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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 2 

VARIABLE METRIC METHODS FOR A CLASS 
OF EXTENDED CONIC FUNCTIONS 

LADISLAV LUKSAN 

The paper contains a description and an analysis of two variable metric algorithms for un­
constrained minimization which find a minimum of an extended conic function after a finite 
number of steps provided it is possible to compute the derivatives of the model function at an 
arbitrary point x e R„. Moreover, the developed theory is applied to a special class of the exponent­
i a l type of extended conic functions. 

1. INTRODUCTION 

Consider the objective function of the form 

(1-1) F(x) = <p(F(x),l(x)) 

where F: R„ -* R is a quadratic function with the constant positive definite Hessian 
matrix G and I :R„ -> R is a linear function with the constant gradient c, both defined 
in the n-dimensional vector space R„. Define 

(1.2) 

a(x) -. MF(x)> '(*)) 
dF 

. = d(p(F(x),l(x)) 

di 

and suppose that <j(x) > 0 for all x e R„. The function (1.1) generalizes a class of so 
called conic functions which were introduced by Bjorstad and Nocedal [1] for line 
search and by Davidon [3] and Sorensen [6] who used them for the construction of 
a new class of the variable metric methods for unconstrained minimization. 

In this paper, we are proposing new modifications of the variable metric methods 
which minimize extended conic functions of the form (1.1) after a finite number of 
steps provided it is possible to compute the values a(x) and x(x) at an arbitrary point 
x e R„. We use the single linear constraint technique instead of the collinear scaling 
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which has been used in [3] and [6]. Section 2 is devoted to the derivation and analysis 
of the basic variable metric methods for extended conic functions. It also contains 
a detailed description of a new algorithm. Section 3 is devoted to the investigation 
of modification of the quasi-Newton methods without projections which were intro­
duced in [4]. Finally, Section 4 concerns with the special class of extended conic 
functions for which the values a(x) and T(X) can be computed at an arbitrary point 
x e R „ . 

We suppose throughout this paper that the function (IT) has a unique critical 
point which is its minimizer. Some details about this problem are studied in Section 4. 

2. BASIC VARIABLE METRIC METHODS 

Consider the extended conic function (1.1). In order to simplify the notation, 
we omit the parameter x. We denote by F, g, G and F, g, G the value, the gradient 
and the Hessian matrix of the function F(x) and E(x) respectively at the point x e R„. 
Furthermore we denote by / and c the value and the gradient of the function l(x). 

Using (1.1) we get the following formulae 

f F = cp(F, 1) 
(2-1) 

(. g = ag + xc 

where a = d(pj8F and T = dcpjdl with a > 0. The vector c that appears in (2.1) 
can be determined from the values F, Fu F2 and the gradients g, gu g2 computed 
at three different points x, xx = x + cqs, x2 = X + oc2s by the formula 

(2.2) 

which has been proved in [5]. 

The variable metric methods for minimizing extended conic functions are based 
on the iterative scheme 

(2.3) X i + 1 = X; + KjSj , 

ieN = {1, 2, . . . } , where st is a direction vector and at is a steplength. We assume, 
in this section, that the steplengths are chosen by the perfect line searches, so that 

(2.4) sjgi+l = 0 

for / e N. The following lemma is essential for conjugate direction methods. 

Lemma 2.1. Let F: R„ .-* R be an extended conic function. Consider the iterative 
scheme (2.3) and (2.4). Let the direction vectors satisfy the conditions sT(js- = 0 

97 

- - « , - - - - - - 0S 



for 1 = i < j = k and sTc = 0 for 1 = i < k with k = n. Then 

(2.5) sTgk + 1 = 0 

for 1 < i <. k. 

Proof. See [5], proof of Lemma 3.1. • 
Lemma 2.1 shows that the conjugate directions have to be generated in such a way 

that first n — 1 of them lie in the subspace which is orthogonal to the vector c. 

Then sjg„+1 = 0 for 1 = i = n. If, in addition, s ; + 0 for 1 = i = n then gn+1 = 0 

and, consequently, xn + 1 is a minimizer of the extended conic function F(x). 

The next theorem gives the possibility of determining a set of mutually conjugate 

directions with desired properties. 

Theorem 2.1. Let F: R„ -> R be an extended conic function. Consider the iterative 

scheme (2.3) and (2.4) where 

1 / „ Hxc^H, 

(2.6) 

Define 

(2.7) 

-» = - - Я , -

for 1 = i < n and 
1 

crHiC 

9i 

s„= Я„đ„ . 

di = Xi+i — *i = <Xtsi 
and 

УІ = 9І+I ~ 9t = 
9І+I 9І i+l 

tf;+i 

for 1 <. i < n. Let H1 be an arbitrary symmetric positive definite matrix of order n 

and let 

(2.8) Hi+1 = Я І + UІA^U] 

for 1 <. i < n, where U( is the n x 2 matrix which has the columns dt and H,-yt 

and A; is a 2 x 2 symmetric matrix which is chosen in such a way that Hi+1 is positive 

definite and 

(2.9) Hi+1yi = di. 

Then the direction vectors s;, 1 = i = ware nonzero and mutually conjugate provided 

gt is not parallel to the vector c for 1 — i < n and gn *- 0 (regular case). Moreover, 

dTc = 0 and H„yt = dt for 1 = i < n in the regular case. 

Proof. We prove this theorem by induction. Suppose that dk +- 0 and dTc == 0 

and, moreover, dTGdk = 0 and Hkyt = d{ for 1 = i < k where k < n. It certainly 

holds for k = 1 provided gt is not parallel to the vector c. 

(a) The equality Hk+1yk = dk follows from (2.9). Furthermore 

Hk+Ji = HJi + UkAkU
T

kyi = HJi = dt 



for 1 _ i < k since HJi = d„ dTyt = dT

kGdi = 0 and yTHJi = }~Td; = 
= dTGdi = 0 for 1 _ i < fc by the assumption. 

(b) The conditions dTgk + 1 = 0, 1 _ i _ fc follow from Lemma 2.1. 
(c) If k + 1 < n then using (2.6) and (a), (b) we get 

^ + А Т

+ 1 с = ^ # ^ - С стНк+1с - дт

к+1Нк+1с = 0 
c т Я f c + 1 i 

and 

„. „T ~ _ dk+lHk+lC T . T u ~ _ _ _ _ _ _ + _ £ T . T J _ 0 

ô fc+1sfc +1^i 77; c /-k+1>'j - gk+iHk+1yi — - c a . - fift+i«i - u 
cTHk+1c clHk + 1c 

for 1 _ i _ k so that dT
+1c = 0 and dT

+15rf; = ^T
+ 1y ; = 0 for 1 < i _ k. 

Moreover, sk + 1 4= 0 provided gk+1 is not parallel to the vector c. But sk + 1 4= 0 
implies gj+lsk+1 4= 0 by (2.6) so that ak+1 4= 0 and, therefore, dk + i 4= 0 in 
the regular case. 

(d) If k + 1 - n then gk + l is parallel to the vector c and, therefore, sT
k+1c 4= 0 

for gk+1 4= 0. Again sT
+1y ; = 0 for 1 _ i _ A; as well as in the case (c). Also 

9k + A+i 4= 0 for gk+1 4= 0 so that ak+1 4= 0 and dk+1 4= 0 in the regular case. 

D 
Combining (2.8) and (2.9) we get a one-parameter class of variable metric methods 

which was introduced by Broyden [2]. In this case 

c*o) ^ , H I + ̂ L-Mmi + 
yTdi ylHiyi 

^ ^ H ^ d i - H i y \ ( ^ d i - H i y i 
y]Hiyl \ yTdi ) \ PUt 

for 1 _ i < n, where 9 ; is a free parameter. Most frequently used formulae use the 
values S; = 0 (DFP method) or 9 ; = 1 (BFGS method). Note that 

dT
h = dT(--- - £l - flill - *JL)e)-«g*(Ht-ZgZ)gi > 0 

\ai + 1 Oi \ai + 1 aj ) at \ cTHtc ) 

for 1 _ i < n, in the regular case, which is a necessary assumption for the positive 
definiteness of the matrix (2.10). 

The following algorithm summarizes our results. 

Algorithm 2.1. 

Step 1: Determine an initial point x and compute the value E := E(x) and the 
gradient g : = g(x). Compute the values <r : = c(x) and T : = T(X) defined 
by (1-2). Determine an initial symmetric positive definite matrix H of order 
n (usually set H : = J, where J is the unit matrix of order n). Set k : = 0. 

Step 2: If the termination criteria are satisfied (for example if \g\ is sufficiently small) 
then stop. 
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Step 3: If k = 0 then determine the vector c by (2.2) where x, x t and x2 are three 
different points lying on a line. 

Step 4: Set k := k + 1. If fc < n then set 

, : . - f l fo / , ) + :qMHc 
c\ffc 

else set fc : = 0 and 5 : = — H(g]a). 

Step 5: Use a perfect line search procedure to determine the point x2 : = x + ot2s 
such that sT o(x2) = 0. Compute the value F 2 : = E(x2) and the gradient 
g2 := g(x2). Compute the values <r2 := a(x2) and x2 := t(x2) defined by 
(1.2). 

Step 6: If fc + 0 then set 
d := x-, — x 

and compute the matrix 

^:_H+_p__mt + j-(&ii-Hy\(qii-H, 
fd fHy fH;\fd ')\fd 

for a given value of the parameter 9. 

Step 7: Set x : = x2, F : = F2, g := g2,<r := <r2,x := x2, H : = H2 and go to Step 2. 
Theorem 2.1 shows that Algorithm 2.1 finds a minimum of the extended conic 

function F: R„ -> R after n perfect steps in the regular case. Now we are analyzing 
the singular case when gt is parallel to the vector c for some index i < n. If this is 
the case then xt is a minimizer of the extended conic function E(x) with the constraint 
l(x) = /,-. Therefore, it is also a minimizer of the quadratic function E(x) with the 
same constraint and we can use the following lemma. 

Lemma 2.2. Let F(x) be a quadratic function with positive definite Hessian matrix 
G. Let g{ = ^(x,), 1 __ i __ 3, be the gradients of the function E(x) at the points xt e R„, 
1 __ i __ 3. Then gh 1 __ i __ 3, are parallel only if xh 1 __ i __ 3 lie on a line. 

Proof. See [5], proof of Lemma 3.2. • 

Lemma 2.2 can be used in the singular case. Let gx = Xtc and g2 = X2c hold 
at two different points xx and x2 respectively. Then also gx = lxc and g2, = l2c 
hold for some coefficients lx and 12 respectively (see (2.1)). Let x3 be a minimizer 
of the extended conic function F: R„ -> R. Then g3 = 0 and, consequently, g3 = 
= l3c by (2.1). Therefore, using Lemma 2.2, we can write 

(2.11) x3 = x2 + a(x2 — Xj) 

for some steplength a. The points x t and x2 such that gt = XLc and g2 = X2c hold 
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can be obtained in two immediately consecutive cycles of Algorithm 2.L Therefore 
we can find a minimizer of the conic function in the second cycle by the special 
step (2.11). 

3. QUASI-NEWTON METHODS WITHOUT PROJECTIONS 

The variable metric methods described in the previous section minimize an 
extended conic function after a finite number of steps in case a perfect line search 
procedure is used in all steps. In this section, we generalize the quasi-Newton methods 
without projections, which were introduced in [4], in such a way that they find 
a minimum of an extended conic function after a finite number of steps using the 
perfect line search procedure in the last step only. 

Theorem 3.1. Let F: R„ -> R be an extended conic function. Consider the iterative 
scheme (2.3) where 

1 / H,ccTH, 

< 3 1 > *--7\E'—eE?)« 
for 1 | i < ». Define 

(3.2) vt = dt - Htyt 

for 1 < i < n, where dt and yt are vectors given by (2.7). Let H, be an arbitrary 
symmetric positive definite matrix of order n and u, = (l/tr,) Hxgv Let 

(3.3) Hi+X = Ht + VfiiV? 

and 

(3.4) u ; + , = (j/Tu;) ut - (yTu;) Vi 

for 1 ^ i < n, where V; is the n x 2 matrix which has the columns u ; and t>; and Bt 

is a 2 x 2 symmetric matrix which is chosen in such a way that Hi+l is positive 
definite and 

(3.5) Hl+Jt = dt. 

Then the direction vectors s;, 1 _» i < n are nonzero and linearly independent 
provided gt is not parallel to the vectors c and vt 4= 0 for 1 :£ ;' < n (regular case). 
Moreover, djc = 0, uTy ; = 0 and H„yt = dt for 1 <. i < n in the regular case. 
If ut is not parallel to u; for 1 ^ i < n then u„ # 0. 

Proof. We prove this theorem by induction. Suppose that uk # 0, dk #= 0 and 
d\c = 0 and, moreover, uTj5; = 0 and Hkyt = dt for 1 ^ i < k where fc < n. It 
certainly holds for /c = 1 provided #, is not parallel to the vector c and «. + 0. 
(a) We show that dt is not a linear combination of dt, I <. i < k. Suppose, on the 

contrary, that t _ , 
4 = 1 Wi 

101 



for some Xt, 1 _ i < k — 1. Then 

3\=3rf t = x\ ;Gd ; ^ A ^ 
i = l i = l 

and, therefore, |fc_1 

», - 4 - __>» = XA;(d; - Hfcy;) = 0 
;=i 

since Hkyt = d\- for 1 _ i < fc by assumption. But it is in contradiction to the 
assumption vk # 0. 

(b) The equality Hk+1yk = 4 follows from (3.5). Furthermore 

Hk+ih = H_5, + VkBkVlyt = H t ? ( = rf; 

for 1 _ i < k since HJ!, =• di; uTyt = 0 and cTy; = dTyt - yTHkyt - dTy ; — 
— j ^ d ; = 0 for 1 _ i < k by the assumption. 

(c) The equality uT
+1yk = 0 follows from (3.4). Furthermore 

"T+i3~i = (fkVk) uly>i - (yW) vlh = 0 

for 1 _ i < k since Hkyt = df, M[J^; = 0 and vTyt — dTv; - yT
kHkyi = dlyt — 

— yTd; = 0 for 1 _ i < k by the assumption. 
(d) If k + 1 < n then using (2.6) we get 

T _ _ _ _ _ j _ _ J r , _ T rr _ n 
«tk+ist+iC — c « t + 1 c — gk+1nk+1c — u 

cTHk + 1c 
Moreover sfc+1 + 0 and also dk+1 #= 0 if gk+1 is not parallel to the vector c 
and ufc+1 =1= 0. • 

Theorem 3.1 shows that the vectors s;, 1 _ i < n, generated by the formula (3.1), 
are nonzero and linearly independent in the regular case. Moreover, 

( 3 . 6 ) „.____. a-. _g-yf-. 
V cTH„c cTG_1c 
This equality can be easily verified by multiplying it by the linearly independent 
vectors Gsh 1 _ i _ n — 1 and c Using (3.6), we can find a minimizer of both 
the quadratic function F(x) and the extended conic function F(x) subject to the linear 
constraint l(x) = /„. It is given by the formula 

(3.7) xn+1 = x„ + s„ 

where 
,„ ON / r r HnccTHn\ _ 1 / „ HnccTHn\ 
3.8) s„ = - (H„ - - - - - - - fl„ = - - H„ - - * — - - )<-„ 

V cTiJ„c j ff„ V cTHnc j 
by (3.6) and (2.1). 

Since x„+ 1 is a minimizer of the quadratic function F(x) subject to the linear 
constraint l(x) = ln, we can write 
(3-9) dTgn+1 - 0 
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for 1 g i < n. Suppose now that un 4= 0 and set 

(3.10) xn+2 = xn+1 + ccn+1sn + 1 

where 

(3.U) 5n + 1 = un 

and where the steplength an+1 is chosen by the perfect line search procedure so that 

(3.12) uTgn+2 = 0 . 

Then 
(3.13) dTgn + 2 = cin+2d

Tgn + 2 = on + 2(d
Tgn + 1 + djyn+l) = 

= ff
n+2(t!79f

n+i + «n+1y]un) = 0 
for 1 <: i < n since dTgn+1 = 0 by (3.9) and yTu„ = 0 by Theorem 3.L Using both 
(3A2) and (3.13) we get gn+2 = 0 since the vectors dh 1 <. i ^ n — 1, and u„ are 
linearly independent. Therefore, xn + 1 is a minimizer of the extended conic function 
F(x). 

Combining (3.3), (3.4) and (3.5) we get a one parameter class of quasi-Newton 
methods without projections. In this case 

(3.14) Hi+i = Ht + -^(vtf - <p,ut+1uj+1) 
yivt 

for 1 ^ i < n, where (pt is a free parameter. Setting cp; = 0, we get the rank-one 
formula. More details about the choice of the parameter (p are given in [4]. Note 
that (3.14) is defined only in the case when yTvt + 0. This is a stronger requirement 
than Vi 4= 0 which has been used in Theorem 4.1. 

The following algorithm summarizes above results. 

Algorithm 3.1. 

Step 1: Determine an initial point x and compute the value F : = F(x) and the 
gradient g : = g(x). Compute the values a : = a(x) and x : = i(x) defined 
by (1.2) Determine an initial symmetric positive definite matrix H of order n 
(usually set H: = I, where I is the unit matrix of order n) and set u : = H(gjo). 
Determine the vector c by (2.2) where x, xt and x2 are three different points 
lying on a line. Set k : = 0. 

Step 2: If the termination criteria are satisfied (for example if \\g\\ is sufficiently 
small) then stop. 

Step 3: Set k : = k + 1. If k ^ n then set 

f!(g/g) s:=-H(gj.) + ^ ^ H c 
cT Hc 

and go to Step 4 else set k := 0, s := — sgn (gTu) u, u := H(a/<r) and go 
to Step 6. 
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Step 4: Use an imperfect line search procedure to determine the point x2 : = x + a2s 
such that E(x2) < E(x). Compute the value E2 := E(x2) and the gradient 
g2 : = g(x2). Compute the values a2 : = a(x2) and T2 : = T(x2) defined by (1.2). 

Step 5: If k < n then set 
v := x2 — x — Hy 

y := £* - I - (x.l _ _ 
a2 a \a2 

and compute 
«2 := (fv)u - (fu)v 

H2 := H H — (vvr — (pu2u
r) 

yrv 
for a given value of the parameter <p. Go to Step 7. 

Step 6: Use a perfect line search procedure to determine two points xt := x + oc{s 
and x2 : = x + a2s such that sT g(x2) = 0. Compute the values E1 : — 
:= E(x,),E2 := E(x2) and the gradients gt := g(x1), g2 := g(x2). Compute 
the values a1 := a(xt),a2 := a(x2) and xt := t(x1), T2 := T(x2) defined 
by (1.2). Determine the vector c by (2.2). 

Step 7: Set x := x2, E := E2, g := g2, a := a2, T := T2, U := M2, H := / / 2 and 
go to Step 2. 

Theorem 3.1 shows that Algorithm 3.1 finds a minimum of the extended conic 
function E: R„ -* R after n imperfect steps and one perfect step in the regular case. 
Note that the condition for positive definiteness of the matrix (3.14) is not satisfied 
in general (see [4]). Therefore the statement s : = — sgn (grs) s could be added 
to Step 4 of the algorithm. 

4. A SPECIAL CLASS OF EXTENDED CONIC FUNCTIONS 

The most complicated problem associated with the extended conic functions of 
the form (1.1) is the determination of the values a2 = a(x + a2s)andT2 = T(x + a2s) 
from the values a = a(x) and x = T(x) respectively. In [5], it has been shown that 
considering the special class of extended conic functions, namely 

(4.1) E(x) = E(x)/"(x), 

we can set a2\a = (/2//)p and T2/T = (E2/E)/(/2//) where the ratio l2jl is determined 
by solving the equation 

(4.2) pF ( l * J + 2 _ ((2 + p)F + z2g
rs) ^jj*% 

+ ((2 + p)F2- a2g
rs) PA - pF2 = 0 

(we set / = 1 initially, which gives the initial values a = 1 and x = kF). 
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Now we are considering the objective function of the form 

(4.3) E(x) = E(x)exp(/(x)) 

defined in all Rn. Using (4.3) we get the following formulae 

E = E exp (/) 
(4.4) 

g = g exp (/) + Ec 

so that a2ja = exp (l2 — 1) and T2/T = E2/E Note that we can set / = 0 initially, 
which gives the initial values a = 1 and T = E. The following lemma gives the 
possibility of determining the difference 12 — I from the values E and E2 and the 
gradients g and g2 computed at two different points x and x2. 

Lemma 4.1. Let xe R„ and x2 = x + <x2s e Rn be two different points. Then the 
difference l2 — / is a solution of the equation 
(4.5) 
E(/2 - /) exp (l2 - 1) - (gTd + IF) exp (l2 - /) + E2(/2 - /) - (g\d - 2E2) = a 

where d = x2 — x = a2s. 

Proof. Using (4.4) we get 

E= l » 
exp(/) 

S = — 7 - (g - Fc) 

exp (/) 

Since the quadratic function has to satisfy the equality 

2(E2 - E) = Sid + gTd 

and since cTd = l2 — I, we get after substitution 

-2** ™- = -&- + ̂ d ^~ (i2 - i) - - - - - ( / . - o 
exp(/2) exp(/) exp(/2) exp (/) exp (/2) exp (/) 

which gives (4.5) after rearrangements. • 

Note that the equation (4.5) has a real solution l2 - 1 if EE2 > 0, which is usually 
satisfied for x2 sufficiently close to x. 

So far we have assumed that the extended conic function has a unique critical 
point which is its minimizer. Now, we are considering the case when the extended 
conic function has several critical points. Using Lemma 2.2, we can see that all 
critical points lie on a line. It is exactly the line which is determined both in Algorithm 
2.1 (Step 4 for k = n) and in Algorithm 3.1 (Step 3 for k = n + 1). If we use the 
global line search procedure in this case, we can find a global minimizer of the extend­
ed conic function. 

The following lemma shows some properties of critical points of the special 
extended conic function (4.3). 
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Lemma 4.2. Let x e R„ be a critical point of the function (4.3) and let G be the 
Hessian matrix of this function at the point x e R„. Then 

(4.6) G = & exp (I) - FccT . 

Let Xj e R„ and x2 e R„ be two different critical points of the function (4.3). Then 

(„) &.^i±i«- f t_,o. 
Proof. Let x e R„ be a critical point of the function (4.3). Using (4.4) we get 

g = gexp (I) + Fc = 0 
and 

G = G exp (/) + (#cT + cgr) exp (I) + EccT . 
Therefore 

E 
g = c 

exp (/) 
so that 

G = G exp (/) + f - 2 —^—• exp (/) + E ) ccT = G exp (/) - EccT . 
V exp (/) ) 

Let Xj e R„ and x2 e R„ be two different critical points of the function (4.3). Denote 
d = x2 — xt. Then crd = l2 — h and, using (4.4), we get 

g\d = grd exp (h) + F,(l2 - /.) = 0 

_f . rf- i? . . iexp(/ a) + F . ( / . - / 1 ) - 0 
Therefore 

flfTrf- - f i ( l . - l i ) , 

t^ r f - - E 2 ( / 2 - / x ) . 

Since the quadratic function has to satisfy the equality 

2(E2 - Ft) = fid + gjd 
we get 

2E2 - IF, = -E 2 ( / 2 - h) - /?.(/, - /,) 
which implies 

^ = ^ e x p ( / 2 - / 1 ) = J - ^ ± i i e x p ( / 2 - / 1 ) 
-*1 • ' l 2 + /2 - /. 

and the lemma is proved. • 

The same considerations as above can be applied to the function of the form 
(4.1). In this case we obtain 

(4.8) G = GlP-P±+A£ccr 
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and 

(49) f - (hY2 + p-p(hlh) 

F, \lj 2 + p - p{hjl2) 

instead of (4.6) and (4.7). Note that the expressions (4.6) and (4.8) indicate that 

functions (4.1) and (4.3) are useful especially when the minimal function value is 

less then zero. Note also that (4.9) implies F2JFl = 1 in case p = — 2. This is the 

result given in [3]. 
(Received January 31, 1984.) 
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