
Kybernetika

Ladislav Lukšan
Variable metric method with limited storage for large-scale unconstrained
minimization

Kybernetika, Vol. 18 (1982), No. 6, 517--528

Persistent URL: http://dml.cz/dmlcz/124855

Terms of use:
© Institute of Information Theory and Automation AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124855
http://project.dml.cz


KYBERNETIKA-VOLUME 18 (1982), NUMBER 6 

VARIABLE METRIC METHOD WITH LIMITED STORAGE 
FOR LARGE-SCALE UNCONSTRAINED 
MINIMIZATION 

LADISLAV LUKSAN 

This contribution contains a description of a variable metric method with limited storage 
for large-scale unconstrained minimization. The quadratic termination of this method is proved 
and an algorithm which implements this method is presented. Efficiency of the algorithm is 
demonstrated on test functions. 

1. INTRODUCTION 

We are concerned with the problem of finding a local unconstrained minimum 
of a real-valued function F(x) defined in the 77-dimensional vector space Rn and having 
continuous second-order derivatives. The variable metric methods aie widely used 
for solving this problem when n < 100, say. They construct a sequence of symmetric 
positive definite matrices of the order n, so it is necessary to have n(n + l)/2 locations 
in the high-speed computer storage. As 7! increases, n(n + l)/2 becomes too large 
and the variable metric methods cannot be used. 

Probably the first efficient method for large-scale unconstrained minimization 
was the method of conjugate gradients. It is an iterative method, whose fc-th iteration 
(k = 0, 1,2,...) has the form 

(1.1) *it+l = Xj. + a..s.. 

where sk is a direction vector and ak is a steplength. The direction vector sk must 
satisfy the condition 

(1-2) -sjgk £ E0\\sk\\ \\gk\\ 

where gk = g(xk) is the gradient of the objective function F(x) at the point xk and 
0 <-s0 < 1 is a small positive number. The steplength ak is taken to satisfy conditions 

/, v, JIV+i - Fk -S Ěi«kSk0k 
)sjgk 

517 



where Fk+1 = F(xk + 1),Fk = F(xk),gK+1 = g(xk+i), gk = g(xk) and where 0 < 
< 2cj < 1 and 0 < 2e2 < 1. Note that s1gk+1 ~ 0 when perfect line search is 
performed. The direction vector sk is computed recursively by the rule 

(!-4) sk+1 = -gk+l + fiksk 

where (ik can have three alternative values 

(1.5a) h = ^ f^" (Hestenes - Stiefei [9]) 
hyk 

(1.5b) pk = ^ + ' g t + 1 (Fletcher - Reeves [6]) 
gkgk 

(1.5c) p, = 9-^~^_ (Polak - Ribiere [16]) 
9k9k 

(we use notation dk = xk+1 — xk = aKst and vfc = ak + 1 — gk through this paper). 
The method of conjugate gradients was introduced by Hestenes and Stiefei for 

solving systems of linear algebraic equations and by Fletcher and Reeves for un­
constrained minimization. Since that time it has been improved by many authors. 
An important modification of the method of conjugate gradients is based on the 
addition of one or several terms into (1.4) which vanish for g1+1sk = 0 (perfect 
line search). A suitable selection of these terms causes that (1.4) can be expressed 
in the form 

(1-6) sk+1 = -Hk+1gk + 1 

where Hk+1 is a symmetric positive definite matrix of the order n which satisfies 
the so-called quasi-Newton condition 

(1-7) Hk+lVk = dk 

This condition is satisfied when Hk+1 is the inverse of the Hessian matrix of the 
objective function F(x) at the point xk + 1 and it forms a basis for the broad class 
of quasi-Newton methods. 

The addition of auxiliary terms into (1.4) was introduced by Perry [15]. Shanno 
[20] has shown that the matrix Hk + 1 in (1.6) can be chosen in such a way that 

Hk+1 = yk (Hk + ~ dkdj - 1 Hkyk(Hkyk)
T + 

\ Jk<*k ?k 

+ L(l*dk-Bkyk)fedk-H-k 

where Hk = I (the unit matrix of the order n) and yk > 0 is a free parameter. Further­
more <rk = y1dk and xk = ylHky>k. The above expression for Hk + i is just the genera­
lized one-step BFGS update (see Broyden [3], Fletcher [7], Goldfarb [8] and 
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Shanno [19]). Shanno [20] has also proposed an algorithm which uses the two-step 
BFGS update. The relationship between the method of conjugate gradients and the 
BFGS method was also studied in [4], [5] and [11]. It gave rise to the combined 
conjugate gradient quasi-Newton algorithm. All these methods work with limited 
storage. 

We are proposing a variable metric method with limited storage, which uses the 
m-step BFGS update. It is very close to the method proposed in [13] but it uses 
geneial values of free parameters. Moreover, an efficient algorithm is presented and 
its efficiency is demonstrated on the standard test problems. 

2. PROPERTIES OF THE NEW METHOD 

The variable metric method with limited storage (or the m-step BFGS method) 
studied in this section is an iterative method, whose fc-th iteration has the form 
(1.1)—(1.3), where 

(21) st = -Hkfigk 

and where Hk0 is a symmetric positive definite matrix of the order n obtained by the 
771-step BFGS update 

(2.2) HkJ._ = y,_j (HkJ + -^J~ dk_jdr
k_j -

V lk-fk-j 

- •— Hk,jyk-j(Hkjyk-jf + 
rk-j 

+ _ L /_*_! 4 _ . - Hk,Jk_j) fe=L dk_j - HktJyk-j 
*k-j \Vk-j J \°k-j 

for 1 __ j __ k, k = min (fe, m) where Hkk- = I (I is the unit matrix of the order n), 
yk_. > 0 and Qk_} > 0 are free parameters and ok_j = )'l_jdk_j, xk_j = }'l-jHkJ. 
• )'k-j- Then for an arbitrary vector v 

(2.3) HkJ_ _v = yk_j (fíkJv - ^ Hkjyk_j + 
V <tk-j 

(í_k__j + Ч-Л dí-jV _ + [ [ _ _ _ + _ _ _ . ) ___il _ _ _ _ _ _ _ _ _ ) dk_ 
Vk-i 

?k-j 

(HkJyk_jfi 

7k-j 

holds. This expression contains only n-dimensional vectors and it can be used for 
consecutive evaluation of the term Hkfigk which appears in (2.1). 

Now we are proving the main results about the behaviour of the m-step BFGS 
method applied to the quadratic function 

(2.4) F(x) = i(x - xf G(x - x) 

supposing perfect line search is performed. 
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Theorem 2.1. If the m-step BFGS method is applied to the quadratic function 
(2.4) and if the steplengths are chosen by perfect line searches, then 

(2.5) * - -d\yk-.)(9k-
Jhr~d^ 

J=I \ yk-idk-i 
for 1 __[ k __ n, where k = min (k, in). 

Proof. Let 1 < k < n and k = min (k, m). If the perfect line search is performed 
in all subsequent iterations we have d1_jgk + 1_j = 0 for 1 <_ j < Jc and from (2.3) 
we obtain 

(2.6) HkJ_l9k+1_j = yk_j (HkJgk+l_j - __z i_^g_±--J d__\ 

for 1 < j < k. Since Hkil = / , (2.5) holds for k = 1. Now we use induction. Let 
(2.5) holds for k = I — 1 __ 1. Then search directions sb 1 __ i < I are parallel 
to the search directions of the method of conjugate gradients, so that 

(2.7) dTy, = yjdj = 0 , 1 < i < j < I 

(2.8) djgj - 0 , 1 __i <j _. I 

(2.9) g\g} = 0 , l _ i < j ^ l 

Now we shall prove that 

(2.10) ff.,O0, = ( n . , - . ) ( « . - £ ^ «*«-? 
i=i V ;=i _•._, y 

where J = min (/, m). We prove it by induction again. Let 

(2-11) ff,,o-, = ( f t V.-«) (II,,,-; ~ t ^ - - ^ _,_.) 

for ; < /. From (2.6) it follows that (2.11) holds foi j = 1. Since df_j-i9, = 0 
for j < I by (2.8), we obtain 

(2.12) Hlj9l = y ^ - j H ^ g , - ?!=J^Sl____il rf;_ 
\ 0 - / - J - 1 

from (2.3). Since y]_idl_j_1 = 0 for 1 < i g j by (2.7), we have y1^Hij9i = 
= 7i-j-iyl-,Hi,J+1g, for 1 < i g ; . Setting it together with (2.12) iflto (2-H), 
we obtain 

Hг,0g, = (П-«-«) (..-.-1II«_ + i-i - ľł_,_. УЬ^EbШІl d._.__ ~ 
í = 1 V o - i - j - i 

-Іy.-i-i$^^dЛ-
i-l cr^i / 

J ' + 1 / J ' + 1 „ т w \ - (Пл-Ofw. - I ____________ rfг_;\ 
i=l \ 1-1 . , _ ; / 
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which is just (2.11) with j increased by 1, so that (2.10) is proved since H,, = I. 
Now yj_l9l = (.. + 1 _ i . , - _ __,_,) = 0 for 2 5_ i 5. / by (2.9), so that (2.10) gives 

«, = -IIi.o-i = - (rly.-Of-i - ^ ^ -,-i 
1=1 V (T;-! 

which is just (2.5) with fc increased by 1, so that (2.5) is proved for all 1 g fc __ n, __ 

Theorem 2.1 implies that the m-step BFGS method applied to the quadratic 
function (2.4) is equivalent to the method of conjugate gradients when the perfect 
line search is performed, so that it finds a minimum of the quadiatic function (2.4) 
after at most n iterations. 

Theorem 2.2. If the assumptions of Theoiem 2.1 are satisfied, then 

(2.13) Hk,oyk_j = ( J ] .__.) ^ __-, , i _ j g f c 
' = i 7k-j 

for 1 __ fc __ n, where fc = min (fc, m). 

Proof. We prove this theorem by induction. Let 

(2.14) ff_,-_v,-. = ( f l Vt-d-^d^j, _ __j Si J 
«-=i r , - . 

for some / < fc, where 7 = min (/, m — k + I). This relation is true for / = fc — fc, 
where fc = min (fc, m), since the condition 1 _ j _ ! cannot be satisfied for any 
index j(l = min (fc — fc, m — fc + fc — fc) = 0 for / = fc — fc). Since djy,_j = 0 
by (2.7) and yjH„,__,>',_j = 0 by (2.7) and (2.14), we obtain 

Hk,k-,-iyi-j = y,!/M_,y,_j = (fl .,_,) - ^ d,_j, _______ 
1=0 . , _ j 

from (2.3) and (2.14). After changing the indices (increasing; by 1) we obtain 

(2.15) Hk,k_l_1yl + 1_j = (f\yl + 1_i)^^-dl+1_j,2_ij_;T+l 
»-• y . + i - . 

where / + 1 = min (/ + 1, m — fc + / + l). Furthermore, we have 

HM-,-,>. - 7. CHM-C - " HM-^. + ff~ + - ) - - h) A = 
\ Oi \\Vi -«/ <?, <V / 

7i 

from (2.3). This expression and (2.15) give 

--__-i-.i>.+_-_ = (flyi+1-i)—— d,+i-., i =. = r+T 
'•=i V i + i - j 

which is just (2.14) with / increased by 1, so that (2.13) is proved. • 
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Theorem 2.2 implies that setting yk_j = 1, 1 _= j < k, yk_li = y and Qk_} = (?, 

we have satisfied k generalized quasi-Newton conditions 

Hk,oyk-j = Qdk-j, i<J^k 

Parameter y introduced in [14] serves for conditioning and improving stability 

of the BFGS update (see also Shanno and Phua [21]). Parameter Q was introduced 

in [2], For the quadratic function (2.4) the best choice is Q = 1. Special choices 

of the parameter Q can improve the behaviour of the ?n-step BFGS method for non-

quadratic objective function. 

3. IMPLEMENTATION OF THE NEW METHOD 

The /tt-step BFGS method uses recunence relation (2.3) for consecutive evaluation 

of the search direction (2.1). This recurrence relation can be rewritten in the form 

where 

Bkj-_v = (p(dk_j, HkJyk_j, v, HkJv, ak_p Tk_j) 

(3.1) <p(d, u, v, w, a, x) = y I w u + {I - + — J J a j 

Note that y and Q are not parameters of the function cp but they are implicitly assumed 

to appear in (3.1). For m = 3 we can write the chart of computation in the following 

form 

н k - l y k - l d k - l 

t 
н k - 2

y k - l 
t 

н k - 2

y k - l | H k - 2

У k - 2 d k - 2 | 

t 
H k - З y k - 1 

t 
H k - 3 У k - 2 

t 
H k - З y k - 1 

t 
H k - 3 У k - 2 I Hk-З yk-3 d k - 3 

t 
H k - l 9 | < 

f 
H k - 2 9 k 

î 
Hk-З9|< 

Some vector in this chart is computed by means of four vectors. They are the 

closest vector in the same column (see arrows), the vector on the bottom of the same 

column (see rings) and the framed vectors in the previous row. Therefore 9 n-dimension-

al vectors must be stored simultaneously for m = 3 (the method of conjugate gradients 

uses 5 n-dimensional vectors). These 9 n-dimensional vectors are denoted x, g, s, xu 

di, x2> 92, xi, 03 in the description of the algorithm. Vectors x, g, s, xu gt represent 

the vectors xk, gk, sk, xk_u gk_t and vectots xu gu x2, g_> x3, 93 represent the vectors 

<4-i> yk~i, dfc-2, yk-2, d/i-3, yk-3- Note that vectors xt, gx represent both xk_u 

9k-1
 a n d

 dk_u yk_u 

Now we are in a position to describe the algorithm of m-step BFGS method. 

We use Q = 1 in (3.1). The choice of the parameter y is controlled by the integer /. 
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Algorithm 3.1. 

Step 1: Determine the initial vector x and compute values E : = E(x) and g : = g(x). 
Step 2: Test for convergence. If the termination criteria are satisfied (for example 

if \\g\\ is sufficiently small) then stop. 
Step 3: In the first iteration go to step 4 else go to step 5. 
Step 4: Set s := -g. Set k := 0 and go to step 17. 
Step 5: Set I := I and k := min (k, m). Set xx := x - xt, gl := g — gr, and 

s := g. 
Step 6: If k~ = 3 go to step 7 else go to step 8. 

Step 7: Compute T3 = gTg3. Compute s := <p(x3, g3, g, s, a3, r3). Set x0 := g2, 
g0:=g1, compute x0:= <p(x3, g3,g2,x0,a3,x3), g0 := <p(x3,g3, gu g0, 
a3, x3) and set x3 := x0, g3 := g0 (vectors x0 and g0 need not be stored 
if the computation runs by coordinates). Function q> is defined by (3.1) 
where y = l i f / = 0 o r y = CT3/T3 if / = 1. Set / := 0 and go to step 10. 

Step 8: If k = 2 go to step 9 else go to step 11. 
Step 9: Set x3 := g2 and g3 := gv 

Step 10: Compute T2 := grx3. Compute s := <p(x2, x3, g, s, a2, x2) and g3 : = 
:= (p(x2,x3,g1,g3,a2,x2). Function q> is defined by (3.1) where y = 1 
if I = 0 or y = a2\x2 if I = 1. Set I := 0 and go to step 12. 

StepU: Setg3 := gv 

Step 12: Compute ax := g\x1 and Tj := g\g3- \ial=Qotxl=0 go to step 4 
else go to step 13. 

Step 13: Compute s := cp(xu g3, g, s, au xt). Function q> is defined by (3.1) where 
V = l i f / = 0 o r y = aljx1 if I = 1. Set s := —s. 

Step 14: If m = 3 set g3 := g2, x3 := x2 and a3 := a2. 

Step 15: If m = 2 set g2 := gu x2 := xt and a2 := ax. 
Step 16: If -sTg = e0\\s\\ \\g\\ go to step 17 else go to step 4. 
Step 17: Set xy := x, gx:= g, F1:= F. Use a standard procedure to determine 

the steplength a so that F — Ft = sla.sTgl and sTg = (1 — £2) s
Tgx holds, 

where E and g are new values E : = E(x) and g : = g(x) at the point x : = 
: = xx + as. (These values are determined in present step by use of a stan­
dard procedure.) 

Step 18: Set k := k + 1 and go to step 2. 

Algorithm 3.1 uses two integers / and m. Here I is a parameter controlling whether 
we use the value y — 1 (/ = 0) or the value y = a\x(l = l) and m is a maximum 
number of BFGS updates in each iteration (m S 3). In the step 17 of Algorithm 3.1 
we can use any standard procedure for the determination of the steplength a. The 
safeguarded cubic interpolation has been used in our realization of the algorithm. 
Values e0, fij and £2 in steps 16 and 17 of Algorithm 3.1 are usually small. Numerical 
experiments were carried out with the values £j = 10"3 and ^ = £2 = 10 - 2 . 
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4. NUMERICAL EXPERIMENTS 

Efficiency of Algorithm 3.1 was tested by means of 18 standard problems 

1) F(x) = (I0(x. - x2)
2 + (x. - I)2)4 

x = [-1-2; 10]T 

2) E(x) = (10(x. - x2)
2 + (x. - l)2)1'4 

x = [ —1-2; 10]T 

3) E(x) = 100(x2 - x2)
2 + (xx - l)2 

x = [-1-2; 10]T 

4) E(x) = 100(x2 - x2)
2 + (x, - l)2 + 90(x2 - x4)

2 + (x3 - l)2 + 
+ 10-l((x2 - I)2 + (x4 - I)2) + 19-8(x2 - l)(x4 - 1) 

x = [-3-0; -1-0; - 3-0; -1-0]T 

5) E(x) = (Xl + I0x2)
2 + 5(x3 - x4)

2 + (x2 - 2x3)
4 + 10(x, - x4)4 

x = [30; -1-0; 00; L0]T 

6) E(x) = (exp (x,) - x2)
4 + 100(x2 - x3)

6 + tg4 (x3 - x4) + x\ + (x4 - 1) 
x = [1-0; 2-0; 2-0; 2-0]T 

13 
7) F(x) = I (1*4 exP (-*iz .) - xs exP {-xzzd + Xe exp (-x3zt)) - yf 

i = l 

yt = exp (-z ;) - 5 exp (-10z;) + 3 exp (-4z ;); z; = I/IO 
6 

x = £ e, + e2 

8)E(x) = K20 i ( l 6 - i j ( x ; - l ) 2 ) 
i = 1 

x = 0 
9) F(x) = 1(20 £ (16 - i) (x; - 1)2J + lo(20 £ (16 - i) (x; - I)2)2 

> = i i = i 

x = 0 

10) E(x) = (1 - x,)2 + (1 - x10)2 + 10 £ (10-0 (x2 - x ;+1)2 

i = l 

x = e10 - \-2e1 

ll)E(x) = ( X / 3 ( x ; - l ) 2 ) 3 

i = l 

x = 0 
12)E(x) = ( £ i 3 ( x ; - l ) 7 / 3 

1 = 1 

x = 0 

13)E(x) = g( lOO(x 2 -x ; + 10)2 + ( x ; - l ) 2 ) 
i = l 

10 

* = ! > . • + i o - l-2e,) 
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14) F(x) = | (100(x2 - x ; + 5 ) 2 + (x; - l)2 + 90(x2
+lo + x ; + 1 5 ) 2 + (x ; + 1 0 - l)2 + 

+ HM((x; + 5 - l)2 + (x ; + 1 5 - l)2) + 19-8(x, + 5 - l ) ( x ; + 1 5 - 1)) 
5 

x = - £ ( 3 e ; + e i + 5 + З e ; + 1 0 + e / + 1 5 ) 

1 5 ) ғ ( * ) = I ( ( * i + l t e i + s)2 + 5(xi + 1 0 - x ; + 1 5 ) 2 + ( x ; + 5 - 2 x ; + 1 0 ) 4 + 

+ 'lO(x; - x ; + 1 5 ) 4 ) 
5 

X = Z ( З Є І - Є i+5 + Єi+lS) 
i = l 

3 0 

16) Ңx) - I / ? ( x ) 
30 / - \ l / 2 / / - \ l / 2 

/,(x) = 420x; + (i - 15)3 + Ç ( xj + т ) ( sin5 log ( xj + - ) + 

>l/2\ 

+ cos'' log I x? + T 

30 

x = -2-8742711 . 2 > ; / . ( 0 ) 
i = l 

17) F(x) = £ (y{ - £ («,-; sin x, + 5 ; , cos x,))2 

i = i j = i 

30 

^i = E (aU Sil1 ^ + &'V C 0 S Z]) 
j=l 

a,j, bu — random coefficients uniformly distributed within the interval 
<-100,+100> 

£j, Sj — random coefficients uniformly distributed within the interval 
< - 7 t , +7T> 

x = c + 0-1.5 

ЩF(x)=l-ЄW(-i-0Zxђ 
; = i 

•-JИ(1+ií)* 
The objective function E(x) and the initial vector x are given for each problem. 
Here et is ith column of the unit matrix of a desired order. The minimal value of the 
objective function is always zero. Results of the tests are shown in Table 1. 

Columns in Table 1 correspond to combinations of values I (choice of y) and 
m (number of BFGS updates). Rows in Table 1 correspond to the test problems 
given above. Table 1 contains two values for each run, which are separated by the 
stroke. The first is the number of iterations and the second is the number of function 
evaluations. An asterisk in the row 7 shows, that an alternative local minimum was 
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1 

/ = 0 /= 1 

m= 1 m=2 m= 3 m= 1 m= 2 m= 3 

!. 169-185 290-327 69- 91 48- 50 49- 52 48- 51 

2 86-219 39-101 28- 95 54-111 35— 87 36-116 

3 30- 76 30- 57 34- 54 40- 58 46- 60 39- 53 
4 55-112 45- 94 47- 126 102-120 54- 65 42- 48 

5 118-232 106-214 36- 60 195-238 111-137 148-188 

6 A 244-255 81- 84 125-179 55- 64 65— 74 
7* 331-527 208-281 51- 72 A 146-194 86-111 

8 6- 13 6- 13 6- 13 11- 13 11- 13 10- 12 

9 22- 44 22- 51 19- 43 13- 14 15- 16 15— 16 

10 A A 385-1106 A A 275-320 

11 A A A 110-119 113-128 101-107 

12 240-688 266-650 265- 791 256-279 242-282 154-183 

13 21- 52 16- 25 22- 30 51- 64 28- 36 28- 43 

14 58-119 45- 94 47- 126 124-150 55- 65 42- 48 

15 261-518 276-554 36- 60 149-182 A 204-243 

16 10- 21 12- 25 16- 33 10- 12 10- 12 10- 12 
17 240-481 246-493 252— 505 A 294-319 357-404 

18 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 2 - 7 

found (instead of global minimum). The letter A shows that 300 iterations did not 

suffice to find a minimum. 

To compare known methods for large-scale unconstrained minimization Table 2 

has been set. Columns of Table 2 correspond to the PARTAN method [18], the 

method of conjugate gradients (CG method) with formula (1.5a) and with restart 

after each 2n iterations, the method of Nazareth [12], the method of Beale [ l ] 

modified as in [17], the two step BFGS method of Shanno [20] and our method 

with / = 1 and m = 3. The meaning of numbers in Table 2 is the same as in Table 1. 

The same termination criteria, namely | |a t | | g 10~8 or Fk ^ 10~ 1 6 or 

||"fc — xk~i\\ = 10~8 and I**- ! — 3CJc_2|j _̂  10~8 were used for all methods in both 

tables. The results slightly differ since different initial estimates of the steplength 

ak were used. Results in Table 1 correspond to initial estimate 

ak = min ( 1, 4 
F-F, 

sT

kgk 

while results in Table 2 correspond to initial estimate 

F-F, 
«* = 2 

hвk 

(here F is a lower bound for minimum value of objective function F(x)). 

526 



PARTAN CG Nazaгeth Beale Shanno m-step 

meťhod method [12] [1] [20] BFGS 
method 

1 2 7 - 38 2 9 - 92 2 7 - 79 3 1 - 94 2 4 - 28 2 4 - 27 
2 10— 40 56-123 43-115 2 4 - 63 2 8 - 73 3 7 - 100 
3 4 1 - 90 2 7 - 47 2 5 - 48 2 7 - 50 2 3 - 44 2 3 - 37 
4 4 5 - 79 150-446 130-377 1 2 0 - 356 3 4 - 53 3 0 - 46 
5 1 1 7 - 218 93-177 77-168 5 1 - 91 89-153 8 2 - 159 
6 1 0 3 - 226 3 4 - 53 55-110 3 4 - 56 4 9 - 80 3 9 - 56 
7* A 231-649 91-252 9 8 - 277 131-345 5 5 - 140 
8 1 4 - 15 1 6 - 17 2 4 - 39 2 1 - 22 1 0 - 11 9 - 10 
9 1 7 - 19 1 8 - 26 3 0 - 72 2 0 - 28 1 4 - 18 1 4 - 18 

ÎO A A A 378-1535 A 266-1015 
11 2 2 - 701 132-309 126-320 1 0 5 - 219 102-221 1 0 6 - 174 
12 391-1107 270-710 298-830 2 6 0 - 688 225-564 1 9 8 - 468 
13 3 0 - 57 3 1 - 43 2 8 - 62 3 1 - 43 22— 38 1 8 - 28 
14 4 5 - 79 186-484 139—307 1 2 6 - 307 4 2 - 74 3 0 - 46 
15 1 2 3 - 229 72-132 62-120 5 7 - 105 123-267 8 9 - 173 
16 1 2 - 13 3 6 - 37 2 4 - 37 3 6 - 37 1 0 - 11 1 0 - 11 
17 A 225-442 276-544 2 1 3 - 397 189-352 2 4 3 - 475 
18 6 - 7 7 - 11 7 - 8 9 - 14 6 - 7 6 - 7 

5. CONCLUSION 

The numerical experiments show high efficiency of the m-step BFGS method 

when complicated problems are solved (problems 10-18). This method has been 

implemented in the software package for optimization and nonlinear approximation 

SPONA (see [10]) as program POPT 96. 
(Received October 20, 1981.) 
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