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KYBERNETIKA — VOLUME 2/ (1985), NUMBER 2

VARIABLE METRIC METHODS FOR A CLASS
OF EXTENDED CONIC FUNCTIONS

LADISLAV LUKSAN

The paper contains a description and an analysis of two variable metric algorithms for un-
constrained minimization which find a minimum of an extended conic function after a finite
number of steps provided it is possible to compute the derivatives of the model function at an
arbitrary point x € R,. Moreover, the developed theory is applied to a special class of the exponent-
tial type of extended conic functions.

1. INTRODUCTION

Consider the objective function of the form

8) F(x) = o(F(x), I(x))

where F: R, — R is a quadratic function with the constant positive definite Hessian
matrix G and [ :R, — R is a linear function with the constant gradient c, both defined
in the n-dimensional vector space R,. Define

o(x) = é(dli(a’\g" ! (x))

o 20, 1)
ox) = 2

and suppose that ¢(x) > 0 for all x € R,. The function (1.1) generalizes a class of so
called conic functions which were introduced by Bjerstad and Nocedal [1] for line
search and by Davidon [3] and Sorensen [6] who used them for the constraction of
a new class of the variable metric methods for unconstrained minimization.

In this paper, we are proposing new modifications of the variable metric methods
which minimize extended conic functions of the form (1.1) after a finite number of
steps provided it is possible to compute the values o(x) and 7(x) at an arbitrary point
x € R,. We use the single linear constraint technique instead of the collinear scaling

(12)
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which has been used in [3] and [6]. Section 2 is devoted to the derivation and analysis
of the basic variable metric methods for extended conic functions. It also contains
a detailed description of a new algorithm. Section 3 is devoted to the investigation
of modification of the quasi-Newton methods without projections which were intro-
duced in [4] Finally, Section 4 concerns with the special class of extended conic
functions for which the values o(x) and 7(x) can be computed at an arbitrary point
X €R,.

We suppose throughout this paper that the function (1.1) has a unique critical
‘point which is its minimizer. Some details about this problem are studied in Section 4.

2. BASIC YARIABLE METRIC METHODS

Consider the extended conic function (1.1). In order to simplify the notation,
we omit the parameter x. We denote by F, g, G and F, §, G the value, the gradient
and the Hessian matrix of the function F(x) and F(x) respectively at the point x € R,
Furthermore we denote by I and c the value and the gradient of the function I(x).

Using (1.1) we get the following formulae

F =o(F, )
(2.1) { ’

g = 0§ + 1c

where ¢ = 8p[/0F and t = dpdl with ¢ > 0. The vector ¢ that appears in (2.1)
can be determined from the values F, Fy, F, and the gradients g, g, g, computed
at three different points x, x; = x + 045, X, = X + a,s by the formula

9 _ 9 al_(@__g)az
g, G oy o
LS DU LTI P
(2 o oy [

The variable metric methods for minimizing extended conic functions are based
on the iterative scheme

(23) Xip1 = X; + %S,

(2.2) ¢ =

which has been proved in [5].

ieN = {1,2,...}, where s; is a direction vector and g is a steplength. We assume,
in this section, that the steplengths are chosen by the perfect line searches, so that

(2.4) 19141 =0
for i € N. The following lemma is essential for conjugate direction methods.

Lemma 2.1. Let F: R, — R be an extended conic function. Consider the jterative
scheme (2.3) and (2.4). Let the direction vectors satisfy the conditions s]Gs; = 0
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forl £i<j<kandsle=0forl £i < kwith k < n. Then

(2:5) Sigsr =0
fort £iZk
Proof. See [5], proof of Lemma 3.1. [}

Lemma 2.1 shows that the conjugate directions have to be generated in such a way
that first n — 1 of them lie in the subspace which is orthogonal to the vector c.
Then s7g,+; = 0for 1 £ i < n. If, in addition, s; # O for 1 < i < ntheng,,,; =0
and, consequently, X, ; is a minimizer of the extended conic function F(x).

The next theorem gives the possibility of determining a set of mutually conjugate
directions with desired properties.

Theorem 2.1. Let F: R, — R be an extended conic function. Consider the iterative:
scheme (2.3) and (2.4) where

1 Hice TH;
si=——(H; -
ai< c"Hie )gi
(2:6) for1 < i < nand
1
s, = ——Hyg,.
Define
dy = X1 — X; = 0;;
and
2 ) ) . .
fi=gi+1‘gi=g"ﬂ_&—(””+—l*—t>c
Civ1 O Oiv1  Op

for | £ i < n. Let H, be an arbitrary symmetric positive definite matrix of order n
and let

(2.8) Hiyy = H, + UAUT

for 1 < i < n, where U, is the n x 2 matrix which has the columns d; and H;¥;
and 4;is a2 x 2symmetric matrix which is chosen in such a way that H,, , is positive
definite and

(2‘9) HiJ: = di .

Then the direction vectors s;, 1 < i < nare nonzero and mutually conjugate provided
g, is not parallel to the vector ¢ for 1 £i < nand g, * 0 (regular case). Moreover,
dTc = 0 and H,; = d; for 1 £ i < nin the regular case.

Proof. We prove this theorem by induction. Suppose that d; + 0 and d,fc =0
and, moreover, d;Gd, = 0 and H,j, = d; for 1 < i < k where k < n. It certainly
holds for k = 1 provided g, is not parallel to the vector c.

(a) The equality Hy ., = dy follows from (2.9). Furthermore

Hyi§y = Hifi + UdUSp; = Hi, = d;
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for 1<i<k since H,j;=d,diy;, =dlGd, =0 and jIH,j, = jid, =
=d;Gd;, = 0 for 1 £ i < k by the assumption.

(b) The conditions digy+: = 0,1 S i £ k follow from Lemma 2.1.

(c) Ifk + 1 < n then using (2.6) and (a), (b) we get

giv1Hys 1€ H,

T =
T +1€ = Ggr1Hpore =0
e Hyyqc

T
Ok+15k+1C =
and

T
Hiiqc
EISSLLCES O PRy Y A

T

Jev1Hiv TH -
R A e TS R T
¢ Hyqc

T & _
Tk 1Sk+1Vi =~
c'Hyiqc

— i1 Her§i =
for 1 < i < k so that df,,c =0 and di. Gd; = di,§; =0 for 1 £i = k.
Moreover, s,;; + 0 provided g,,, is not parallel to the vector ¢. But 5,41 * 0
implies gy 541 %= 0 by (2.6) so that &y + O and, therefore, dy.y + 0 in
the regular case.
If k+ L =n then g,,, is parallel to the vector ¢ and, therefore, si, ¢ + 0
for gi41 *+ 0. Again 58, 7, = 0 for 1 < i £ k as well as in the case (c). Also
grs1Ske1 F 0 for g,y = 0so that o,y * 0 and dy,; # 0 in the regular case.
O
Combining (2.8) and (2.9) we get a one-parameter class of variable metric methods
which was introduced by Broyden [2]. In this case

(d

Nawd

AT HF(H7)"
(2'10) Hiyy :Hi‘*‘dtd' _;%Tl(—~) +
yid; JiH:§;
9. $TH. 5,
+ == (}’71.1'21 d; — Hij;
ViH:§:\ ¥id;

for 1 < i < n, where 9, is a free parameter. Most frequently used formulae use the
values 9; = 0 (DFP method) or 9, = 1 (BFGS method). Note that

. +f T .
S ISR TR TR AN =gg;(H,._ﬂfc_Hl >0
Oit1 g; Oi+1 g o ¢ Hy

for 1 £ i < n,in the regular case, which is a necessary assumption for the positive
definiteness of the matrix (2.10).
The following algorithm summarizes our results.

Algorithm 2.1.

Step 1: Determine an initial point x and compute the value F := F(x) and the
gradient g := g{x). Compute the values ¢ := o(x) and 7 := 1(x) defined
by (1.2). Determine an initial symmetric positive definite matrix H of order
n (usually set H := I, where I is the unit matrix of order n). Set k := 0.

Step 2: If the termination criteria are satisfied (for example if H g \] is sufficiently small)
then stop.
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Step 3: If k = 0 then determine the vector ¢ by (2.2) where x, x, and x; are three
different points lying on a line.

Step 4: Set k:= k + 1. If k < n then set

<" H(g[o)
s:= —H(g|o) + —=*— He
(9/7) c"He
else set k := 0 and s := — H(g/o).

Step 5: Use a perfect line search procedure to determine the point x, 1= x + a,s
such that s¥ g(x,) = 0. Compute the value F, := F(x,) and the gradient
g2 := g(x,). Compute the values o, := o(x,) and 7, := t(x,) defined by
(1.2).

Step 6: If k + Othen set

and compute the matrix
T SOIr\T STrrs STHS T
H21=H+%%— i)j(‘H%)’+~T3~<y~fIyd_H}7)(y,, yd—Hf\
yid  FHF  JIHF\ §d y'd )

for a given value of the parameter 9.

Step 7: Setx 1= x,, F 1= F,,g := g,,0 := 0,,7 = 1,5, H := H, and go to Step 2.

Theorem 2.1 shows that Algorithm 2.1 finds a minimum of the extended conic
function F: R, — R after n perfect steps in the regular case. Now we are analyzing
the singular case when g, is parallel to the vector ¢ for some index i < n. If this is
the case then x; is a minimizer of the extended conic function F(x) with the constraint
I(x) = I,. Therefore, it is also a minimizer of the quadratic function F(x) with the
same constraint and we can use the following lemma.

Lemma 2.2. Let F(x) be a quadratic function with positive definite Hessian matrix

G.Let§, = §(x;),1 £ i < 3, bethe gradients of the function F(x) at the points x; € R,,,
1<i=<3Theng;,1=<ig 3, areparallelonlyifx;, 1 < i £ 3lieon aline.
Proof. See [5], proof of Lemma 3.2. O
Lemma 2.2 can be used in the singular case. Let g, = A;¢ and g, = A,c hold
at two different points x; and x, respectively. Then also §, = A;¢ and §, = dyec
hold for some coefficients 1, and 1, respectively (see (2.1)). Let x; be a minimizer

of the extended conic function F: R, — R. Then g; = 0 and, consequently, §; =
= Zsc by (2.1). Therefore, using Lemma 2.2, we can write

(2.11) X3 =% + alx; — %)

for some steplength «. The points x; and x, such that g, = A,¢ and g, = 4,¢ hold
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can be obtained in two immediately consecutive cycles of Algorithm 2.1. Therefore
we can find a minimizer of the conic function in the second cycle by the special
step (2.11).

3. QUASI-NEWTON METHODS WITHOUT PROJECTIONS

The variable metric methods described in the previous section minimize an
extended conic function after a finite number of steps in case a perfect line search
procedure is used in all steps. In this section, we generalize the quasi-Newton methods
without projections, which were introduced in [4] in such a way that they find
a minimum of an extended conic function after a finite number of steps using the
perfect line search procedure in the last step only.

Theorem 3.1. Let F: R, — R be an extended conic function. Consider the iterative
scheme (2.3) where

1 Hic"™H;
(3.1) sp= = — <H,- - W> gi
for I £i < n. Define
(3.2) v, =d; — Hj;
for 1 £ i < n, where d; and J, are vectors given by (2.7). Let H, be an arbitrary
symmetric positive definite matrix of order n and u, = (1/o) H,g,. Let

(3.3) Hiyy = H; + VBV
and
(3.4) upey = (Flo) u; = (Fiu) o,

for 1 £ i < n, where V, is the n X 2 matrix which has the columns u; and v; and B;
is a 2 x 2 symmetric matrix which is chosen in such a way that H,, is positive
definite and

(3-5) Hip i =d;.

Then the direction vectors s;, 1 < i < n are nonzero and linearly independent
provided g; is not parallel to the vectors ¢ and v; = 0 for 1 < i < n (regular case).
Moreover, dic = 0, ury; = 0 and H,j; = d; for 1 £ i < n in the regular case.
If u; is not parallel to v, for 1 £ i < nthenu, + 0.

Proof. We prove this theorem by induction. Suppose that u;, + 0, d; + 0 and
dfc = 0 and, moreover, u,j; = 0 and H,j; = d, for 1 £ i < k where k < n. It
certainly holds for k = 1 provided g, is not parallel to the vector ¢ and v, + 0.

(a) We show that d, is not a linear combination of d;, 1 £ i < k. Suppose, on the

contrary, that k-1
d =3 Ad;
i=1
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for some A;, L S i < k — 1. Then

k-1 k=1
Ju = Gdp = Y, 4,Gd; = ¥, 4.5
i=1 i=1
and, therefore, -1
U = d, — HiJy, = Zli(di - Hk.)’;i) =0
i=1

since H,J; = d; for 1 £ i < k by assumption. But it is in contradiction to the
assumption v, + 0.
(b) The cquality Hy+,; = dy follows from (3.5). Furthermore

Hear§i = HiJi + VBV = H: = d;
for 1 < i < k since H,j; = d;, ui§; = 0 and o]§; = diy, — JiH,F; = diy; —
— Jid; = 0for 1 < i < k by the assumption.
(c) The equality #i+ 5% = 0 follows from (3.4). Furthermore

ui i = (o uidi — (Fow) vi = 0
for 1 i < ksince H,J;, = d;, w3 = 0 and 0,5, = di§, — JiH, 5 = diy; —
— §id; = 0 for 1 < i < k by the assumption.
(d) Ifk + 1 < nthen using (2.6) we get

T
T G 1Hk+1€ 1 T _
Ok 18416 = ————C Hysi1€ = gy (Hivrc=0
¢ Hypyqc

Moreover ;.1 + 0 and also dy4 #+ 0 if g, is not parallel to the vector ¢
and vgyq + 0. O

Theorem 3.1 shows that the vectors 53, 1 < i < n, generated by the formula (3.1),
are nonzero and linearly independent in the regular case. Moreover,
_ H,cc"H, e G lec"G1 .

¢"H,c TGl

This equality can be easily verified by multiplying it by the linearly independent
vectors Gs;, 1 £i < n— 1 and c. Using (3.6), we can find a minimizer of both
the quadratic function F(x) and the extended conic function F(x) subject to the linear
constraint I(x) = I,. It is given by the formula

(3.6) H,

(3.7)‘ . Xpa1 = Xy + Sy
where
H,cc™H, 1 H,cc"H,
3.8 §,= = (H, -2 ) 5 o = — 2 Bn) o
e G LR (e EI

by (3.6) and (2.1).
Since x,+ is a minimizer of the quadratic function F(x) subject to the linear
constraint I(x) = I,, we can write

(3~9) d?§u+l =0

102



for 1 £ i < n. Suppose now that u, # 0 and set

(3.10) Xps2 = Xpt1 T+ Zug1Snit

where

(3.11) Sp+1 = Uy

and where the steplength o, is chosen by the perfect line search procedure so that
(3.12) ulg,, =0.

Then

(3-13) A7 gusr = OniadiGnis = 5n+2(d?9~n+1 + d?.‘jn«n) =

= °'n+2(d;Té7n+1 + an+1.)7.{un) =0
for 1 < i < n since d}§n+1 = 0 by (3.9) and j]u, = 0 by Theorem 3.1. Using both
(3.12) and (3.13) we get g,4, = O since the vectors d;, 1 £i < n — 1, and u, are
linearly independent. Therefore, x, . is a minimizer of the extended conic function
F(x).
Combining (3.3), (3.4) and (3.5) we get a one parameter class of quasi-Newton
methods without projections. In this case

(3-14) Hiy =H; + :11.— (viviT — QMipgllly 1)
Yiv;
for 1 £ i < n, where @, is a free parameter. Setting ¢; = 0, we get the rank-one
formula. More details about the choice of the parameter ¢ are given in [4]. Note
that (3.14) is defined only in the case when $Tv; + 0. This is a stronger requirement
than »; & 0 which has been used in Theorem 4.1.
The following algorithm summarizes above results.

Algorithm 3.1.

Step 1: Determine an initial point x and compute the value F:= F(x) and the

gradient g := g(x). Compute the values ¢ := o(x) and 7 := 7(x) defined
" by (1.2) Determine an initial symmetric positive definite matrix H of order n

(usually set H := I, where I is the unit matrix of order n) and set u := H(g/o).
Determine the vector ¢ by (2,2) where x, x; and x, are three different points
lying on a line. Set k := 0.

Step 2: If the termination criteria are satisfied (for example if |g]| is sufficiently
small) then stop.

Step 3: Set k:= k + 1. If k £ n then set

- ¢"H(glo)
s: H(glo) + T He He

and go to Step 4 else set k:= 0, s:= —sgn (g™u) u, u 1= H(g[o) and go
to Step 6.
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Step 4: Use an imperfect line search procedure to determine the point x, := x -+ a,s
such that F(x,) < F(x). Compute the value F, := F(x,) and the gradient
g := g(x,). Compute the values o, : = o(x,) and 7, := 1(x,)defined by (1.2).

Step 5: If k < n then set N
vi= X, —x — Hf

;,;=_a_z_g_(12._1>c
o, 4 (23 4
uy = (Fo)u — (Fu)v

1

j;T

and compute

H,:=H + (vo" — pu,u3)

v
for a given value of the parameter ¢. Go to Step 7.

Step 6: Use a perfect line search procedure to determine two points x; i= x + «§
and x; := x + a,s such that s"g(x,) = 0. Compute the values F, :=
1= F(x,), F, := F(x,) and the gradients g, := g(x,), g, := g(x,). Compute
the values o, := o(x,), 0, := o(x,) and 7, := t(x,), 7, := 7(x,) defined
by (1.2). Determine the vector ¢ by (2.2).

Step 7: Set x 1= x,, F:1=F,, gi=g,, 0:=0,, T:= 1Ty, u:=u,, H:= H, and
go to Step 2.

Theorem 3.1 shows that Algorithm 3.1 finds a minimum of the extended conic
function F: R, - R after n imperfect steps and one perfect step in the regular case.
Note that the condition for positive definiteness of the matrix (3.14) is not satisfied
in general (see [4]). Therefore the statement s:= —sgn(g"s)s could be added
to Step 4 of the algorithm.

4. A SPECIAL CLASS OF EXTENDED CONIC FUNCTIONS

The most complicated problem associated with the extended conic functions of
the form (1.1)is the determination of the values 6, = o(x + ays)and 7, = (x + a,5)
from the values o = o(x) and © = 7(x) respectively. In [5], it has been shown that
considering the special class of extended conic functions, namely

“.1) F(x) = F(x) I"(x) ,
we can set o,/o = (I,/I)” and 1./t = (F,[F)[(I,[1) where the ratio I,[I is determined
by solving the equation ‘

lz p+2 Zz P+l
“2) pF (7> ~((2+ p)F + ay9%s) (7) +
!
+((2 + p) Fy — a,935) (72) —pF, =0
{we set I = 1 initially, which gives the initial values ¢ = 1 and T = kF).
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Now we are considering the objective function of the form

(4.3) F(x) = F(x) exp (I(x))
defined in all R,. Using (4.3) we get the following formulae
F=Fexp(l
(44) { p ()
g =gexp(l) + Fec

so that o,/ = exp (I, — [) and 1,/t = F,[F. Note that we can set | = 0 initially,
which gives the initial values ¢ = 1 and v = F. The following lemma gives the
possibility of determining the difference I, — I from the values F and F, and the
gradients g and g, computed at two different points x and x,.

Lemma 4.1. Let x € R, and x, = x + a,5 € R, be two different points. Then the
difference I, — [ is a solution of the equation
(43)
F(l, — Nexp(l, — 1) — (g7 + 2F)exp (I, — 1) + Fy(l, — 1) — (93d — 2F,) = 0
where d = x, — X = a,5.

Proof. Using (4.4) we get

Fo 1
exp (1)
Ge L () Fe
g-exp(l)(g Fc)

Since the quadratic function has to satisfy the equality
2AF, - F)=g3d + §'d
and since ¢'d = [, — I, we get after substitution
26, _ 2F _ gjd g'd _¥L(lz_1)#7f77(12_l)
exp(l;) exp{l) exp(l;) exp(l) exp(ly) exp (/)

which gives (4.5) after rearrangements. )

Note that the equation (4.5) has a real solution I, = [if FF, > 0, which is usually
satisfied for x, sufficiently close to x.

So far we have assumed that the extended comic function has a unique critical
point which is its minimizer. Now, we are considering the case when the extended
conic function has several critical points. Using Lemma 2.2, we can see that all
critical points lie on a line. It is exactly the line which is determined both in Algorithm
2.1 (Step 4 for k = n) and in Algorithm 3.1 (Step 3 for k = n + 1). If we use the
global line search procedure in this case, we can find a global minimizer of the extend-
ed conic function.

The following lemma shows some properties of critical points of the special
extended conic function (4.3).
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Lemma 4.2. Let x € R, be a critical point of the function (4.3) and let G be the
Hessian matrix of this function at the point x € R,. Then

(4.6) G = Gexp(l) — Fec".
Let x, € R, and x, € R, be two different critical points of the function (4.3). Then
() Fy _2-L+1
F, 24+05L-1
Proof. Let x € R, be a critical point of the function (4.3). Using (4.4) we get

exp (I, — Iy).

g=gexp(l)+ Fe=0

and
G =Gexp(l) + (§c" + ") exp (I) + Fec™.
Therefore
. _ __F ¢
)
so that
G=Gexp(l) + (——2 F exp (I) + F) cc™ = Gexp(I) — FecT.
exp (1)

Let x, € R, and x, € R, be two different critical points of the function (4.3). Denote
d = x, — x;. Then ¢'d = I, — I, and, using (4.4), we get

gid = Fidexp (L) + Fy(l, = 1) = 0

g3d = gidexp (L) + Fo(l; = 1) =0

Therefore
gid= -F(,- 1),

gad = =Fy(l, — 1,).
Since the quadratic function has to satisfy the equality
oF, - Fi) = §id + §id

we get
2F, = 2F, = ~Fy(l, = I,) — Fy(l, - 1)

which implies

F, F, 21, +1
— =_exp(l, - 1,) = f——exp(l, =1
F F1 P(z 1) 240, -1, P(z 1)

and the lemma is proved. O

The same considerations as above can be applied to the function of the form
(4.1). In this case we obtain

(4.9) G =GP - "(P—;l)—F ccT
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and

(4.9) Fy _ (1_2>P2 + 2 = p(L/1)
F, L) 2+ p— p(lfl,)
instead of (4.6) and (4.7). Note that the expressions (4.6) and (4.8) indicate that
functions (4.1) and (4.3) are useful especially when the minimal function value is
less then zero. Note also that (4.9) implies F,/F; = 1 in case p = —2. This is the
result given in [3].
(Received January 31, 1984.)
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