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K Y B E R N E T I K A - VOLUME 25 (1989), NUMBER 6 

ONE POSSIBILITY OF MULTIDIMENSIONAL 
CONTROL SYSTEM DESIGN 

VLADIMÍR STREJC 

The aim of this paper is to draw attention to a general approach to multidimensional control 
system design. The system under consideration is assumed to be linear and discrete. The individual 
subsystems of the overall system are of the model following type. Control quality is secured by 
a quadratic cost function. Solution of high dimensional matrix Riccati equations is discussed. 

1. INTRODUCTION 

Let us consider a multivariable system consisting of several subsystems each 
having its own command variable, in general different from the command variables 
of the other subsystems, and each being exposed to mutual interaction. The design 
of optimum control for this kind of systems is not an easy task. In this article we shall 
discuss an approach using the state space description of the overall system as well as 
of the subsystems. It is advantageous to apply this kind of mathematical means. 
First, the structure and the solution of optimum control of the diagonal blocks 
of the overall system is mostly known respecting the different control aims. Then, 
the multidimensional system can be set up in sucn a way that the diagonal blocks 
and the blocks of interactions represent the building stones. A second advantage of 
the state space approach lies in the possibility to apply the same mathematical tools 
and software for single-input-single-output (SISO) as well as for multi-input-multi-
output (MIMO) systems. 

There is a large number of different aspects which may be considered when 
designing a control system. Let us mention some of them: the nature of command 
and disturbing variables, the structure of the control loop fitted for the desired 
control aim, the selected type of control cost function, estimation of unmeasurable 
variables, arrangement of the multidimensional control system, sampling strategy 
in the case of digital computer control and many others. It is not possible to discuss 
all modifications in one article. Rather it is necessary to restrict our considerations 
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to one selected example showing the basic concept of the design of the control 
system mentioned. 

The problem discussed here concerns a multidimensional linear system, controlled 
by a digital computer where the main subsystems correspond to model-in-the-system 
control representing an unconventional model-following control with known desirable 
response characteristics facilitating to reach a high quality of control. The cost 
function for each subsystem is assumed to be quadratic and designed for control 
error minimalization. The cost function for the overall system may differ with respect 
to the aim of control of the multidimensional system. It is possible to consider the 
general structure for a hierarchical arrangement, for optimization of dynamics of 
the overall system for example satisfying a quadratic cost function, for suboptimal 
decoupling of diagonal blocks in the sense of quadratic cost function and many 
others. In each case it is necessary to modify the structure of the multidimensional 
system according to the actual aim of control. As the overall system may be of a high 
dimension this article recalls the up-to-date procedures needed for the solution 
of high dimensional matrix Riccati equations. A numerical example illustrates the 
control quality of a subsystem compared with a solution without the model-in-the-
subsystem. 

2. DESCRIPTION OF A MODEL-IN-THE-SYSTEM CONTROL 

Consider a discrete linear time-invariant process described by the following state 
equations 

(1) xp(k + 1) = Fp xp(k) + gp u(k) 

yP(k) = cr
p xp(k), 

a simple model of the control process 

(2) xm(k + 1) = Fm xm(k) + gm yw(k) 

ym(k) = cmxm(k), 

the generator of the command variable 

(3) ' - xw(k + 1)= Wxw(k) 

yw(k) = cw xw(k), 

and the structure of the system representing a discrete version of the model-in-the-
system control (Fig. 1). 

Here up e U and um e U are scalar correcting variables, w e R is a command 
variable, yp e U and ym e U are process and control process model outputs and 
xp G U, xm E U and xw e U are the state vectors of dimensions np, nm and nw. Hence, 
this description concerns a single-input-single-output process. Sampling instants 
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are k = 0, 1,2, .... Matrices in (1), (2) and (3) have compatible dimensions. In 
Figure 1, E_1 denotes the backward shift operator. 

It is necessary to stress that the model of the control process does not represent 
a simplified model of the real system to be controlled but for a given input it enables 

"w'k' 

Уwfk) 

mD-Az] Г-
УJW ш^ 

Fig. 1. Block diagram of the model-in-the-system control. 

the definition of an idealized transient response of the real system. For practical 
reasons the control process model can be of a low dimension, for example nm = 1 or 2, 
even if the dimension np of the control process itself may be very high. In the case 
of control problems the model is assumed to be stable. 

The structure of the system was derived in [12]. It is evident from Figure 1 that 

(4) u(k) = up(k) + um(k) + uw(k) = -\KP xp(k) + Km xm(k) + Kw xjk)] 

Introducing the combined state vector z(k) and output vector y(k) 

(5) **) 

of the dimension 

XP(P) ÏУP^)1 

xm[k) y(k) = Уm(Щ 

_xw\k)_ JÁЩ 

n = np + nm + ny 

then the overall system is described by the state equations 

(6) z(k + 1) = E z(k) + g u(k) 

y(k) = CT z(k) 
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where 

(7) F = 
ғp o 0 V ГcT 0 0 " 
0 E a c1 

" m У r#lv w 
0 = 0 C T = 0 cl 0 

0 0 W 0 Lo o C ; J 
Considering a quadratic cost function of the form 

oo 

(8) J = £ [zT(fc) Q z(/c) + «T(/c) R «(*)] 
fc = 0 

where Q = [Sy]> *»1 = 1, 2 , . . . , n, is a symmetric positive semidefinite weighting 
matrix and R is a symmetric positive definite matrix. In the case of a single-input-
single-output system R is a weighting constant. The problem is to find a solution 
minimalizing the cost function (8) and stabilizing the matrix (Fp — gpKp). 

Matrix Q may have the special form 

4l + 42 ~ 42 ~ 4l 
Q = C - q2 q2 + q3 - q3 

~ «i - 43 4l + 43. 

Applying to the individual blocks of the state matrices (7) the canonical form used 
in Section 4 and derived for example in [13], the weighting matrix Q attains the form 

fill <2l2 !2i3* 
Q = fi2i Q22 e 2 3 

G31 632 633 
(9) 

4i + 42 0 0 42 0 0 4i 0 

42 0 

OjO 0 І 0 

0 | 4 2 + 4з 0 ... Oì - 43 0 

0 OjO 

- 4 i 0 Oj - q 3 0 

0 ! 0 

0 | 4 i + 4з 0 

0 0 0 oio 

of the dimension (n; n),n = np + nm + nw. 

Hence, the first term in the brackets of the cost function (8) can be written as 

(10) 
[xT

r(k)xl(k)xl{k)-]Q xm(k) 
xw(k) 

i(УP ~ УwУ + г(УP ~ Уmf + qъ(Уm - Уwf 

By appropriate selection of the three weighting factors qu q2, q3 and by minimaliza-
tion of the cost function (8) it is possible to satisfy different requirements of system 
control. If q2 = q3 = 0 and qx > 0 then only the control error e2

pw = (yp — ywf 
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Pц P12 Рiз" 
-°21 P22 ^ 2 3 

-°эi ^ 3 2 ^зз 

is considered. The cost function has the simplest form used for optimalization of 

conventional control loops. If qx > 0, q2 > 0 and q3 = 0 then the process output 

reflects the control error e2

pw and e2

pm = (yp - ym)2, while the model control error 
emw - (ym - yw)

2 i s not involved. If qx = 0, q2 > 0 and q3 > 0 then both e2

pm and 

e^w are considered. The process output yp approaches the model output ym instrumen­

tal in following the command variable yw. For all three weighting factors greater 

than zero we get a combination of the preceding possibilities and the resulting 

process output yp depends on the selected values of qu q2, q3. 

The controlling variable u can be expressed by the well known formula 

(11) u(k) = -[grPg + R]-1 grPF z(k) = -K z(k) 

where P has the general form 

P = 

The individual blocks are of dimensions compatible with vector z. 

Due to the form of g the scalar value of the term (grPg + R) is 

(12) D = glPnQ, + R > 0 

and 
(13) u(k) = -D-1gT

p[P11Fpxp + P12Fmxm(k) + (P 1 2qmcT + P13W)xw(k)] 

The result is in conformity with (4). The matrix P is a solution of the matrix 

Riccati equation 

(14) P = ETPE - FrPg[grPg + R]"1 grPF + Q 

but only the blocks PX1, P12 and P13 of the matrix P are needed. Substituting all 
matrices into (14) we obtain for the calculation of Ptl the matrix Riccati equation 

(15) Pu = Fr

pP11Fp - FrP11gpD-l'gr

pP11Fp + QX1 

and for blocks P12 and P13 the following Lyapunov equations 

(16) EpII - Pu^pD-Vj] P12Fm - P12 = - Q 1 2 

and 

(17) ET[I - Pll6fpD-^T] P13W- P13 = - Q 1 3 - ET[I - PligpD-'gr

p\ 

• P129mCw 

where I is the identity matrix. 

Due to the symmetry of the matrix Q1X, it can be verified by inspection of (15), 

that P1X may be a symmetric matrix of the dimension (np; np) too. 

Let us recall that if (Fp, gp) is a stabilizable pair and if (Fp, Hp) is a detectable pair, 

where HrHp = Qtl and rank(Hp) = rank(Qu) then these assumptions are neces­

sary and sufficient for the existence of a unique solution Plt > 0 of (15) such that 
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(Ep — gpD~1gT
pPxlFp) is a stable matrix. Moreover if (Ep, Hp) is reconstructible, 

then (15) has a unique positive definite solution. 
If the conditions related to pairs (Ep, gp) and (Ep, Hp) are not satisfied then the 

Riccati equation may have more then one positive semidefinite solutions. For more 
details the reader is referred to the publication [4] by V. Kucera. 

It follows from the preceding that if the problem is split up into three partial 
equations (15) through (1.7) then it is necessary to calculate successively P l l 5 P 1 2 

and finally P1 3 . 
Let us assume that the model is stable and that the command variable is a step 

function, so that Wis of dimension (1; 1). Both these assumptions represent the 
simplest but realistic variant of the system. 

Due to the step function of the command variable the pair (E, g) is semistabilizable 
only, because one eigenvalue of (E — gK) is equal to W. All the other eigenvalues 
can be made less then one in modulus by an apropriate choice of K. Owing to the 
selected structure of the overall system, it is possible to calculate the matrix P and the 
controller gain K of (11) by an appropriate numerical procedure for the whole 
system although there are two feedforward branches influencing the closed control 
loop. 

An example of a numerical solution is given in Section 4. 

3. EXTENSION TO MULTI-INPUT-MULTI-OUTPUT SYSTEMS 

We can apply the principle of model following system described in Section 2 for 
MIMO systems in very different ways. As examples, let us outline application for 
multivariable systems, interconnected systems, hierarchical structure of systems and 
suboptimal decoupling of MIMO systems. 

Let us consider the multivariable system first and let us assume that it has s inputs 
and s outputs. Let the dimension of the overall system be (N; N), where N = Np + 
+ Nm + Nw. It is possible to apply the structure indicated by Figure 1 in the straight­
forward way. The single difference with respect to SISO systems refers to the dimen­
sion of the individual blocks, dim Ep is (Np; Np), dim Em is (NOT; NOT) and dim W 
is (Nw; Nw). The input matrices are now G of dimension (N; s), Gp of dimension 
(Np; s) and Gmof dimension (Nm; s). The individual output matrices are CT of 
dim (3s; N), CT of dim (s; Np), CT of dim (s; Nm) and CJ of dim (s; Nw). 

It is evident from (10) that now q±, q2 and q3 in the weighting matrix Q are blocks 
of the dimension (s; s) and dim R is (s, s), too. All variables are vector variables 
of compatible dimensions. The main aim of the application of the model following 
concept is to reach the most convenient dynamic behaviour of the overall system. 

The structure introduced in Section 2 generalized for multivariable systems can be 
applied also for the suboptimal decoupling of a multidimensional system provided 
that the weighting matrices Q and R strongly accentuate the diagonal elements only. 
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It is possible to design a process model Em of dimension (Nm; Nm) as well as a gene­

rator W of dimension (N w ;N w ) of the command variables, both yielding s outputs. 

Zero blocks are set according to the pattern given by equations (7). Hence, the 

realization (Fpi, gpi, cT,-) follows expressively the outputs xmi and xwi of the block-

diagonal matrices Em and W, respectively. 

It is clear that the suboptimal decoupling cannot remove completely the influence 

of the mutual interconnections. The result of this kind of suboptimal decoupling 

depends on the properties of the MIMO system and on the selected parameters of Q 

an R, respectively. 

Interconnected systems represent a special case of MIMO systems allowing to split 

up the overall system into blocks according to structure (18). 

(18) E = 

Г ml 9r 

җ 

I f 
\Jpl2 j pls 

0 0 0 0 
1 

1° 
L-ЕłJ ° 
i 1 r> т 
i \ Г 2m 9m2Cw2 

0 

J p2s 

0 0 

0 W2 

jps2 

lo 0 
1 

o 

0 

1E a c т 
1 ms Уms^ws l _ _ 

0 W2 

jps2 

lo 0 
1 

o 0 |w_ 

. _ _ _ i 
i 
i 

0 

jp21 

0 

0 

jpsl 

0 

0 

Provided that, in general, each subsystem has its own command variable wh i = 

= 19l2, •;.,,.. s and its own model of the control process, which are determined by 

technological conditions and are not influenced by the neighbouring subsystems 

Sj,j = 1,2, ...,s,j =t= i, then the interaction between the subsystems of a multi­

dimensional system can occur only through the state vectors xpj, j = 1,2, ...,s, 

j 4= i and possibly through the inputs upi, respectively. Besides this the interaction 

can proceed in such a way that the individual partial subsystems are elements of such 

a sequence that the state variables xpj of any partial subsystem can act only on the 

state variables xPth I > j of the succeeding partial subsystems of this sequence but 

cannot influence the state variables of the preceding partial subsystems. In other 

words, any partial subsystem can only be influenced by the preceding partial sub­

systems of the sequence but not by the following partial subsystems. This type of 

interconnected system represents a special version designated as one-way coupling 

case. A more general form of an interconnected system represents the so called 

two-way coupling case. Here, mutual couplings arise in both directions and the one­

way form may be regarded as a special case of the normal two-way canonical form. 

For more details the interested reader is referred to reference [13]. 

Let us consider the latter form of an interconnected system. The possibly non-zero 

elements of interactions between the matrices Fpi in (18) are in the first columns 
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~Ć[ 0 . . . 0 
o cl . . . 0 

0 0 . . : Cт 

of the off-diagonal blocks and are denoted asfpij, i,j = 1, 2,..., s. The model-state 

variables as well as the command variables of each diagonal block do not act on 

other diagonal blocks. 

The input matrix G may have all its elements non zero except those belonging 

to models of the control responses and to generators of command variables. 

The output matrix has the form 

(19) Cт = 

Now, the overall system is described by the state equations 

(20) x(k + 1) = E x(k) + G u(k) 

y(k) = CT x(k) 

where the dimensions of the individual matrices are E(N; N), G(N, s), CT(3s; N) and 

(21) N = t »i 
j = i 

rii being the dimensions of the subsystems St, i = 1,2,..., s. 

The vectors fpij, i,j = 1, 2,..., s, i + j describe physical interconnections of the 

system in question and must be determined by identification or mathematical model­

ing in the same way as the elements of the diagonal blocks Fpi. It is possible to design 

a control for the diagonal blocks individually and save in this way the computer 

memory, while when solving the control for the interconnected system in the whole, 

then the requirements on computer memory can exceed the available one. 

In the case of interconnections it may happen that the overall system is unstable. 

Hence, after the design of all controllers of the diagonal blocks it is necessary to verify 

the stability of the overall system. If instability occurs, the increase of qu and q2i 

values, i = 1, 2,..., s, may remove this imperfection. In the opposite case the desired 

solution is not possible. 

Suboptimal decoupling of interconnected systems in the sense of quadratic cost 

function can be achieved by similar means as in the case of multivariable systems. 

A different problem is represented by the design of a hierarchical system. Let us 

neglect the cost function for the overall system which may be formulated in accord­

ance with the technological requirements in very different ways and in general may 

or need not depend on the cost functions of the systems working at individual levels 

of the hierarchical control. 

The hierarchical structure of s levels of the multidimensional system may be 

achieved by the one-way coupling of the diagonal blocks, i.e., if the coupling elements 

are below the main diagonal of E only. Hence, for j > i, all fpij in (18) are equal 

to zero. 
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Let us assume step functions of the command variables and the selected canonical 
form of the state description. Then the outputs of the command variables of the 
diagonal blocks are ywi = xwi, i = 1, 2,..., s, and can be influenced by the command 
variables of the preceding subsystems. It is possible to express the desired command 
variable xwl0 in the form 

i 

where fwi are the coupling elements selected by the designer of the hierarchical 
control according to the technological requirements. Indices /, i denote that the 
command variable of the diagonal element / is influenced by the command variables 
of the preceding subsystems i. The first diagonal block represents the highest level 
of the hierarchical structure and is not influenced by other blocks. The global control 
system design is performed at the subsystem level only. To ensure the consistence 
between Eq. (22) and the system (18) —(20) only step functions of command variables 
can be considered when employing the methodology described in Section 2. 

It follows from (22) that, in this particuar case, it is necessary to put xw i 0 in Eq. (4) 
instead of xw and to change the system structure of Figure 2 accordingly. The stability 
of the overall system is guaranteed by the stability of all the diagonal partial systems. 

1.2 - 4 

1 - 3.5 

0.8- ť 
І25 

0.6- ť 
І25 

0.4- 2 

0.2- 1.5 

0 - 1 

-0.2- 0.5 

•0.4- 0 

Уi 

/ 

A2 

, / \ 

/ \ L 

Vť"^ V- / -^N^ V \У r 
10 

-M 
15 20 

Fig. 2. Impulse response y2 of the process, step response yt of the controlled variable and 
the respective controlling variable u of the closed control loop. 

Of course, it is feasible to have more parallel systems on each level starting by level 

2. Extension in this sense is straightforward and the necessary modifications of the 

basic scheme are obvious. 

Because the dimension (21) can reach a very high value, direct procedures elaborat­

ed for the solution of the Riccati equation of a low order may fail. Consequently, 

it is necessary to select a more adequate methods. In the seventies lot of attention 

was paid to the problem of the solution of high dimensional Riccati equation. It is 
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one of the most deeply studied nonlinear matrix equation arising in mathematics 
and engineering. Now, there exist several packages of software that can solve such 
equations of an order up to a few hundreds. Space limitations preclude an exhaustive 
description of these up-to-date procedures; references will lead the interested reader 
to sources of additional detailed information. 

The problem in question is closely related to linear least squares and both standard 
and generalized eigenvalue problem. There are essentially two approaches available, 
the first related to Potter's method [9] utilizing generalized eigenvectors and the 
second related to Laub's method [5, 6] utilizing generalized Schur vectors. 

As an introduction let us consider the standard problem first concerning a multi­
dimensional control. The starting point is the so-called Euler or Hamiltonian sym-
plectic matrix which in the case of discrete systems has the following form derived 
with respect to the minimum of the quadratic cost function 

,0,x .-, rE + GR-]GTE-Ta - G R _ 1 G T E - T i 

( 2 3 ) E = [ _ F - x e F-T j 
It is clear, that the matrix E must be nonsingular. Matrix E can always be represented 
as 

(24) E = VJV'1 

where J is the Jordan canonical form of E with eigenvalues sorted in increasing 
order of magnitude so that n stable (or semi-stable) eigenvalues are located at the 
first n places. The sorting of eigenvalues of E and as matter of course the ordering 
of eigenvectors accordingly is the presumption for the optimal stabilizing (or semi-
stabilizing) solution of the problem. Other solutions of the Riccati equation are 
omitted provided that such solutions exist. According to this recommendation 
we may introduce the notation 

(25) / = g » 

and the matrix of corresponding eigenvectors 

(26) / V = 

0 

J22 

Vц Ví2 

v2í v22 

The individual blocks in (25) and (26) are of the dimension (n; n). The Riccati 
matrix is then 

(27) P = V^Vn1 

This is the so-called standard or direct method published for example by D. R. 
Vaughan [14]. . 

Closely related is the generalized eigenvalue problem [7]. In that case the Euler 
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matrix is written as the product of two matrices 

<*> . - - [ i^Tt-S-] -^-
where I is the identity matrix. Instead of the standard eigenvalue problem for E, 
rather the generalized eigenvalue problem for (L, M) is solved 

(29) Mz = XLz 

in order that the roots X satisfy the generalized characteristic equation 

(30) det (M - XL) = 0 . 

For each generalized eigenvalue X a nonzero vector z satisfying (29) is called a general­
ized eigenvector. If X present a multiplicity r > 1, then the set of vectors z l s ..., zl 

satisfying 
Mzx = ILZi 

( M - AL)_* = Lzk_, ; k = 2 ,3, . . . , / ; / <, r 

is called a chain of generalized principal vectors. 
Let us introduce the matrix U of the dimension (in; n) of the generalized principal 

vectors corresponding to n stable eigenvalues. Matrix U can be partitioned into two 
submatrices Uu U2 of the dimension (n; n) 

W . . •':-. - [ S ] . - •; 
and satisfies equation 
(32) MU = LUJ 

where J is the (n; n) Jordan canonical form corresponding to all Xt i = 1, 2, ..., n, 
where Uf| < 1. 

In this case, the Riccati matrix is 

(33) P = L^Ur1 • 

It may be mentioned that the calculation of eigenvectors corresponding to the stable 
eigenspace of the problem is often highly unsatisfactory from a numerical point 
of view. 

A variant of the classical eigenvector approach to Riccati equations is the applica­
tion of the so-called Schur vectors as proposed by A. J. Laub [5]. This approach 
provides a unifying methodology applicable to standard as well as nonstandard 
Riccati equations including singular control weighting matrices, cross-weighting 
matrices, singular transition matrices and generalized state space models. Moreover, 
it yields reliable numerical solutions. In Laub's method the double-Francis-QR 
algorithm [2, 6, 8, 11] is used providing a sequence of matrices which converge to 
a so-called quasi-upper-triangular real Schur form (RSF), S. It has l x l diagonal 
blocks corresponding to real eigenvalues of E and 2 x 2 diagonal blocks correspond­
ing to complex-conjugate pairs of eigenvalues. All the mentioned transformations 
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concerning the standard problem can simply be expressed as 

(34) UTEU = S , UTU = I 

Partitioning U and S into four (n; n) blocks, we may write the solution of the Riccati 
equation as 
(35) p = u2lu;t 

In the case of generalised Schur vectors instead of the QR algorithm, the so-called 
QZ algorithm is applied which transforms relation (29) into the form 

(36) QMZx = XQLZx 

where Q and Z are orthogonal transforming matrices, A = QMZ is quasiupper 
triangular and B = QLZ upper triangular matrix, respectively. 

Defining 

"-K1-EI 
then solution of (14) is 

(38) P = U2Ull 

and the stable eigenvalues of E are 
(39) S = By} An 

From the above it is evident that the application of real Schur vectors does not 
need the calculation of eigenvalues or generalized eigenvalues for Riccati matrix 
determination. Collection of subroutines [3, 10] for the solution of the Riccati 
equation represents a mathematical software of impressive quality. It may be 
stressed that the evaluation of the software under consideration is a highly non-
trivial task. 

4. EXAMPLE 

The example in this section illustrates the behaviour of one block of a dynamic 
system designed in accordance with the principle described in Section 2. 

Let us have the difference equation of the controlled system 
np np 

£ diyp(k + np- i) = £ btu(k + np - i) ; a0 = 1 

then, in general, the matrices Fp, gp and cT can have the following expedient canonical 
form 

FP = 

- a i 1 0 . . . 0 
-a2 0 1 . . . 0 

-aПp 0 0 . . . 0_ 

c j - [ 1 0 , ...,(>]. 

9p = 

bi 

Ъ2 
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The same form can be applied for the system model and for the generator of the 
command variable. 

Matrices (7) have been selected of the following form 

" 3 1 0 0 0 0 " 
-3-68 0 1 0 0 0 

2-256 0 0 1 0 0 
-0-576 0 0 0 0 0 

0 0 0 0 0-2 0-8 
0 0 0 0 0 1 

G = 

1-3002" 
1-4301 
0-2339 
0 
0 
0 

1 0 0 0 0 0" 
0 0 0 0 1 0 
0 0 0 0 0 1 

and the weighting matrices of the quadratic cost function (8) 

0 = 

6 0 0 0 - 5 - 1 " 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

- 5 0 0 0 6 - 1 
- 1 0 0 0 - 1 2 

Ä - [ І ] 

Let the initial state vector z be 

zT(0) = [ 0 0 0 0 0 1 ] 

It is evident that the system is exposed to the action of a step input. The controller 
matrix K calculated according to (11) is of the form 

K = [2-0785 0-7718 0-0427 -0-0330 -0-0896 -0-5359] 

The step response is shown in Figure 2 and it is denoted as yx. The curve y2 

belongs to the impulse response of the process itself. It is clear that it is strongly 
oscillating while the step response yt follows the command variable yw very well. 

5. CONCLUSION 

The described procedure of multidimensional control system design proves the 
usefulness of the application of the state space approach. It enables a uniform 
solution of control systems of different complexity. The selected structure of the 
subsystems represents a model-in-the system control yielding a high control quality 
illustrated by a numerical example. However, the multidimensional system can be 
modified for other control problems in a straightforward way when exchanging 
the individual matrix blocks by the relevant ones. Solution of high dimensional 
matrix Riccati equations is outlined and basic references are given. 

(Received March 15, 1989.) 
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