Kybernetika

Ladislav LukSan

Variable metric method with limited storage for large-scale unconstrained
minimization

Kybernetika, Vol. 18 (1982), No. 6, 517--528

Persistent URL: http://dml.cz/dmlcz/124855

Terms of use:

© Institute of Information Theory and Automation AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124855
http://project.dml.cz

KYBERNETIKA —- VOLUME I8 (1982), NUMBER 6

VARIABLE METRIC METHOD WITH LIMITED STORAGE
FOR LARGE-SCALE UNCONSTRAINED
MINIMIZATION

LADISLAV LUKSAN

This contribution contains a description of a variable metric method with limited storage
for large-scale unconstrained minimization, The quadratic termination of this method is proved
and an algorithm which implements this method is presented. Efficiency of the algorithm is
demonstrated on test functions.

1. INTRODUCTION

We are concerned with the problem of finding a local unconstrained minimum
of a real-valued function F(x) defined in the n-dimensional vector space R, and having
continuous second-order derivatives. The variable metric methods are widely used
for solving this problem when n < 100, say. They construct a sequence of symmetric
positive definite matrices of the order n, so it is necessary to have n(n + 1)/’2 locations
in the high-speed computer storage. As n increases, n(n + 1)j2 becomes too large
and the variable metric methods cannot be used.

Probably the first efficient method for large-scale unconstrained minimization
was the method of conjugate gradients. It is an iterative method, whose k-th iteration
(k = 0,1,2,...) has the form

(1.1) Xppr = X + %S

where s, is a direction vector and o is a steplength. The direction vector s, must
satisfy the condition

(1:2) —5i9x Z 2oflsi] Jlgul

where g, = g(x;) is the gradient of the objective function F(x) at the point x; and
0 <-g¢ < 1is a small positive number. The steplength «; is taken to satisfy conditions

I

3 Froy—F = Cl“kszﬂk
(1.3) T T
SiOke1 2 (1~ &) sigx

517

where Fiyy = F(%Xu41)s Fy = F(xi), gort = 900+ 1), 90 = 9(%) and where 0 <
<2 <1 and 0 <2, < 1. Note that s;g,., = 0 when perfect line search is
performed. The direction vector s, is computed recursively by the rule

(1.4) Sirr = —Girr + Bisi

where fi, can have three alternative values

T ?
(1.5a) B = 9—"%9—’5 (Hestenes - Stiefel [9])
Sk Vi
_ gfﬂokﬂ)
(1.5b) B = =5 (Fletcher - Reeves [6])
I 9k
_ g;-r+1Yk ..
(1.5¢) B. = === (Polak - Ribiere [16])
Ji9x

(we use notation d, = X1 — X, = &S and., ¥, = gy+{ — g, through this paper).

The method of conjugate gradients was introduced by Hestenes and Stiefel for
solving systems of linear algebraic equations and by Fletcher and Reeves for un-
constrained minimization. Since that time it has been improved by many authors.
An important modification of the method of conjugate gradients is based on the
addition of one or several terms into (1.4) which vanish for gi, s, = 0 (perfect
line search). A suitable selection of these terms causes that (1.4) can be expressed
in the form

(1-6) Seer = —Hpp 144

where H,, is a symmetric positive definite matrix of the order n which satisfies
the so-called quasi-Newton condition

(1.7) Hiv oy = dy

This condition is satisfied when H,. is the inverse of the Hessian matrix of the
objective function F(x) at the point x;,, and it forms a basis for the broad class
of quasi-Newton methods.

The addition of auxiliary terms into (1.4) was introduced by Perry [15]. Shanno

[20] has shown that the matrix Hy,, in (1.6) can be chosen in such a way that
T L A
Hepy = v (He + — didi — — H(Hy)" +
Y0k T

1 /7. 7 & = \F
+— <L" di — Hkyk) (E dy — Hk)’k))
T \Oy oy

where H, = I (the unit matrix of the order n) and y, > 0 is a free parameter. Further-
more oy, = yad, and 7, = y; Hy;. The above expression for Hy1 is just the genera-
lized one-step BFGS update (see Broyden [3], Fletcher [7], Goldfarb [8] and

518

Shanno [19]). Shanno [20] has also proposed an algorithm which uses the two-step
BFGS update. The relationship between the method of conjugate gradients and the
BFGS method was also studied in [4], [5] and [L1]. It gave rise to the combined
conjugate gradient quasi-Newton algorithm. All these methods work with limited
storage.

We are proposing a variable metric method with limited storage, which uses the
m-step BFGS update. It is very close to the method proposed in [13} but it uses
genetal values of free parameters. Moreover, an efficient algorithm is presented and
its efficiency is demonstrated on the standard test problems.

2. PROPERTIES OF THE NEW METHOD

The variable metric method with limited storage (or the m-step BFGS method)
studied in this section is an iterative method, whose k-th iteration has the form
(1.1)—(‘1.3), where

(2~1) sp = —Hy o9y

and where H, o is a symmetric positive definite matrix of the order n obtained by the

m-step BEFGS update
. O
(22) Hyyor =7y (Hk,i + =i

V-0

T
dimjdi-j —

1
- Hk.jyk—j(HkAjyl\—j)T +

Ty ;

1 (e Temg)
+ (AL dy L, — Hk.,J’h—j) (= - Hk')yk—j))
T j \ O k=i

for 1 £ j £ k, k = min (k, m) where H, ; = I (Lis the unit matrix of the order n),
Y-, > 0 and g, ; > O are free parameters and oy_; = Y- jdj- j, Tu—j = yg-ij,j :
. Vi—j- Then for an arbitrary vector v

(2.3) Hy ;v =7 (H,w-v -

di_p

Hy ey +
Orj

T
T <(€b " Tk—j) d_’cvﬁ _ (Hk.jYA—j)T U,) dk—.r)
Yk-j Ox=j) Ou-j Ox-j

holds. This expression contains only n-dimensional vectors and it can be used for
consecutive evaluation of the term Hy og, which appears in (2.1).

Now we are proving the main results about the behaviour of the m-step BFGS
method applied to the quadratic function

(.4) F(x) = 4(x — T G(x — %)

supposing perfect line search is performed.

519

Theorem 2.1. If the m-step BFGS method is applied to the quadratic function
(2.4) and if the steplengths are chosen by perfect line searches, then

J YI.T Ik
{2.9) S = (Hl}’i'j) (9A -);l‘ dk—l)
j=

Vi 1dk-1
for 1 £ k < n, where k = min (k, m).

Proof. Let 1 £ k < nand k = min (k, m). If the perfect line search is performed
in all subsequent iterations we have dy_;gy.;—; = 0 for 1 £ j < k and from (2.3)
we obtain

ne iHi Ge1—;
(2~6) Hy o1 Gkr1-j = Yi—j (Hk,jgk+1>j S SN LW ESES ‘[k—j)
Oy j
for 1 £j £ k. Since Hyz =1, (2,5) holds for k = 1. Now we use induction. Let
(2‘5) holds for k = I — 1 = 1. Then search directions s;, 1 £ i < [are paraliel

to the search directions of the method of conjugate gradients, so that

2.7 d}-yjzy,Tcljzo, 1gi<j<|
(2.8) dig; =0, l<i<j<1
29) gTg; =0, 1<i<j=I

Now we shall prove that
) 1 L
(2.10) Hyog, = (I Yi-i) (91 - Z;F—h“ dz—i)
i=1 i=1 0,
where I = min (1, m). We prove it by induction again. Let
J. j T H
(2.11) H, o9, = (H ?t—i) <H1,j91 -y Y=l dl—l)
i=1 = T S)
for j < 1. From (2.6) it follows that (2.11) holds for j = 1. Since djj-19: =0
for j < I by (2.8), we obtain
T H, .
(212) Hy 0= e (11,,,+,g1 _ Y- d:-H)
Tr-j—1
from (2.3). Since y;_,d,_;-; = 0 for 1 £i < j by (2.7), we have yi-iH 90 =
=9 ;¥ iHy 19, for 1S 1= j. Setting it together with (2.12) into (2.11),
we obtain

J T
Vi-i-1H; —
Hio9, = (I_Il"/t—i) (Yt-j—1Hl,j+1gt — Vi-j-1 RAEF RSN LS) dy_j-1
i= Or—j—1

J T H, .
= Y Yizifly a6y dl’i) =
=1 ol

I-i

j+t j+1 T
" H, .
= (I17-) (Hx,iﬂgl - 2= e 1 dl—i)
i=1 i=1 [

520

which is just (2.11) with j increased by 1, so that (2.10) is proved since H,; = I.
Now y1_.g, = (41+1-:01 — gi-:91) = 0 for 2 < i < I by (2.9), so that (2.10) gives
1 T
Yi-19
Sp = "'HI,Ogl = - (H VI—;) (91 — =i dhl)

i=1 a_y
which is just (2.5) with k increased by 1, so that (2.5) is proved forall 1 £ k £ n. [J
Theorem 2.1 implies that the m-step BFGS method applied to the quadratic
function (2.4) is equivalent to the method of conjugate gradients when the perfect

line search is performed, so that it finds a minimum of the quadiatic function (2.4)
after at most n iterations.

Theorem 2.2. If the assumptions of Theotem 2.1 are satisfied, then

i 0o -
(213) Hyoyi-; = (TT v:-4) Shed di_;, 12j5k
i=1 Vi~ j
for 1 £ k £ n, where k = min (k, m).
Proof. We prove this theorem by induction. Let

J
(2.14) Hegie, = (1T 0-0) G-y de;, 1=j=1

i=1 Yi-j
for some I < k, where I = min (I, m — k + I). This relation is true for [= k — &,
where k = min (k, m), since the condition 1 < j = 1 cannot be satisfied for any
index j(I=min(k — k,m —k +k — k) =0 for | =k — k). Since djy,_; =0
by (2.7) and y[H, ,_,y,—; = 0 by (2.7) and (2.14), we obtain

J
Q1-j ;
Hl.,k—z——x)"r—j = Vsz.k—l."hj = (1_10"/14.') 7)’1 / dl—ja 1£j=)
i= -

from (2.3) and (2.14). After changing the indices (increasing j by 1) we obtain

J 0 . .
(2>]5) Hypmima¥isa-; = (n YI+1*I') =i Ay p22j=2TH+1
i=1 y

I+1—j

where T + 1 = min (I + 1, m — k + I + 1). Furthermore, we have

0 e t\or T
H = m (Hk,k—lyl - = Hy- + ((_I + "£>_X - _l> dz) =
gy Vi 0/ or 0

4
=" =L d;
"
from (2.3). This expression and (2.15) give

J
Q15 .
Hk,k—t»1}’1+1—j = (n71+1—i) Ll d1+1—,, 1=sj=sT+1
i=1 Yit1-;

which is just (2.14) with I increased by 1, so that (2.13) is proved. - O

Theorem 2.2 implies that setting y,—; =1, 1 £ j <k, yg=7 and ¢_; =0,

we have satisfied k generalized quasi-Newton conditions
Hk,o."x—j = Qdk—ja 1=2j= k

Parameter y introduced in [14] serves for conditioning and improving stability
of the BFGS update (sec also Shanno and Phua [21]). Parameter ¢ was introduced
in [2]. For the quadratic function (2.4) the best choice is ¢ = 1. Special choices
of the parameter ¢ can improve the behaviour of the m-step BEFGS method for non-
quadratic objective function.

3. IMPLEMENTATION OF THE NEW METHOD

The m-step BFGS method uses recurrence relation (2.3) for consecutive evaluation
of the search direction (2.1). This recurrence relation can be rewritten in the form

Hk,j—l” = ‘/’(‘h—p Hy Yk U, Hy v, 04— j, Tk—j)
where

T, T, Ty
(3.1) o(d, u,v,w,0,7) =y (w _de u + ((Q + T—) dv _ ”—L> d)
1% y) ¢ o

Note that y and ¢ are not parameters of the function ¢ but they are implicitly assumed
to appear in (3.1). For m == 3 we can write the chart of computation in the following
form

B9k
19 P-1Yi-1 di-1
4 'r\ H d
Hic-29k Pe-2Yk-1 k-2Yi-2 k-2
DT -3Yk-1 Ml aVi-z2 He-3Yi-3 -3

) © © ©

Some vector in this chart is computed by means of four vectors. They are the
closest vector in the same column (see arrows), the vector on the bottom of the same
column (see rings)and the framed vectors in the previous row. Therefore 9 n-dimension-
al vectors must be stored simultaneously for m = 3 (the method of conjugate gradients
uses 5 n-dimensional vectors). These 9 n-dimensional vectors are denoted x, g, s, x,,
J1s X2, 92, X3, g3 in the description of the algorithm. Vectors x, g, s, xy, g, represent
the vectors Xy, gy, S, Xx—1, g1 and vecto1s xy, g4, X3, g2, X3, g3 Tepresent the vectors
i—15 Yie1> k=25 Vi—2, dx_3, Vi3 Note that vectors x;, g, represent both x,_,,
Gi-1 and di_ g, Yey-

Now we are in a position to describe the algorithm of m-step BEGS method.
We use ¢ = 1 in (3.1). The choice of the parameter y is controlled by the integer L.

522

Algorithm 3.1.

Step
Step

Step
Step
Step

Step
Step

Step
Step

Step 11:
Step 12:

Step 13:

Step 14:
Step 15:
Step 16:
Step 17:

Step 18:

8:
9:
Step 10:

: Determine the initial vector x and compute values F := F(x)and g := g(x).
: Test for convergence. If the termination criteria are satisfied (for example

if ||g|| is sufficiently small) then stop.

: In the first iteration go to step 4 else go to step 5.
:Sets:= —g. Set k:= 0and go to step 17.
:Set I:=1 and k:=min(k, m). Set x :=x—x,;, ¢;:=¢ — g, and

si=g.

: If k = 3 go to step 7 else go to step 8.
: Compute 7; = g3g;. Compute s := (X3, g3, 9, S, 03, T3). Set X 1= g,

go 1= gy, compute Xy = ¢(X3, 935 92> Xo5 03> 73), Jdo i= <P(x3~ 93> 91> 9os
03, 73) and set X3 1= Xq, g3 1= g, (Vectors x, and g, need not be stored
if the computation runs by coordinates). Function ¢ is defined by (3.1)
where y = 1if | = 0 or y = o;ft5 if I = 1. Set I := 0 and go to step 10.
If k = 2 go to step 9 else go to step 11.

Set x3:= g, and g; := ¢g;.

Compute 1, := g;x;. Compute s:= ¢(x;,X3,9,5, 065,1,) and gz :=
= @(x2, X3, g1, g3, 0, T;). Function ¢ is defined by (3.1) where y =1
ifl=0o0ry=o,f1,if I = 1. Set | := 0 and go to step 12.

Set g3 := g;-

Compute o, 1= gix, and 7, := gig;. If 6, <0 or 7; £ 0 go to step 4
else go to step 13.

Compute s := ¢(x;, g3, 9, 5, 61, 7;). Function ¢ is defined by (3.1) where
y=1ifl=0o0ry =o,ftr;if = L. Sets:= —s.

Ifm=3setgs =g, X;3:=x, and g3 1= 0,.

Ifm=2setg, =gy, X, := x; and 0, := 0y.

If —sTg 2 &|s]| |g]| go to step 17 else go to step 4.

Set x; := X, g, := g, F; := F. Use a standard procedure to determine
the steplength « so that F — F; < g,0s7g, and s'g = (1 — &;) s"g, holds,
where F and g are new values F := F(x) and g := g(x) at the point x : =
1= Xy 4 as. (These values are determined in present step by use of a stan-
dard procedure.)

Set k:= k + 1and go tostep 2.

Algorithm 3.1 uses two integers ! and m. Here [is a parameter controlling whether
we use the value y = 1 (I = 0) or the value y = o/t({ = 1) and m is a maximum
number of BFGS updates in each iteration (m < 3). In the step 17 of Algorithm 3.1
we can use any standard procedure for the determination of the steplength «. The
safeguarded cubic interpolation has been used in our realization of the algorithm.
Values ¢, ¢, and &, in steps 16 and 17 of Algorithm 3.1 are usually small. Numerical
experiments were cartied out with the values g, = 1073 and ¢, = ¢, = 1072

522

4. NUMERICAL EXPERIMENTS

Efficiency of Algorithm 3.1 was tested by means of 18 standard problems
1) F(x) = (10(x; — x,)* + (x, — 1)%)*
x =[-12;1.0]
2) F(x) = (10(x; — x,)* + (x, — 1)})"*
x = [=12; 1-0]F
3) F(x) = 100(x7 — x,)* + (x; — 1)
x=[-12;10]"
4) F(x) = 100(x] — x,)* + (x; — 1)? + 90(x3 — x,)* + (x5 — 1)* +
+ 101((x; — 12 + (x4 — 1)?) + 19:8(x, — 1) (x4 — 1)
x = [-3:0; = 1-0; — 3:0; —1:0]"
5) F(x) = (x5 + 10x;)" + 5(x3 — x4)* + (x5 — 2x3)* + 10(x; — x4)*
x = [3:0; —10; 0:0; 1-0]"
6) F(x) = (exp (%) — x2)* + 100(x; — x3)¢ + 1g* (x5 — x,) + x§ + (x5, — 1)?
x = [1:0; 2:0; 2:0; 2-0]"

13
7) F(x) :_Zl((x‘t exp (—x2;) — X5 exp (—xaz;) + X6 exp (—x32)) — »yf
=
v =exp(—z;) — Sexp (—10z,) + 3exp (—4z); z; = i[10
6

fl

()

X =) e+
1

9 F) = 303 (16:4) (v - 17)
x =0

) F(x) = 4203 (16) (x, ~ 1) + (203 (16 — i) (x, = 1)
x =10

10) F(x) = (1 — 5,)? + (1 = xy0) + loigl(lo-i) R

X = ey — 12e

1) F@) = (5 7, — 17

2

x =0 i=1
12) £ = (3 P~ 1)
x =0
13) F(x) = i‘)(loo(xf - X1410)° + (% — 1))

i=1

10
X :’21(ei+10 — 1-2¢;)
i<

524

5
14) F(x) = Y (100(x} — x;45)% + (3, = 1" + 90(x7s 10 + Xi15)" + (Xiwg0 — 12 +
=
+ 10']((xi+5 - 1)2 + (xi+15 - 1)2) + 19‘8(-\':+5 - 1)(xi+15 - 1))
5
x= =Y (3¢ + ¢rs + 3eir10 + €is1s)
i=1

5

15) Fix) = 3 ((x; + 10x;, 57 4 S(Xiv10 — xi+15)l + (a5 — 2X;+m)“ +
i=1
+ 10(x; — x;+15)4)

5
x = Z(3ei — €iys + €11s)
i=1
30 ‘
16) F(x) = ¥ 13()
=t 30 P\12 i\172
filx) = 420, + (i — 159 + ¥ (xf. + —_) (sinslog (xf + -_) +
i=1 J J

J¥i
i\1/2
+ cos® log (rf + 7>)
J

30
x = —2:8742711 .Y e, f,(0)
i=1

30

30
17) F(x) = Y (y; — ¥ (a;, sin x; + by; cos x;))?
30»71 =1
yi =Y (aysin&; + by cos &))
=1

a;;, b,; — random coefficients uniformly distributed within the interval

{—-100, +100}

¢, 6; — random coefficients uniformly distributed within the interval
{—m, +7)

x=£&¢4 016

19 £ = 1= e (=&, <)
x =i;(—1)i (1 + 5) e;

The objective function F(x) and the initial vector x are given for each problem.
Here ¢; is ith column of the unit matrix of a desired order. The minimal value of the
objective function is always zero. Results of the tests are shown in Table 1.

Columns in Table 1 correspond to combinations of values I (choice of y) and
m (number of BFGS updates). Rows in Table 1 correspond to the test problems
given above. Table 1 contains two values for each run, which are separated by the
stroke. The first is the number of iterations and the second is the number of function
evaluations. An asterisk in the row 7 shows, that an alternative local minimum was

i Oy

525

Table 1.

|

1 1 I=1

p o om=1 m=2 m=3 m=1 | m=2 m=73
1 169—185 290327 69— 91 48— 50 49— 52 48— 51
2 86—219 39—101 28— 95 54—111 35— 87 36—116
3 30— 76 30— 57 34— 54 40— 58 46— 60 39— 53
4 55—112 45— 94 47— 126 102—-120 54— 65 42— 48
5 118—1232 106—214 36— 60 195238 111—137 148—188
6 A 244—255 81— 84 125179 55— 64 65— 74
7* 331—527 208—281 51— 72 | A 146—194 86—111
8 6— 13 6— 13 6— 13 11— 13 11— 13 10— 12
9 22— 44 22— 51 | 19— 43 13— 14 15— 16 15— 16
10 A A 385—1106 A A 275—320
11 A A A 110—119 113—128 101—107
12 240— 688 266—650 265— 791 | 256—279 242282 154—183
13 21— 52 16— 25 22— 30 | 51— 64 28— 36 28— 43
14 58—119 45— 94 47— 126 124—150 55— 65 42— 48
15 261518 276554 36— 60 149—182 A 204—243
16 10— 21 12— 25 16— 133 10— 12 10— 12 10— 12
17 240—481 246—493 252— 505 A 294—319 357404

|
18 " 27 | 2= 7 2— 7 2— 7 2— 7 | 2— 7
| | '

found (instead of global minimum). The letter A shows that 300 iterations did not
suffice to find a minimum.

To compare known methods for large-scale unconstrained minimization Table 2
has been set. Columns of Table 2 correspond to the PARTAN method [18], the
method of conjugate gradients (CG method) with formula (1.5a) and with restart
after each 2n iterations, the method of Nazareth [12], the method of Beale [1]
modified as in [17], the two step BFGS method of Shanno [20] and our method
with [= 1 and m = 3. The meaning of numbers in Table 2 is the same as in Table 1.

The same termination criteria, namely [g,| £107% or F,<107'° or
% — xi-y]| £ 1078 and |x,—; ~ x,_,| = 107® were used for all methods in both
tables. The results slightly differ since different initial estimates of the steplength.
oy, were used. Results in Table 1 correspond to initial estimate

o = min <1, 4 u)

T
Sk Gk

while results in Table 2 correspond to initial estimate
F—F,

o =2—
Sk9k

(here F is a lower bound for minimum value of objective function F(x)).

526

Table 2.

PARTAN CG Nazareth Beale Shanno m-step

method method n2l 1l 120] BEGS

method
1 27— 38 29— 92 27— 79 31— 94 24— 28 24— 27
2 10— 40 56—123 43—115 24— 63 28— 73 37— 100
3 41— 90 27— 47 25— 48 27— 50 23— 44 23— 37
4 45— 79 150—446 1 130—377 120— 356 34— 53 30— 46
5 117— 218 93177 77168 51— 91 89—153 82— 159
6 103-- 226 34— 53 55—110 34— 56 49— 80 39— 56
7* A 231—649 91252 98— 277 131345 55— 140
8 14— 15 16— 17 24— 39 21— 22 10— 11 9— 10
9 17— 19 18— 26 30— 72 20— 28 14— 18 14— 18
10 A A A 378—1535 A 266—1015
11 22— 701 132—-309 126—320 105— 219 102—221 106— 174
2 391—1107 270—710 298—830 260— 688 225—564 198— 468
13 30— 57 31— 43 28— 62 31— 43 22— 38 18— 28
14 45— 79 186—484 139—307 126— 307 42— 74 30— 46
15 123— 229 72—132 62—120- | 57— 105 123—267 89— 173
16 12—- 13 ; 36— 37 24— 37 36— 37 10— 11 10— 11
17 A | 225—442 276—544 213— 397 189—352 243— 475
18 6— 7 ' 7— 11 7— 8 9— 14 6— 7 6— 7

r .

5. CONCLUSION

The numerical experiments show high efficiency of the m-step BFGS method
when complicated problems are solved (problems 10—18). This method has been
implemented in the software package for optimization and nonlinear approximation

SPONA (see [10]) as program POPT 96.
(Received October 20, 1981.)

REFERENCES

[1] E. M. L. Beale: A derivation of conjugate gradients. In: Numerical Methods for Non-linear
Optimization (F. A. Lootsma ed.), Academic Press, London 1972, 39—43.

[2] M. C. Biggs: Minimization algorithms making use of non-quadratic properties of the
objective function. J. Inst. Math. Appl. 8 (1971), 3, 315—327.

{3] C. G.Broyden: The convergence of a class of double rank minimization algorithms 2. The new
algorithm. J. Inst. Math. Appl. 6 (1970), 3, 222—231.

141 A. G. Buckley: A combined conjugate gradient quasi-Newton minization algorithm. Math.
Programming 15 (1978), 2, 200--210.

[5] A. G. Buckley: Extending the relationship between the conjugate gradient and BFGS
algorithms. Math. Programming 15 (1978), 3, 343—348.

527

{6] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7
(1964), 2, 149—154.

{71 R. Fletcher: A new approach to variable metric algorithms. Comput. J. 13 (1970), 3, 317—322,

[8] D. Goldfarb: A family of variable metric algorithms derived by variational means. Math.
Comp. 24 (1970), 109, 23—26.

{91 M. R. Hestenes, E. Stiefel: Methods of conjugate gradients for solving linear systems.
J. Res. Nat, Bur. Standards 49 (1952), 6, 409—439.

[10] L. Luk$an: Software package for optimization and nonlinear approximation. Proc. of
2nd IFAC/IFIP Symposium on software for computer control, Prague 1979.

[11] L. Nazareth: A relationship between the BFGS and conjugate gradient algorithms. SIAM
J. Numer. Anal. 16 (1979), 5, 794—800.

[12] L. Nazareth: A conjugate direction algorithm without line searches. J. Optim. Theory Appl.
23 (1977), 3, 373—387.

[13] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comp. 35 (1980),
151, 773—782.

[14} S. S. Oren, D. G. Luenberger: Self-scaling variable metric SSVM algorithms 1. Criteria
and sufficient conditions for scaling a class of algorithms. Management Sci. 20 (1974), 5,
845862,

[151 A. Perry: A modified conjugate gradient algorithm. Oper. Res. 26 (1978), 6, 1073—1078.

[16] E. Polak, G. Ribiere: Note sur la convergence de methodes des directions conjugees, Revue
Fr. Inf. Rech. Oper. 16-R1 (1969), 35—43.

[17] M. J. D. Powell: Restart procedure for the conjugate gradient method. Math. Programming
12 (1977), 2, 241—254.

[18] B. V. Shah, R. J. Buehler, O. Kempthorne: Some algorithms for minimizing a function
of several variables. SIAM J. 12 (1964), 1, 74—92.

[19] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math.
Comp. 24 (1970), 111, 647—656.

[20] D. F. Shanno: Conjugate gradient methods with inexact searches. Math. Oper. Res. 3
(1978), 3, 244—256.

[211 D. F. Shanno, K. H. Phua: Matrix conditioning and nonlinear optimization. Math. Pro-
gramming 14 (1978), 2, 149—160.

Ing Ladislav Luk$an, CSc., StFedisko vypocetni techniky CSAV (General Computing Centre —
hoslovak Academy of Sci), Pod voddrenskou vé3i 4, 182 07 Praha 8. Czechoslovakia.

528

		webmaster@dml.cz
	2012-06-05T10:33:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

