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ANTICIPATION IN DISCRETE-TIME LQ CONTROL I: 
Open—Loop Control 

VACLAV SOUKUP 

Polynomial approach is used to explain the partial improvement in single-input, single-
output (SISO) linear quadratic computer control design. It consists of input signals antici­
pation which is always applicable if external inputs to the process are known in advance. 
The open-loop structure is considered in this first part while the second part of the work 
will concern the feedback LQ control. 

1.1. INTRODUCTION 

Standard control algorithms result into the control actions which start at the same 
time when an external input change (reference, load disturbance) occurs. Minimizing 
a chosen performance index state space as well as input-output methods of the 
control design have been developed. 

Nevertheless in many applications we know some time in advance when and how 
the input signals will turn in the future. Then a control action need not wait for such 
a determined change but can anticipate it. This possibility has been (probably for 
the first time) mentioned by Stecha and Havlena [9]. The idea of anticipation may 
be simply realized in computer-controlled processes using polynomial system and 
signal description. It is shown for quadratic cost function and SISO linear systems 
in this work. 

Quadratic or least squares control strategy dominates in the control theory for a 
long time [3,8,1]. Also there are many works using algebraic methods in LQ and 
LQG discrete-time control. The fundamental results in this field have been derived 
in [7], the comprehensive study concerning SISO systems represents [4]. 

Unlike in [7] the approach based on the coprime polynomials in SISO problem 
description is used in this contribution. 

At first necessary operations and symbols used in polynomial theory are briefly 
summarized in Preliminaries. Further particulars can be found in [7]. Following 
the short survey about the principle of open-loop LQ control the own anticipation 
problem is solved in Section 4. Some further, completing relations are shown in 
Section 5 and the work ends by the simple illustrative example. 
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1.2. PRELIMINARIES 

Polynomials in d (one step delay) and recurrent power sequences as polynomial 
fractions are the main elements in SISO, linear, discrete-time systems polynomial 
theory. 

A polynomial 

a = a0 + c*i d + • • • + an dP (1.2.1) 

has the degree deg a = 77 if an ^ 0; deg 0 = — 00, and is causal a = cc if a0 7̂  0. 
Sometimes it is more suitable to consider d as Z-transform complex variable 

(d = z~l) and a polynomial a = a(d) as a function of d. 
A polynomial (2.1) can be factorized into 

a = a a~ = a+ a~ = a+ a0 a~, 

where all zeros of aH(d), a~(d), a+(d), a~(d) and a°(d) have the property |cf»-|>l, 
\d{\ < 1, |G?J| > 1, \di\ < 1 and \d{\ = 1, respectively. 

Further operations are defined and denoted by 

a* = a0 + ori d l + V and ~, 

ã = a* dP = an + a ^ - i d + • • • + a0 a"7, a* = a+ a~ 

and 
a* a = a a+ = s* s, 

where „ 
s = a = s (spectral factorization). 

Having two polynomials a, b we write (a,b) for their greatest common divisor, 
b\a, b 7̂  0, if a = c b, and 6 ~ a i f a = c6 with deg c = 0. 

A recurrent power sequence 

F = - = <p<: £ + <pz+1 dt+l + ... (1.2.2) 

has ord F = £ if v?f 7̂  0 and is a) causal if £ > 0, b) stable if it is causal and <p^ —* 0 
for £ —> 00. 

Provided tha t (a,b) ~ 1, it must be a = ac for causal sequence and a = a+ for 
stable sequence in (2.2). 

For a stable F = <p0 + <f\ d + ... it is defined E* = <p0 + ipi d~l + .... Then 

F* F = . . . + 71 d~l + 70 + 71 d + ... = C77. + 70 + C 7 , 

where C 7 = 71 d + 72 d2 + . . . . 
The denotation 

00 

To = (F* F) = ] T ^ 2 

e=o 
is used. 
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1.3. STANDARD OPEN-LOOP LQ CONTROL 

Open-loop SISO discrete t ime control problem is sketched in Fig. 1.1. 

U 
P 

Yu 

Y 

Y 

wr 

Yo 

E 

Fig. 1.1. 

A process output Y should track a reference Wr being affected by a possible load 
disturbance V at the same t ime. Current conditions at the control s tar t depending 
on the system previous behaviour may be modeled by signal YQ. All the signals are 
assumed to be described here in discrete-time forms and the discrete-time model P 
of a continuous-time process includes zero-order hold with a period T. 

The aim of LQ optimal open-loop discrete-time control is to determine such a 
sequence U to minimize the performance index 

* = E tø el + v uD = *(E*E) + vV*u) (1.3.1) 
fc=0 

where stable sequences 

jiľ = e 0 + ei đ + . U = UQ + ui d + 

and ek = e{k T) and/or Uk = u(k T) are the error and/or control signal values at 
time kT; k = 0 , 1 , . . . ; V i1 0> f 9- 0 are chosen weighting scalars. 

Seeing Fig. 1.1 we can write 

where 

E=Wr-Y = W-YU = W-PU, 

W = Wr - Yo - V = w0 + «л d + ... 

(1.3.2) 

(1.3.3) 

represents the only equivalent input. Control action starts by the value UQ synchron­

ized with the input value WQ at t ime kT = 0. 

1.4. ANTICIPATION IN LQ O P E N - L O O P C O N T R O L 

Assume t h a t the input course (3.3) is known in advance, say u steps before it will 
really act, i.e., at t ime —vT. Then the purposeful control signal can be applied and 
the error signal observed starting at this t ime. We can write 

Єk+v = Wk - yu,k+v or Ed " = W-Yцd ". (1.4.1) 
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If the numbering of time is shifted by v steps back then (4.1) obtains the form 

E = W dv - Yu = W d" - P U. (1.4.2) 

Let k 
P=-, ( a , 6 ) ~ l , (1.4.3) 

W=f-, (h,f)~\, (1.4.4) 

and a \ 
a/. = 7—rr» h* = 7—7T- (1.4.5) 

(a, ft) (a, ft) 
Then LQ open-loop control with anticipation is solved by the following theorem. 

Theorem 1 . Given a process (4.3) subjected to the equivalent input (4.4), LQ 
open-loop control minimizing the expression (3.1) and using zv-step anticipation re­
sults into the sequence 

U = ^ - , (1.4.6) 
fta s 

where the stable polynomial s = s+ follows from the spectral factorization 

s* s = a* (pa + 6* ipb (1-4-7) 

and ah, ha stand in (4.5). The polynomial y along with x and z satisfies the equations 

dps*y + hz = dp+ub*jpf (1.4.8) 

dp smx — bj haz = dp a„ <p ah fb (1.4.9) 
with the minimum deg z where p = max(deg a, deg b), 

b'=ww) and h = jrm- (I410) 

The corresponding error signal E is expressed by 

E = M£h. ( I.4.m 
has ' 

The problem is solvable if and only if ha ~ ft+. The solution (4.6), if it exists, is 
unique. 

P r o o f . The proof will be divided into three parts. 

1. At first it must be proved that s = s+. It has been shown in [2]. Assume that 
s = sH = s + s°, i.e., s(d) = 0 has a zero dt- = exp(—juiiT), \di\ = 1. Then seeing 
(4.7) 

s*(di)s(di) = a(d;1)<pa(di) + b(dr1)rpb(di) = ip\a(di)\2 + V W i ) | 2 = 0 
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and hence a(_'t) = 0 as well as 6(d.) = 0 would have to be true. But it is excluded 
by the assumption (a, 6) ~ 1 and therefore s° = 1. 

2. Secondly the solvability of the equations (4.8) and (4.9) will be treated. Writing 
these equations in the vector-matrix form 

C[xy z]T = D 
where 

C = 
dp s* 0 —bf аh 

0 ď5 s* h and D = 
dp a* <p ah fb 
dp+vb^f 

the solution exists if and only if the greatest common divisors of all nonzero minors 
of C and [CD] are the same. Let us write 

the first order minors of C: dp s*, bf ha, h; 
the first order minors of [C D]: dp s*, bf ha, h, dp a* tpah fb, dp+v b*ij) f; 
the second order minors of C: d2p si, dp s* h, dp s* bf ha; 
and the second order minors of [C D]: d2p si, dp s* h, dp s* bf ha, d2ps* a+(pah fb, 

d2p+v s* 6* i> f and dp s* shafb, 

where the last minor follows from (4.7) and (4.10). 
Denoting ^ _ ^ ^ ^ ^ fc) _ ^p ^ fcJ 

a n d a2 = (d 2 p sl,dps*h, dp s* 6/ n_) = d" s* oi 

a i |d p a* (pahfb, gi\dp+v 6* V>/ and g2\dps+sha fb, 

i.e., _ti|s/ia/_. Supposing degs = cr yields _/_ — (dp~a s,ha). Hence assuming 
\a ~ n+ the equations (4.8) and (4.10) are always solvable since for s = s+ is s 
unstable and therefore _/_ ~ 1. 
3. To prove that the optimal solution is given by Theorem 1 we express using (4.2) 
and (4.7) 

J = ^E*E + <pU*U = il)^-xi)^d-vU -i})h-^dvU* + —U*U = 
n*/i an* a*n a^a 

= M-fm+UV'L-iv) (,-_*.-__-)_,. + ,_, 
n*n n+ns+s \ s+n a ) ^ \ s*n a / 

(1.4.12) 
W h 6 r e 7 ,f*f /2_Vf____ / f*fah.ah . T _. .a\ J A = ^ I T T ~ V 7TT ~ V ^ T — 7 (1.4.13) /i*/i n+ns+s natnas+s 
is independent on U and with the finite value d__ = (</>.) for n_ ~ n_". 

The second term •/_? in (4.12) can be arranged into 

JB = (*--£-isr) f ^ - M = 
\ s*n a / * \ s* " a / 

dp s* y + h _ s \ /a___y_f__- _ * . _ dp s+h a j * V dp s+ h a 

y+*-iv\ h+^—'-v) = ix + ̂ ) u+ 
ň d^ s* a / _ V« cí̂  s* a / \ ořp s* y _ V dt' s 

(1.4.14) 
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W h e t e X = r--U. (1.4.15) 
h a 

The opening decomposition yields just the equation (4.8). Its general solution 
may be written as 

y = t/o — ht and z = ZQ + dp s* t, 

where yo, ZQ is the particular solution with minimum degz, degz < p, and t an 
arbitrary polynomial. 

Then in accordance with (4.14) 

#B = {jB) = {(X+t)*(X+t)) + ( ^ } 

since / ( - ^ - J (X + t)\=0 as well as / - ^ - ( x * + U)\ = 0. Hence 

mini? = "0 A + mintfj3 = •6A+ ' 
u x,t \ s+s 

for X = 0 and t = 0. Then seeing (4.15) the optimal control sequence U stands in 

<4-6)-

If the equation (4.8) is multiplied by b we obtain 

dps*by + bhz = dp+v b*iPbf = dp+v f(s* s-a*<pa) 

and then 

dp s*(sfdv -by) = dp+u a><paf + bhz = (a,h)(b,f dv) dp s*x, (1.4.16) 

where the complementary equation (4.9) has been introduced. 
Combining (4.2) and (4.16) the error E results into (4.11). The condition ha ~ h+ 

is necessary for E and U to be stable. Then the equations (4.8) and (4.9) are always 
solvable as shown above. Since their minimum-degree solution with respect to z is 
unique the entire problem has the unique solution. 
Note. Thus far the exact mathematical system solution of the problem has been 
shown. Analyzing the results one can see that the polynomial cancellations are 
assumed in the design: 

a) the process factor ah is cancelled by the same polynomial in control signal U 
not to appear in the output Yu; 

b) the common process-input factor (a, h) does not appear in the error E being 
cancelled by the difference s /& — bj y = (a,h)x. 

Of course, small differences between a real process dynamics and its available 
mathematical model must always be expected in practical tasks. Since such distinc­
tions, if occur between unstable factors, result in unstable error E, open loop LQ 
control may be applied, in fact, to stable real processes only. 
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1.5. FURTHER RELATIONS 

Let us consider two solutions of the open-loop LQ anticipating control corresponding 
to two values of anticipation steps v — i and v, i > 0. 

Using the relations and meanings used and derived above we can find that 

— > n ( J\ — _L __ n° ( \ 
yv — yv — i « "T" \zv — zv — i » ) , xv — %v — i H 77 \zv zv — i) , 

dP S* Cl/ S* 
£t„ - f/jz-i d% - — (zv - zv_i d%) , 

_ (6,/_.») 6 

and 
ův = * „ _ , + { ~-^ ) - { *"-*>* *»-* ) _ *„_< - A * „ , , _ . . 

* s* s / \ s* s ' 

where Xj, yj, Zj, Uj, Ej and dj are optimal for j-step anticipating LQ solution, 
j = v — i, v and 

A * , , , . , = /f____L__zi\ _ /___£_:\ (1.5.1) 
\ s* s / \ s+ s / 

is the decrease in $ if the anticipation steps increase from v — i to v. Intuitively we 
expect A $„,„_,• > 0. However the decrease (5.1) depends on the process and input 
dynamics and cannot be simply expressed without solving both the corresponding 
cases, i.e., the problem has to be solved for v — i as well as v. 

To investigate the theoretical limit case when v —• oo we must return to the 
primary numbering of time and instead of (4.2) write 

E = W-PU, (1.5.2) 

where E - E d~v and U — U d~v are two-side noncausal sequences. Then U is 
required to be determined such that 

oo 

*= _r (***+*>4) = *(&-$)+? (ft 0) (L5-3) 
fc = —oo 

is finite and minimal. 
As regards the two-side sequences and corresponding polynomial equations the 

good references are [5,6]. We mention here only that if 

E= ... + e_2 d~2 + e_i d~l + e0 + e_ d + e2 rf
2 + . . . 

_?, - . . . + e 2 c r 2 + e i _ - 1 + eo + e_i_ + e_2Cl2+ . . . 

Using (5.2) in (5.3) yields 

J + j)E+E + <pU+U = JA+JB> 

W h e i e 7 * / • / , 2 _ _ _ * _ / ah*ahf*f -
J A = V-r-r ~ V> T—r = V f—r = J A n*n n* n s+ s na s* s 
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standing in (4.13) and 

jB = (hM_lA (h±L-iv) 
\ hs* a /„ \ " s * a J 

w i t h " a • / - \ - ahb*ibf 
dB=mm(jB)=0 for U= * *WJ 

U \ / has+ s 

provided that ha ~ /i+. Hence 

d = lim $ = lim (t?A + *?B) = I^A < $v for any finite v. 
I/—ЮO 1/-ЮO 

1.6. EXAMPLE 

Given d b ! 
P=z ; = - , Wr = 

1 — d a ' 1 — d' 

0.17d . „ 0.33d 

^ 1 + 5 3 3 a n d Yo = T3d-
Let us find LQ optimal control sequence assuming the inputs are known v steps in 
advance, v = 0, 1, 2, 3, alternatively and ip = <p = 1. 

At first we determine 

f 1 
W = Wr-Yn-V=- = r ° h ( l - d ) l + 0.5d)' 

ah = l, ha = 1 + 0 .5d=/i+, s = 1.618-0.618d and p = 1. 

1. For i/ = 0 (control without anticipation) we have bj = b = d and /& = / = 1, 
the mindeg z solution of the equation (4.8) 

(-0.618 + 1.618 d) y + (1 - d) (1 + 0.5 d) z = 1 

is y = 0.58 + 0.42d and z = 1.358. The optimal control sequence 

U = 0-58 +0-42 d = g rf rf2 ^3 

(1 + 0.5 d) (1.618-0.618 d) 

We can determine x = 1.618 + 0.42 d from the equation (4.9) 

(-0.618 + 1.618 d ) « - d ( l + 0.5 d)z= - 1 + d. 

Then the error sequence 

1.618 +0.42d 0.142d+ 0.174d2 + 0.007d3 + . . . 
(l + 0.5d) (1.618-0.618d) 

and the performance index d = 1.23. 
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2. For v = 1 we have bj = fb = 1, the equation (4.8) 

(-0.618 + 1.618 c?) y + (1 - d) (1 + 0.5 d) z = c? 

is solved by y = 0.84 + 0.16 c? and z — 0.519. Hence 

^ ( l + 0 . 5 ^ L 6 ^ 

the equation (4.9) 

(-0.618 + 1.618 d) x - (1 + Q.5d)z = - 1 + d 

yields x = 0.778. 
Then 

0 778 
E = w = 0.481 d - 0.057 c?2 + 0.099 d3 - 0.023 c?4 + . . . , 

(1 + 0.5 rf) (1-618- 0.618 d) ' 

and d = 0.53. 

3. Using v = 2 yields 6/ = 1, fb = d, the equation (4.8) 

(-0.618 + 1.618 rf) y + (1 - d) (1 + 0.5 d) z = d2 

is solved by y = 0.321 + 0.679c? and z = 0.198, the equation (4.9) 

(-0618 + 1.618 d) x - (1 + 0.5 G?) 2 = ( -1 + G?) c? 

gives x = -0.321 + 0.618 G?. 
Then 

U = - 0.321 +0.679 rf = 0.198 +0.396 G?-0.008 G?2 +0.077 G?3 + . . . , 
(1 + 0 .5G?) (1 .618 -0 .618G>) ' 

E = - ( : f j ! ^ f ^ f i f Q ^ = - 0 . 1 9 8 d + 0 . 4 0 5 ^ - 0 . 0 8 6 ^ + . . . 
(1 + 0.5G?) (1 .618-0.618G?) 

and tf = 0.42. 

4. Finally for *v = 3 we get 6/ = 1, fb = d2, the equation (4.8) is solved by 
y = 0.123 + 0.259c?+ 0.618c?2 and z = 0.076. Then x = - 0 . 1 2 3 - 0 .382G?+ 0.618G?2, 

V - , ? 12n ^ V 2 f ! f a
+ ^ l = 0-076 + 0-151 - + 0-378 d» - 0.016 * + . • •, (1 + 0.5 G?) (1.618 -0 .618 c?) 

£ = ( ^ 3 - 0 ^ 8 2 ^ _ _ « ^ i _ _ 

(1 + 0.5 c?) (1.618 -0.618c?) 

and tf = 0.41. 
The theoretical minimum for v —> oo is 

tfл = ( , . . . . , . „ , . ,w „.„ ,ч > = 0.405 
1_ 

(1 + 0.5 c?"1) (1 + 0.5 G?) (1.618~- 0.618 c?-1) (1.618 - 0.618 c?) 

(Received October 8, 1992.) 
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