simple; the composed form of patterns 
causes that a simplification of the translator has place but the target programs are 
more expansive regarding the necessity of addresses and the run time during the 
simulation. The composed form of patterns has no analogy in the first generation 
computers because it would be evidently uneffective if one programs algorifhmically 
by manual techniques. (In other words, the complication of translator has no import­
ant interpretation in the manual programming of algorithms.) 

The complete number of combinations is therefore 4. We shall describe all of them 
regarding also the eventualities of the neurons with delay and those without it. 
In the paragraph 2.5 there have been presented various techniques of the program­
ming in case of the second type of ordering; we use the last technique of them as it 
is evidently the most suitable one for to be automatized (see the discussion in the 



mentioned paragraph). The composed form of patterns needs always however 
introduction of auxiliary variables XI , X2, ...,Xn. It can be realized in the state 
INITof the translation so that the first line of the target program is enriched: 

INTEGER T, An, Xn 

The translation of the mentioned example 

2 E/4(A3, AA) 

gives the following pattern if the composed form is applied: 

X2 = A3 assigning of the first input value 

X3 = AA assigning of the second input value 
X\ = X2 . X3 the kernel fixed for all the code numbers 4 
A2 = X\ assigning for the output value 

Let us present the algorithms for each technique: 

The composed patterns, the first type of ordering: For i = 1, 2 , . . . , / the instruc­
tions Xj = bi are generated where; = i + 1, X and = are the fixed symbols and bi 
is a term copied from the corresponding address. Then the kernel according to the 
contents of c is joined to the generated instructions. The kernel is followed by the 
instruction Ae = XI where e denotes the copy of the contents of the address e. 

The simple patterns, the first type of ordering: 

The kernel is copied so that its fixed symbols are directly transferred into the 
target program while the "parameters" are replaced: the parameters in the kernel 
have the form ?i where i is a natural number (intuitively — the i-th operand) 
and always when ?i is to be copied it is replaced by the contents of the address bi. 
The kernel for the code number 4 has therefore the following form: 

The kernel for the code number 5 has the following form, if using the binary operations 
only: 

X = 11.12 
X = 11- X 
1e = 12 + X 

The interpretation of ?e is similar: the letter A followed by the contents of e is copied 
instead ?e. 

Let us mention that the kernels are prepared in the translator by the people who 
have constructed it and the user have no necessity to meet them. 

The composed patterns, the second type of ordering: The generation of the assign­
ments of the input values is performed in the same way as in the technique "composed 
patterns, first type of ordering", as well as the copying of the kernel. After it the 
instruction Be = XI is generated where BI, and = are the fixed symbols, e denotes 
the copy of the contents of the address e. Then the translator tests the contents 



of the address d: if it corresponds to the letter G or E the instruction Ae = XI is 
joined to the pattern, where A, X, 1 and = are the fixed symbols and e is the same 
as for the preceding instruction. 

The simple patterns, the second type of ordering: 

The translation is similar as in case of the first type of ordering for simple patterns; 
also the kernels prepared a priori in the translator are the same. The difference 
is in the interpretation of ?e, which is replaced in the generated pattern as Be (while ? 
followed by digits is replaced by the letter A as in the first type of ordering), and in the 
conclusion of the generation of the pattern: if the contents of d is the letter E or G 
an instruction is joined: Ae = Be where e is interpreted as before. 

Naturally the possibility of a slight simplification of the generating algorithms 
exists, which idea is to use the figure §e or !e instead of ?e in the prepared kernels. 
Then the interpretation of the first symbol is determined by it uniquely and does 
not depend on the symbol which follows. 

Of course the second type of ordering needs to introduce the variable J31, B2, ..., Bn 
which can be done in the state INIT of the translator that instead of INTEGER T, 
An, Xn the line INTEGER T, An, Xn, Bn is introduced in the case of the composed 
form of patterns, or — in the case od simple form of patterns — the line INTEGER T, 
An, Bn is generated instead of INTEGER T, An. Moreover the second type of 
ordering must generate the sequence of instructions which perform the following 
action 

FOR I = 1 STEP 1 UNTIL n DO AI = BI 

which is generated always after the last instruction for printing (thus before the 
instruction T = T + l) . For this purpose the variable I must be introduced at the 
beginning of the target program similarly as we have just mentioned about Bl,..., Bn. 

3.9. We have proposed the language so that the translation of the body is rather 
simple. We could modified the expression means so that the simulated logical system 
would be more readable for the humans but the translation would be more complic­
ated; e.g. it would be possible to write 

NEURON 6 BINARY CONJUNCTION 

ITS INPUTS: FROM NEURON 2, FROM NEURON 4 

instead of 

6 E/4(A2, A4) 

or 
DELAY 5 NEGATION 

ITS INPUT: FROM NEURON 5 

instead of 

5 D/3(A5) 



or 

GENERATOR 8 READ TAPE 

instead of 

8 G/10 

but it is clear that the translation is complicated only by omitting the redundant 
symbols and by replacing certain symbols by other ones (in case of code numbers 
by a searching in a vocabulary), while other expression means are ordered in another 
way that in the original proposal. Both the possibilities have their proper advantages 
and disadvantages and it is difficult to decide which possibility is better (compare e.g. 
with the versions of CSMP for various machines IBM which have similarly distincted 
their languages although even the names of the programming system are the same — 
see [13], [14]). 

4. SIMULATION OF LOGICAL NETWORKS BY A CONTINUOUS 
SIMULATION PROGRAMMING SYSTEM 

4.1. The facility of simulation programming languages for the second generation 
computers has a great advantage for the users, who need not to express their demand 
algorithmically. Nevertheless any special language needs its corresponding trans­
lator which must be made and which needs a lot of a hard programming work. 
To do a universal second generation language leeds to algorithmical languages: 
but it returns to the first generation facilities. Thus a possibility is studied to use 
a simulation language, which has been designed for a certain class of problems, 
to another class of problems: in order to be efficient this affaire must satisfy one 
of the following properties: 

either there is a methodics of programming which enables easy and clear expressing 
of the new problems demands in the programming language oriented for the original 
class of problems; 

or a new programming language can be designed so that it is oriented to the new 
class of problems and that an automatic translation of it into an existing program­
ming language for simulation of certain class of systems is more simple as the trans­
lation of the new programming language into an algorithmic one. 

The problems to which the original programming language is oriented can be 
mathematically very different from those which ask the adaptation of it. We shall 
present an example how to use a simulation programming system for -continuous 
problems with certain specilization, in case that it is to simulate the logical networks. 
The example is important not only for the reason that it forms certain external 
analogy of the representation of the neuron networks by electrochemical continuous 
systems in living organisms but also for its implementation: the continuous simulation 
system has been implemented in the Biophysical Institute of Charles University 



in Prague for problems of radiation biology and nuclear medicine, without regard's 
to the neurophysiology, but then it has been discovered as appliable also in the last 
branch. 

4.2. The continuous simulation system is called COSMO which is an abbreviation 
for the words Compartmental System Modelling. The system is implemented for the 
computer ODRA 1013 (see [10]). 

The system COSMO has been realized in the years 1967-1969 and it is still tested 
to satisfy all the possible demands risen in the original array of problems (see [15], 
[16], [17], [18], [19] and [20]). It is oriented to the class of simulations of com­
partmental systems. They are abstract systems risen by an idealization from the 
real hydrodynamical networks. Compartment is a vessel where a liquid is present, 
mixed homogeneously with certain substance, called tracer (e.g. a coloring substance, 
a radiactive isotope). Into the vessel the same liquid comes containing the same 
tracer but generally in another concentration. The entering liquid is supposed to be 
immediately well mixed with the liquid which has remained in the vessel (it is the 
first idealization). The liquid can go from any compartment into any compartment 
through the channels; the size of the liquid which takes place in the channels is 
neglected (another idealization). The flow rates in the channels can vary during the 
time and the volumes of the compartments as well, though the greatest part of the 
problems solved nowadays concerns the compartmental system with constant 
parameters (see [21], [22]). 

Using the language COSMO one describes the simulated compartmental system 
in several paragraphs: each of them corresponds to a compartment; in the first line 
of such a paragraph one writes the order number n of the described c impartment 
by a line 

COMPARTMENT n 

which is followed by k lines each of which determines one input of the described 
compartment; a line can have a form 

FROM COMPARTMENT r = e 

where the integer r is the order number of the compartment from which the substance 
comes and e is an arithmetical expression determining the size which comes in the 
actual step. When all the input channels have been described the output is determined 
globally for the compartment (without eventual branching after leaving the com­
partment) in a line: 

ITS OUTPUT = e 

where e' is an arithmentic expression with the analogous meaning as e. The last line 
determines the volume of the compartment: 

ITS VOLUME = e" 



There are various facilities to express the most probably properties by the human 

words (without foimulas) or to omit them at all. All these possibilities are presented 

in [16]. Let us only mention those which are important for our subject: 

The time can proceed by varying steps; if the situation is "normal" (for us: if step 

is equal to one) one must write the paragraph containing the only word TIME; 

The variable concerning the fc-th compartment are Vk for its volume, Gk for its 

input, Kk for its output (thus G4 means the size of the liquid which enters into the 

fourth compartment in the actual step). The identification of tracer is given by putting 

the letter H before the identifier (thus IIG4 means the size of the tracer which enters 

the fourth compartment during the actual step). 

To define a value which is more complicated that one arithmetic expression can 

be done so that instead of the sign of equality a colon is written and then the defining 

program follows, where the defined values is identified by X. Thus the declaration 

ITS OUTPUT = 3-245 + K3 - K2/3 

is equivalent to 

ITS OUTPUT: 

X = K2/3 
X = K3 - X 
X = 3-245 + X 

The values Vk are assigned in the beginning by one while the other value are 

assigned by zero. 

The facilities for initial condition, for defining the duration of the simulation 

and for the first information about the simulated system (the heading) are the same 

as in the language designed in the preceding part. The description of printing tables 

forms a special paragraph of the following form: 

FORMAT 

text, i.e. the heading of the table 
asteriscs determining the positions of digits in the printed table. 

In the table an asterisc corresponds to a digit, a space to a space and a decimal point 

to the same decimal point. E.g. 

FORMAT 

T VЗ HV5 HK1 

*** ** .*** . *** 
In the language for the logical network simulation the last line is not necessary because 

the printed values are only one and zero. 

4.3. To use the system COSMO for programming the neuron network simulation 

brings immediately various advantages if we compare it with the programming 

in the algorithmic languages introduced in the part 2. Thus the heading of the descrip­

tion, containing the introducing of the number of compartments (neurons) can be used 



without necessity of any modification, as well as the paragraphs for the initial condi­
tions and for the concluding section (here only another type of identifiers must 
be written — without Aj it is to be Vj, as we shall demonstrate further). We can use 
also the paragraph for the prints of the simulated results according to the rules 
of COSMO: though it is a bit complicated if compared with the format-line described 
in the preceding part, it causes no complication for the non-computer-oriented 
users. If one wish to print the values of the time he must express it in the paragraph 
for the printing of the results and befero it he must introduce a new paragraph 
containing the only word TIME. Concerning the description of the neurons one 
must present special methodics of programming: 

4.4. The language COSMO has been designed for the problems concerning of the 
mixing and the transport of matter, which satisfies certain physical laws. The proces­
sing of information which takes place in the logical networks satisfies other laws. 
Thus one must describe the neurons as compartments with relations between input 
and output adequate to those which hold in the neurons. Our situation is simplified 
because of the absence of the tracer. Thus we can formulate a general rule for pro­
gramming any neuron which performs a function f(ViuVi2, ...,Vis) of the input 
information comming from the neurons with their order numbers iu i2,..., is, 
be the following way: 

COMPARTMENT h 
FROM COMPARTMENT h =f(Vi1, Vi2,..., Vis) 
ITS OUTPUT = Gh 
ITS VOLUME = Gh 

where the first line introduces the order number of the declared neuron, the second 
line contains formally the left hand side of the assignment (it can be placed any 
integer less than the number of all neurons in the simulated system instead of h in it) 
while the right hand side contains the function which is to be performed by the 
declared neuron; the last two lines must be written as they are recommended. 
The relations between the input and the output, regarding to the volume, do not 
satisfy generally the law of conservation of matter but it causes no obstacles. If the 
function / is more complicated so that it cannot be programmed in one expression 
instead of the second line the following segment can be present: 

FROM COMPARTMENT h: 
program which computes f(Vix, Vi2, ..., Vis) assigning it for X 

Let us present an example how to program a neuron enumerated by 5 which performs 
the disjunction of the values comming from the neurons enumerated by 2 and 3: 

COMPARTMENT 5 
FROM COMPARTMENT 5 = VI + V3 - VI. VI 
ITS OUTPUT = G5 
ITS VOLUME = GS 



26 or — as it has been implemented for the computer ODRA: 

COMPARTMENT 5 
FROM COMPARTMENT 5: 
X = VI * K3 
X =V2- X 
X = X + V3 

We can program in the same way also the generators, including inputs; the system 

COSMO has however certain facilities for describing the inputs into the simulated 

system. We shall illustrate how to have use of them in programming of generators 

but we do not recommend it as it complicates the programming methodics. The 

description of a generator performing a function g of time (which can be naturally 

a fictive argument) can be formed either as 

IN-COMPARTMENT h 
ITS FLOW = g(T) 

IN-COMPARTMENT h 
ITS FLOW: 

program which computes g( T) assigning it for X 

Naturally the same element is described using the preceding meens (by means of 

COMPARTMENT instead of IN-COMPARTMENT) where instead the function/ 

the function g(T) is written. 

4.5. The system COSMO admits only the first type of order. Thus the problems 

with transfers between Ai and Bi introduced in the preceding chapters has no analogy 

here. 

In COSMO one can omit all the redundant letters. Thus one can write F instead 

of FROM COMPARTMENT, C instead of COMPARTMENT etc. One can change 

the redundant letters for any other letters and spaces (to complete the description 

by comments). The texts can be joined after the order number introduced in the 

first line. We present the description of the example of 2.11 programed in COSMO; 

at the left hand side there are used all the facilities for comments while at the right 

hand side there are the corresponding texts written in the most short form: 

NUMBER OF NEURONS 8 
REAL E 

INITIAL CONDITIONS 
READ E 

COMPARTMENT 8 READER 
FROM COMPARTMENT 8: 
READ X 
ITS OUTPUT = G8 
ITS VOLUME = G8 

ІV8 
REAL E 

I 
READ E 

C8 
F&: 
READ X 
ITS O = G8 
ITS V = G8 



COMPARTMENT 5 NEGATION C5 
FROM COMPARTMENT 5 = 1 - V6 F5 = 1 - V6 
ITS OUTPUT = G5 ITS O = (75 
ITS VOLUME = (75 ITS V = G5 

COMPARTMENT 7 NEGATION CI 
FROM COMPARTMENT 7 = 1 - V4 Fl = 1 - V4 
ITS OUTPUT = Gl ITS O = Gl 
ITS VOLUME = Gl ITS V = Gl 

COMPARTMENT 6 IDENTICAL C6 
FROM COMPARTMENT 6 = V\ F6 = VI 
ITS OUTPUT = G6 ITS O = G6 
ITS VOLUME = G6 ITS V = G6 

COMPARTMENT 2 NEGATION C2 
FROM COMPARTMENT 2 = 1 — V\ F2 = 1 - V\ 
ITS OUTPUT = G2 ITS O = G2 
ITS VOLUME = (72 ITS V = G2 

COMPARTMENT 1 CONJUNCTION C\ 
FROM COMPARTMENT \ = VS * VI F\ = VS * VI 
ITS OUTPUT = Gl ITS O = G\ 
ITS VOLUME = Gl ITS V = G\ 

COMPARTMENT 3 DISJUNCTION C3 
FROM COMPARTMENT 3: F3: 
X = V2 * V5 X = V2 * V5 
X = V2- X X = V2— X 
X = V5 + X X = V5 + X 
ITS OUTPUT = G3 ITS O = G3 
ITS VOLUME = G3 ITS V = G3 

COMPARTMENT 4 CONJUNCTION OF THREE C4 
FROM COMPARTMENT 4: F4: 
X = V8 * V3 X = VS * V3 
X = X* V5 X = X* V5 
ITS OUTPUT = G4 ITS O = G4 
ITS VOLUME = G4 ITS V = G4 

TIME T 

FORMAT 

T V\ V2 Vi V4 V5 V6 VI V8 
*** * * * * * * * * 
FINISH WHEN T IS GREATER THAN E 

The last four lines (beginning from FORMAT) cannot be sufficiently shortened. 

4.6. Though the methodics for programming the simulation of logical networks 
in COSMO is very simple we can give another programming tool which is more 
suitable for the non-computer-oriented users. This mean is a programming language 
similar to the special programming language for the simulation of logical networks 



presented in the preceding paragraph. We present another one, which is from the 
original slightly different but which can be simply translated into COSMO. The 
differences from the original one are the following: only the first type of ordering 
is admitted, the letter A used in the identifiers is here replaced by the letter V and the 
prints are declared in a special paragraph which must satisfy the rules for the format 
paragraph in COSMO. We see that the modifications cannot carry any obstacles 
for any user. 

The translator from the described language into COSMO is more simple that 
the translator from the simulation language proposed in the third part into an 
algorithmic language: the global logics of the translator gets a mere copying: the 
translator copies the paragraphs for prints, for finishing together with the conclusion, 
for initial conditions and the heading. Before copying of the last paragraph (or — 
equivalently — after copying the paragraph for the prints) the translator generates 
a new paragraph containing the only word TIME. One can compare the work 
of this translator with that described in 3.7. 

Concerning the translation of the body, the logics of the translator is similar 
to that presented in 3.8 for the original translator, but certain details (concrete 
strings of symbols by the translator generated) differ from the original one. Simi­
larly as in 3.8 we can assume that any line of the body has stored the essential 
informations in the addresses bl, bl,..., bf, c, d, e and / of the translator. From 
each such a vector a paragraph of a target text (in COSMO) is generated which has 
the following form: 

Ce or COMPARTMENT e 
Fe: FROM COMPARTMENT e: 
program pattern program pattern 
ITS O = Ge ITS OUTPUT = Ge 
ITS V = Ge ITS VOLUME = Ge 

The left hand form is better because the target text does not come to any human 
being. The right hand form is presented here only for better comprehension of the 
reader. 

Concerning the program pattern we can referenced all the discussions presented 
in 3.8 (limited naturally to the possibilities of the first type of order), because the 
program patterns in case of the present paragraph differ from those of 3.8 only so that 
instead the letter A in the identifiers the letter Vis used. 

The reader can imaginate the eventual modifications of the translator in case that 
we would receive COSMO texts from the language of the third part without any 
modifications (replacing all occurings of the letter A by the letter V, a slight trans­
lation of the format line). 

The fact that the target language is COSMO permits us to introduce the facility 
of omitting redundant texts also in the paragraphs which are copied into COSMO. 

(Received February 24, 1972.) 
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