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KYBERNETIKA — VOLUME 12 (1976), NUMBER 5 

The Linear Filtration and Prediction 
of Indirectly Observed Random Processes 

FRANTISEK STULAJTER 

The RKHS methods are used to develop the theory of estimation of indirectly observed random 
processes. On the basis of this theory the comparison of Kalman-Bucy's and Parzen's methods 
of filtration is performed. 

1. INTRODUCTION 

The theory of linear estimation of random variables, especially the theory of linear 
filtration and prediction of random processes in the past few years has been developed 
in two main directions. There exists Parzen's theory [8; 9] based on the RKHS 
methods and the theory of Kalman and Bucy [5] based on stochastic differential 
equations. 

The aim of this paper is to develop on the basis of Parzen's theory the theory 
of linear filtration and prediction of indirectly observed random processes and then 
to compare Parzen's and Kalman-Bucy's methods of linear filtration. As we shall 
show in section 5, Kalman-Bucy's treatment of the problem may be regarded as 
a special case of Parzen's methods applied to indirectly observed random processes. 

Let Y = {Y(t), te T}, where Tis a closed interval on the real line be a random 
process defined on the probability space (Q,S, P) such that E,„ Y(t) — m(t); te T 
and RY(s, t) = Cov {Y(s), Y(t)}; s,teT exist. It is further assumed that m(') e M, 
where M is a given set containing m m 0. Let L2{Y(t), t e T} be a subspace of the 
Hilbert space L2(Q, S, P) spanned by the random variables {Y(t), t e T} with the 
inner product (U, V) = E0(U. V). 

Let Z be a random variable with the finite dispersion D2Z and denote by EmZ; 
m e M the mean value of Z. 

Definition 1.1. We say that the random variable Z is linearly unbiased estimable 
(from observations of the random process Y) if there exists a random variable U e 



e L2{Y(t), t e T} such that EmU = EmZ for all m e M. We call the random variable U 
the linear unbiased estimate (LUE) of the random variable Z. Our aim is to find 
(if it exists) the best linear unbiased estimate (BLUE) Z of the random variable Z, 
minimizing the mean square error of estimation E0[Z — Z] 2 . 

2. PRELIMINARIES REGARDING HILBERT SPACES 

As it is well known, the Hilbert space methods have a great importance in the 
theory of linear estimation. The aim of this section is to present a short recapitulation 
of some basic properties of Hilbert spaces, especially the RKHS. 

Let K(-, •) be a symmetric, nonnegative definite real function, defined on a set 
E x E <= £ 2 . Then K(-, •) generates the unique Hilbert space denoted by H(K), 
having the following properties: 

i) the elements of H(K) are real function defined on E, 
ii) K(-,t)eH(K); teE, 

w)f(t)~<f,K(;t)y,feH(K), teE, 
where <•', •> is the inner product in H(K). For a detailed study of RKHS we refer 
to Aronszajn [ l ] . 

An isomorphism \j/ of the Hilbert space Hx with the inner product <•, •>! onto an 
Hilbert space H2 with the inner product < •, • >2 is a unitary operator, i.e. a one-to-one 
inner product preserving linear mapping of Hx onto H2: 

i) xjf : H. --=-% H2, 

ii) tfr(a/i + Mi) = « 1K/1) + P <K/a); «,Pe El;fuf2 e Hu 

i") <<K/i), Hf2)>2 = <Ji,hW, h,fz e II!-
We then say that Ht and H2 are isomorphic Hilbert spaces. 

Lemma 2.1. Let Hu H2 be two Hilbert spaces spanned by the sets Gt c H± and 
G2 cz H2 . Let \p be a one-to-one mapping of Gt onto G2 preserving the inner pro­
duct, i.t. 

<Hfi), Hfz)>2 = <fuf2>i ; A , / a 6 Gi • 

Then i/̂  is an isomorphism of H t onto H2 . 
The proof is given in [8]. 

Lemma 2.2. If the normed space X is reflexive, it is also weakly complete. 
The proof of this lemma may be found in [2]. 

3. GENERAL THEORY OF UNBIASED LINEAR ESTIMATION 

In this section we shall give a Hilbert space description of linear estimation fol­
lowing Parzen [8; 9], 



Let the observed random process Y = {Y(t), t e T} and the random variable Z 
have the properties described in section 1. 

The following lemmas are very important for the estimation theory. 

Lemma 3.1. Let the observed random process Y = {Y(t), t e T} have an unknown 
mean value function m(t) = EmX(t); te Tbelonging to a given subset M of H(RY), 
where Ry(-, •) is the known covariance function of the process Y Then there exists 
the mapping 

< Y - > : H ( R 7 ) - ^ > L 2 { y ( r ) , teT} 

with the following properties: 

i) <YRy(-,0> = Y(t); teT, 
ii) £m<Y g} = <m, a>H(Ry); meM, ge H(RY), 

iii) Cov {<Y g\ <Y h>} = (g, h>H(Ry); g, h e H(RY). 

Proof. Parzen [8; 9] or with greater detail in Pazman [10]. 

Lemma 3.2. Let Z be the random variable with a finite dispersion. Then for the 

function Qz(t) = Cov {Z, Y(t)}; t e T there holds: 

i)ez(-)sH(RY), 
ii) Cov {Z, <Y g}} - (QZ, g}H(RY); g e H(RY). 

Proof. Parzen [8; 9]. 
According to Lemma 3.1 we may reformulate definition IT as follows. 

Definition 3.1. The random variable Z with the finite dispersion D2Z is estimable 
iff there exists g e H(RY) such that 

Em<Y g} = <m , g} = EmZ for all meM . 

Remark. If we denote by fz(m) = EmZ; meM, then Z is estimable iffjz(-) is a con­
tinuous linear functional on M — the subspace of H(RY) spanned by the elements of 
the set M <= H(RY). 

The well-known theorem on linear estimation, the proof of which may be found 
in [8; 9] is the following: 

Theorem 3.1. Let Y = {Y(t); t e T} is an observed random process with Em Y(t) — 
= m(t); teT, where m(')eM <= H(RY). Let Z be an estimable random variable 
with a known finite dispersion and with the known function Qz(t) = Cov {Z, Y(f)}; 
t e T. Then there exists the BLUE Z of Z, 

Z = <Y,ez> + < Y E * [ z - e z | M ] > , 

where z e H(RY) is any element such that/ z(m) = <m, z>H(Ry); meM and £*[• | M] 
is the projection in H(RY) on the subspace M of H(RY). For the mean square error 



of estimation we have: 

E[Z - Z ] 2 = D^Z - | M | 2
H ( R r ) + \\E*[z - Qz | M]|2H(Rv) • 

We shall now apply this general theory to the problems of the linear filtration and 
prediction with filtration of indirectly observed random processes. 

4. LINEAR ESTIMATION OF INDIRECTLY OBSERVED 
RANDOM PROCESSES 

Now we shall study the problems of linear filtration and the problems of prediction 
with filtration for the model of the indirectly observed random process X = {X(t), 
teT}. Let 

(4.1) Y = |Y(t) = f a(t, s) X(s) ds + Z(t); t e T \ 

be the observed random process. It is assumed that the covariance functions Rx(', ') 
and Rz(-, •) of the independent random processes X and Z exist and are known. Let 
EmX(t) = m(t); teT, m(-)eM, M c H(RX) and E Z(t) = 0; teT. From obser­
vations of the process Y we have to find (if it exists) the BLUE of X(t0) for t0 e T 
(filtration) and for t0£ T (prediction with filtration). 

Let for the function a(-, •) defined on T x T 

dt ds < GO hold . (4.2) j r j r
a 2 ( S ' 0 

Let for Rx(% •) the relation (4.2) be also true. From the above assumptions we have: 
for all m e M the mean value function n(-) and the covariance function RY(', •) of 
the random process Y exist and 

(4.3) Em Y(t) = n(t) = I a(t, s) m(s) ds ; te T, 

(4.4) RY(s, t) = a(s, u) Rx(u, v) a(v, t) dw dv + Rz(s, t) ; s,teT. 
JTJT 

Rx(', ') is the kernel of the integral operator, say RA-, defined on the space L2(t) = 
= {f('):f:T-*E\\Tf\t)dt<a>}by 

(4.5) Rxf(t) = [ Rx(t, s)f(s) ds; teT, feL2(T) 

with a range in L2(T). Let A be the integral operator defined on L2(T) by (4.5) with 
the kernel a(., .). 



320 We will show now that for the integral operator Ry, defined by (4.5) with the 

covariance kernel RY,(s, t) = Cov {Y'(s), Y'(t)}; s, te T of the process 

(4.6) T = jY'(t) - f a(t, s)X(s) ds; t e Tl 

(4.7) Rr, = ARXA* holds , 

A* being the adjoint of A. Indeed: letje L2(T), then from (4.4) we have: 

Rr,f(t) = J Ry,(t, s)f(s) ds = J J I a(s, u) Rx(u, v) a(t, v)f(s) du dv ds . 

On the other hand from the definition of ARXA* we have: 

ARxA*f(t) = ARxj a*(; s)j(s)ds(0 = AR* f a(s, -)f(s)ds(t) = 

= A f Rx(; u) f a(s, u)f(s) ds du(t) = 

= a(t, v) Rx(u, v) j a(s, u)f(s) ds dv du = Ry-j(t) . 

For the generating function Ry.(s t); teT of the Hilbert space H(RY.) using (4.7) 
we may write: 

(4.8) Ry.(% t) = j a(; u) f R^M, v) a(t, v) du dv = A «,(•) ; teT, 

where 

(4.9) g,(u) = Rx(u, v) a(t, v) dv = Rx a(t, -)(u); ueT; teT. 

Let G = {#,(•); t e T}. We will show that G c H(RX) and for all s, t e T 

(4.10) <as, gt>H(RX) = Rr(s> 0 = <M'> s)> RA-> ')>*(**') = 

= <Aas, AgtyH{Ry,y holds . 

Indeed: let t e T; then g,(u) = lim £ Rx(t>„ «) a(r, uf) (t)j+1 - Df) = lim gnt(u) for 

all M 6 T, where <?„,,(•) e H(RX); « = 1, 2,. . {g „,,}%= i is a Cauchy sequence in H(RX): 

Ik"! - t7-«|fl(Jtx) - I -ft »i) o(t> *>j) Rx(v» VJ) • 
>,j=i 



• (fi+i - »i) ("i+i - Vj) + . I a(t, ut) a(t, uj) Rx(uh u.) . 

• («,+1 - ",-) ("j+1 - «/) ~ 2 £ £ a(., p,) a(t, «,) R^t,., Mj.) . 

i = l j =1 
• (»i+i - vt) (uj+1 - uj) ^ £ 0 , 

and so it converges to the function ht(-)eH(Rx). Further \g„t(u) - ht(u)\ = 
= \<9»t - K Rx(', ")>H(KX)| = \Rx(', ") | |H(R X )- |lJ, - 0n,|U(Rx) for all u e T and 
ht(-) = lim g„t(-) = «,(•) e Ji(RA) for all / e T Next, for all s, t e T 

<gs, 9t}H(Rx) = 1™ <9ns, flm(>fl(J?x) = 

= a(s, u) RY(u, u) a(t, v) du dv = RY(s, t) 

and we have proved (4.10). Let HG be the subspace of H(RX) spanned by the elements 
of the set G <r H(RX). According to Lemma 2.1 we have: 

Lemma 4.1. H(Rr)' — AHG. The integral operator A defined by (4.5) is an isomor­
phism of HG onto H(RY)-

Solving the problem of linear estimation of the random variable X(t0) for t0 e T 
(or for t0 4 T), we have to distinguish the two important cases: 

(4.11) HG = H(RX) and 

(4.12) HG * H(RX). 

(4.11) is true if the integral operator A : H(RX) •—-* H(RY) (see Lemma 4.2 bellow) 
has its inverse: Ag = 0 iff g = 0; g e H(RX). 

Let us first examine the case (4.11). The random variable X(t0), t0eTis estimable 
from observations of the process Y given by (4.1). Indeed: let N = AM; then 
JY <= H(RY) and (as shown in Aronszajn [1]) N <=. H(Ry). We have to show that 
ft0(n) = E„X(t0) = EAmX(t0) — m(t0) is a linear continuous functional on the 
subspace N of H(RY) : m(t0) = ft0(n) = <Am, hto)H(RY) for all meM and some 
hto e H(RY). Since neN implies n e H(RY) the following relations are true: 

(4.13) n(t) = <n, Rr(-, O W o = <*, Ry(', t)>H(Ry) 

and from this we may conclude: to any g e L{R r(% t); t e T} there exists an h e 

e L{RY(% t); t e T} such that 

(4.14) <n, o>H(Ry,) = <n, h)H(RY). 



The following equalities are obvious: 

j(0(n) = m(f0) = <m, Rx(-, t0)}H(Rx) = {Am, ARX(-, t0)>H(Ry.) = 

= <«, ARX(-, t0)>H(Ry,) = lim <n, ak>H(Ry,) = lim <«, hfc>H(Ry), 
fc-00 fc-00 

where gk e L{RY{-, t); t e T}; k = 1,2, ... are such that 

im 11^ — ARX(-, t0)|H(Ry.) = 0 (we have used (4.14)). Therefore, applying Lemma 
fc-»oo 

2.2, we obtain that the Cauchy sequence {ftjijl 1 weakly converges in H(RY) to some 
ht0 e H(RY), and so we have 

(4-15) jro(") = m(lo) = I™ <». «fc>H(Ry) = <", "(o>H(Ry) 
fc-00 

for all n e JV and the random variable X(t0), t0 e T is estimable. The BLUE is of the 
form 

(4.16) X(t0) = <Y, Qt0} + <Y EH(Rr)[n(0 - <?,„ | !V]> , t0 e T, 

where 8t0(t) = Cov {Y(f), X(t0)} = ARX(-, t0) (t); t e T. 

Now we shall look for the BLUE of the random variable X(t0), t0eTfor the 
regression model. It will be assumed that M = M is the of all linear combinations 
of q known linearly independent functions q>i('), ..., <pq(') e H(RX). Then for all t 

« 
in Tand for t0 e T also m(t) =Y,Pt <P;(t) f ° r some coefficients f$u ..., /?,. In this 

case j(0(n) = m(t0) = <Am, h(0>H(Ry), where htoeN = AM c H(Ry). Indeed: let 
4 

h(0 = £ a^j . , where i/'y = A<Pj-; j = 1, 2, ..., <?. Then for the vector /? = (Blt..., Pq)' 
J = I 

we have the condition: 

m(t0) =t'Pi Vfro) = <tPi U-\ t «J H')URT) 
; = 1 >=1 j = l 

for all P = (Px, ..., Pq)'. This condition may be written in the form 

cp(t0) = F a , 

where cp(t0) ='(<jo1(t0)5 •••, <P«(to))' and F is the matrix F = ||<</'(«^;>H(RV)|(>;=J.. 

From this we have for ht0(')\ 

ht0(t) = cp'(t0) F ; 1 *(t), where +(t) = ( ^ ( t ) , . . . , U*))' • 

Qta(t) = ARX(-, to) (t) and Q*0 = E*H(RYlQt0 \ N] = 

= (ARx(-,t0),ij,yHiRY)F-1<t,(t). 

Using Theorem 3.1 we have proved the following: 



Theorem 4.1. Let us observe the process Y given by (4.1) and let (4.H) hold. Then 
for the random variable X(t0), t0 e Tthe BLUE X(t0) exists and is given by (4.16). 
For the regression model of the mean value of X the BLUE X(t0) of X(t0) exists 
for t0 e Tand t0 $ Tand X(t0) is given by 

(4.17) X(t0) = <Y ARX(; t0)> + (cp(t0) - <ARX(; t0), *>H(RY))' ¥~\Y, ip> . 

For the mean square error of the estimation we have 

(4.18) E[X(t0) - X(t0)Y = D2 X(t0) - \\ARX(; t0)\\\iRr) + 

+ (<p(t0) - (ARX(; t0), ^>mRr))' F - X t o ) ~ <ARX(; t0), ip>mRr)) . 

From the point of view of the calculation of X(t0), the finite dimensional approxi­
mation X„(t0) of ^ ( t 0 ) is very important. We may calculate X„(t0) from the data 
given by the random vector Y„ = (Y(ti), . . . , Y(t„))'; tte T, i — 1, 2,..., n according 
to the formula (in the case of the regression model) 

(4.19) X„(t0) = A Rx(t0)' (ARXA* + R z)* Y„ + 

+ [cp'(t0) - A Rx(t0)' (ARXA* + RZ)*T*] . [T(ARXA* + R ^ * ^ * ] " 1 . 

.T(ARXA* + R2)* Y„, 

where ARXA* is the symbol for the matrix \ARxA*(tu tj)||"j=i, Rz = \Rz{h r/)||",i-i 
and # is used for denotation of the generalized inverse of a matrix, ARx(t0) = 
= (ARX(; t0)(tl), ..., ARX(; t0)(tn))' and 

\^l(h),--;^l(t„) 
T = 

фq(h),...,фq(t„) 

It is proved in [11] that for RY(', ') continuous by some conditions on tt e T; i = 
= 1, 2, ..., n lim E[X„(t0) - X(t0)f = 0. 

Now we shall investigate the second important case of the problem of linear 
estimation of the indirectly observed random process X, namely the case (4.12) 
when HG + H(RX). HG is now a proper subspace of H(RX). From the projection 
theorem we have for all g e H(RX) :g. = g* + (g- g*), where g* = E%(Rx)[g \ HG~]. 
In the following we need the following lemma: 

Lemma 4.2. Ag = 0; g e H(Rx) iff g 1 HG. 

P r o o f : Is evident from the following equalities: 

Ag(t) = a(t, s)g(s)ds = a(t, s) (g, Rx(; s)>H(Rx) ds = 

= (g, f a(t, s) Rx(; s) ds) = (g, gt>H(Rx) for all t e T. 



From this Lemma we have: Ag = Ag* for all g e H(RX) and 

'"(to) = <m, Rx(-, t0))H(Rx) = 

- <m*, R*(-, t0))HiRx) + <m - m*, Rx(-, t0) - Rx(-, t0)>H(Rx) = 

= {Am*, AR*(-, f0)>HWy,) + <m - m*, Rx(-, f0) - R*(-, t0)>H(Rx) = 

= {Am, ht0)H(RY) + <m - m*, Rx(-, t0) - Rx(-, t0)>H(Rx) ; t0 e T 

and we see that the random variable X(t0), t0eT may not have a linear unbiased 
estimate, because <m — m*,Rx(-, t0) — Rx(', t0))H(Rx) is not a continuous linear 
functional on N if M 4- i?G. By Theorem 3A and from the decomposition Rx(% t) = 
= R*(-, 0 + (Rx(-, 0 - Rx(-, 0) we have: 

x(t) = <x, *K'. 0> + <*= «*(*, 0 - **(•> 0> = **(0 + (x(0 - **(0) 

for all * e T. The random variable Z*(f0), f0 e Thas the BLUE, because Em X*(t) = 
= m*(t0) = <m*, Rx(-, t0)>H(Rx) = (Am*, ht0)H(RY) is a continuous linear function­
al on N c H(Rr) and Cov {Z*(r0), Y(t)} = <ARX(-, t0), Rr(-, f)>H(Ry) -
= ARX(-, t^)(t) = Cov {X(t0), Y(t)}. The random variable X(t0) - X*(t0), t0eT 
has not a linear unbiased estimate, since Cov {X(t0) - X*(f0), Y(f)} = 0 ; teT 
and its mean value function m(t) — m*(t); t e Tis not a linear continuous functional 
on N. Thus from Theorem 3.1 we have: 

Theorem 4.2. If we observe the random process Y given by (4.1) and if (4.12) is 
true, then the random variable X(t0), t0 e Thas not in general LUE. The best linear 
estimate X*(t0) of the random variable X(t0), t e Tis given by 

(4.20) X*(t0) = <Y ARX(-, t0))H(RY) + <Y E*H(Ry)[hto - ARX(-, t0) \ N]) , 

(4.21) EmX*(t0) = m*(t0) 

and 

(4.22) Em[X(t0) - X*(t0)Y = D 2 ^ 0 ) - \\ARX(-, *0)||
2

H(Ky) + 

+ \\E*(Rr)[ht0 - ARX(-, t0) | W]|H(Ry) + \m(t0) - m*(t0f holds . 

Proof: It is necessary to prove (4.22) only. But by Lemmas 3.1 and 3.2 

Em[X(t0) - X*(t0)Y = D2X(t0) + Em[X*(t0) - m*(t0)Y - ' 

- 2 Em[X(t0) - m(t0J] [X*(t0) - m*(t0)] + \m(t0) - m*(t0f = 

= D2 X(t0) + \\ARX(; t0) + E*H(RY)[ht0 - ARX(; t0) | JV]|2(Ry) -

- 2<ARX(-, t0), ARX(-, t0) + E*H(RY)[hto - ARX(-, t0) | N])B(RY) + 

+ \m(t0) - m*(t0f . 



Remark. If (4.12) holds, but if M <= HG, then the estimate given by (4.20) is the 325 
BLUE. If M * HG, we see from (4.21) that the BLE of X(t0), t0 e Tis not unbiased; 
its bias is equal to \m(t0) — m*(t0)\ and the mean square error of estimation is 
given by (4.22). The value \m(t0) - m*(t0)\ of the bias is not linearly estimable from 
observations of the random process Y. 

5. COMPARISON OF KALMAN-BUCY'S AND PARZEN'S METHODS 
OF LINEAR FILTRATION 

First of all we shall now briefly explain the Kalman-Bucy method of filtration 
following the book of Lipcer and Shirjajev [7]. Let (X, Y) be a two-dimensional 
Gaussian random process defined for t e [0, T] ; (X, Y) fulfils the stochastic differen­
tial equations 

(5.1) dX(t) = a(t) X(t) dt + b(t) dWx(t) and 

(5.2) dY(f) = A(t) X(t) dt + B(t) dW2(t); t e [0, T] . 

Wt, W2 are independent Wiener processes. For the deterministic functions a(-), 
A('),b(') and B(') it is assumed that 

| \a(t)\ dt < oo , J b2(t) dt < oo , | \A(t)\ dt < oo , | B2(t) dt < oo . 
Jo Jo Jo J o 

Equaiion (5.1) has one continuous solution given by 

(5.3) X(t) = exp j f a(u) du\ lx0 + f exp j - ! a(u) du\ b(s) d^(s)~ | ; 

0 < t < T 

and the equation (5.2) may be written in the form 

(5.4) Y(f) = Y0 + j A(s)X(s) ds + j B(s) dW2(s) ; 0<t<T. 

The aim is, on the basis of observations of the process Y0 = {Y(s), 0 < s < t) 
to find the BLUE of the random variable X(t); t e [0, T] . Kalman and Bucy [5] 
proved that if f£A2(f)df < °o; B2(t) ^ c > 0; 0 ^ t < T, then the BLUE X(t) 
exists and they derived a stochastic differential equation for X(t). We now show that 
the model given by Kalman and Bucy is a special case of ours modified a little the 
theory of linear estimation of the indirectly observed random process X. 

Let t e [0, T] be fixed. Denote by R'x(-, •) the restriction of the function Rx(', ' ) 
defined on [0, T ] x [0, T] on [0, t] x [0, {]. Then R'x(-, •) is a symmetric, non-
negative definite function generating H(RX). 



From (5.3) we have: 

(5.5) m'(s) = EX(s) = EX0 . exp | | a(u) dul ; O ^ s ^ / and 

(5.6) R'x(su s2) = exp | a(u) du + j a(u)du . 

. \D2X0 + I*' 'exp j - 2 f(fl») dv\ b2(u) du l ; 

If D2JSC0 > 0, then m'(-) = (EX0\D
2X0)Rx(-,<S)eH(Rx). If D2AT0 = 0 and if 

EX0 4= 0, then m'(-) $ H(R'X), because m(0) #= 0 and /.(•) e H(R'X) implies h(0) = 0 
for R'x given by (5.6). But if D2X0 = 0, X(t) = m'(t) + V(t) according to (5.3), 
where m'(-) is the known deterministic function and only 

V(t) = exp j | a(u) dul | exp j - | a(u) dul b(v) dW^v) 

have to be estimated from Y0. 
Now let us correct the theory of the section 4 to fit it with the Kalman-Bucy model. 

From (5.4) we get the form of the covariance function of the random process 

ү£ = JY(S) = ľ A(u) X(u) ău; 0 й s = tj 

R'ү(si, s2) = Г A(u) Rx(u, v) A(v) du dv = A gSí(s2). 

where gs(u) = J0 Rx(u, v) A(v) dv; 0 = u ^ t and the operator A is now defined 
on L2(0, t) by Af(s) = J0 A(u)f(u) du; 0 ^ s ^ f. Let H^ °e the subspace of H(R'X) 
spanned by the elements of the set G' = {gs(')', 0 ^ s ^ t}. Now for the BLUE 
X(t) ofX(t); t e [0, T] we may use Theorem 4.1 or 4.2, because the results of section 4 
are valid (with obvious modifications caused by the other definition of the operator A). 

Remark 1. The Parzen method of calculation of BLUE has not a "recursive" 
form by altering / e [0, T~\. 

Remark 2. If D2X0 > 0, it is possible to apply Theorem 4.1 to the .case when 
EX(0) is unknown, too: indeed, from (5.5) we see that M' — the space of the mean 
value functions of X'0 = {X(s); 0 = s = t} is a one-dimensional subspace of H(R'X) 
spanned by the function m'(s) = exp (J0 a(u) du); 0 g s.:_ t. The operator A is 
one-to-one on M' if A -£ 0. The last fact follows from the definition of the operator 
given in this section and from the fact that m'(s) > 0; 0 ^ s = t. 

(Received December 29, 1975.) 
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