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KYBERNETIKA — VOLUME 10 (1974), NUMBER 2 

Closed-Loop Stability of Discrete 
Linear Single-Variable Systems 

VLADIMÍR KUČERA 

The paper provides rigorous foundations for the analysis and synthesis of discrete linear 
single-variable feedback systems in the frequency domain. Given transfer functions of the system 
to bs compensated and of the compensator, the characteristic polynomial of the feedback system 
is computed. Further conditions to be satisfied by the transfer functions of the feedback system 
in order to guarantee stability are established. Then applications are discussed to the problems 
of assigning a desired characteristic polynomial by dynamical compensation, the existence 
of a stabilizing compensation, and the synthesis of optimal feedback control and filtering systems. 

INTRODUCTION 

During the sixties the mathematical system theory was established using the axio­
matic concept of state. This approach, called the state-space method, can also be 
taken when analyzing or synthesizing control and filtering systems provided the state 
of the system to be compensated is available. This method then yields nice and useful 
results and the attained performance is the best one possible since the state contains 
all information about the system. Unfortunately, in most process control applications 
the state of the system is not available for measurement and must be recovered by 
means of an observer, Kalman filter, etc. The overall system may then be quite 
complex and certainly not optimal in the original sense for the state is reconstructed 
not immediately but in a finite time at best. 

For the above reasons the engineers tend to use the frequency-domain approach 
to control and filtering problems, at least for linear constant systems. Such a system 
is usually characterized by its transfer function or impulse response. True, this 
description is inadequate from the standpoint of mathematical system theory inas­
much as it reflects just the input-output properties of the system. In other words, 
it fully describes only those systems that are both completely reachable and completely 
observable, i.e. minimal realizations of the transfer function. This description, 



however, is adequate for control and filtering purposes when we intend to feed back 
just the available output information. Naturally, one cannot, in general, expect as 
good performance when utilizing just the system output as can be obtained on the 
basis of state. But when the whole state is unknown, it is usually better to act on the 
available output by a dynamical compensator than construct an observer or another 
state-estimating system. 

All this is responsible for the come-back of the frequency-domain methods in 
synthesizing feedback optimal control systems. To lend mathematical respectability 
to those methods, however, we have to start with the axiomatic state-space descrip­
tion of the system and then for the purposes of synthesizing a feedback system we 
prefer to work with abstract polynomials instead of transfer functions. This approach 
has been called the algebraic one and used to great advantage in [7], [8], [9], [10]. 
It makes it possible to treat general (not necessarily stable) discrete linear con­
stant systems over an arbitrary field (i.e. including linear finite automata). Further­
more, it yields effective and simple computational algorithms well adapted for 
machine processing. 

The purpose of this paper is to provide rigorous foundations for the synthesis 
of discrete linear feedback systems in the frequency domain. The crucial step in all 
synthesis procedures is to make the closed-loop system stable. When using a dynamical 
compensator the optimum system synthesis usually calls for the "zero-pole" cancella­
tions. As a result, the overall system is not a minimal realization even if the original 
components are and as such it cannot be adequately characterized by its transfer 
function. Specifically, the transfer function contains insufficient information about 
the most important properties of the synthesized system — about the characteristic 
polynomial and its stability. Therefore, some elaborations to be described further 
are necessary in order that the frequency-domain approach can be reliably and 
effectively used in feedback system synthesis. 

P R E L I M I N A R I E S 

Referring for details to [7] we first recall several algebraic concepts. 

Consider a set © in which two laws of composition are given, the first written 
additively and the second multiplicatively. If the composition laws are associative 
and commutative, if multiplication distributes over addition, and if zero and identity 
elements as well as additive inverse exist in ©, we call © a (commutative) ring. 

If an element e e © has a multiplicative inverse, we call e a unit of ©. If every 
nonzero element of © has a multiplicative inverse, then © is called afield. 

For example, the set 3 of integers constitutes a ring, while the rationals Q, reals % 
and complex numbers £ all form fields. The set 3 P of residue classes of integers 
modulo a prime p is an example of a finite field. 



148 If a, b e ©, b =f= 0, we say that b divides a, and write b \ a, if there exists a c e © 
such that a = be. For a, b e ©, a greatest common divisor of a and fe is an element 
d e ©, denoted by (a, 6), which is defined as follows. 

(1) d\a, d\b, 

(2) c e © , c | a, c J fr implies c | d . 

The greatest common divisor is uniquely determined to within a unit of ©. If (a, b) = 
= 1 (modulo a unit of ©) the elements a, b are said to be relatively prime. 

Given a field ~i, let 3f[z] denote the ring of polynomials over gf in the indeterminate 
z. If 

a = a0 +. atz + ... a„z" e g [z ] 

and a„ #= 0, then n is the degree of a denoted as da. We define 50 = — oo. If a„ = 1, 
the a is a monic polynomial. The units of {$f[z] are polynomials of zero degree, which 
are viewed as isomorphic with %. 

Let ^(z"1) denote the quotient field of «5[z]> called the field of rational functions 
over ~;, whose elements can be written as 

A = a„z~" + an+1z~(n+1) + ..., ^ e g , 

for all integers n. If a„ =j= 0 then n is the order of A. 
The rational functions with nonnegative order form the ring of realizable rational 

functions over % denoted by g { z _ 1 } . They have the form 

A = a0 + a j z - 1 + a2z~2 + ..., ak e g . 

The units of 5 { z - 1 } are elements of order 0. 

The elements A e ~;{z~x} for which the sequence {a0, aua2, ...} converges to zero 
form the ring of stable realizable rational functions over' g, denoted by g + { z - 1 } . 

This motivates the following definition. A polynomial a e 5 [ z ] is stable if 
\\a e g + { z - 1 } . Evidently, any unit of g [z ] is stable. 

It is important to emphasize that we regard a polynomial or a rational func­
tion as an algebraic object, not as a function of a complex variable z. They are 
simply an alternate way of viewing finite or infinite sequences in gf> the indetermi­
nate z being a position-marker. 

Now consider the equation 

(3) ax + by = c 

over g [z ] for unknowns x and y. This equation has been called a linear Diophantine 
equation in [7] and it plays a fundamental role in the analysis and synthesis of 
discrete linear constant systems. 



It is well-known [7] that equation (3) has a solution if and only if (a, b) | c. If xQ 149 
and y0 is a particular solution of (3) then all solutions are given as 

(4) x = x0+ — — í , 
(a,b) 

y = y°- 7—^f' 
(a, b) 

where t is an arbitrary polynomial of 5 [ z ] -

A very efficient method of finding x0 and y0 is presented in [7]. 
It is to be noted that when equation (3) is viewed over g + { z - 1 } the formulas (4) 

read 

(5) x = x0 + — - T, 
(a,b) 

(a,b) 

where Tis an arbitrary element of g + {z *}. 

SYSTEM DESCRIPTION 

Following [6], [7] let 

2T = time set = 3 = (ordered) set of integers, 
<% = input values = g = arbitrary field viewed as a vector space over itself, 
<& = output values = %x 

3C = state space = %" = vector space of n-tuples over a field %. 

Then a. finite dimensional, discrete, constant, linear, single-input, single-output 
system £P over afield g is a quadruple {A, B, C, D} of linear maps 

A :ЗГ-*ЗГ, 

Ъ:<%-*3£, 

C \X-*<&, 

Ъ:<Ш -*<&, 

defining the equations 

(6) xk+í = Axk + B u t , 

У* = Cxfc + Du f c, 

where k є 3» x є ЗC, u є <tø, yє<W. The н is the dimension of the system. 



We shall usually not make a distinction between A, B, C and D as linear maps 
or as matrices representing these maps with respect to a given basis. 

The matrix 

S = C ( z l - A )" 1 B + D , 

characterizing the input-output behavior of y, is called the transfer function of y. 
The system {A, B, C, D} is said to be completely reachable and completely observ­

able, or equivalently, to be a minimal realization of S, if 

rank [B, AB, ..., A"_ 1B] = n , 

rank 
C 
CA 
CA"~ 

The minimal realization has least dimension among all possible realizations of S 
see [6]. It is well-known [6] that there is a one-to-one correspondence between S, 
and its realization if and only if the realization is minimal. Otherwise speaking, 
nonminimal realizations contain certain parts which have no relaition to S. 

The monic polynomial det (zl — A) e g[z] is called the characteristic poly­
nomial of y and its degree is the system dimension. Further, the y is defined to be 
stable if det (zl — A) is stable. 

The transfer function S of the system is a realizable rational function and, hence, 
it can be written as a ratio of two polynomials. However, there are two ways of 
doing so. First let 

(V) s = i 
a 

where a, B are polynomials of $[z] that satisfy 

(a, B) = 1 , 
(8) dB S da 

and where a is the characteristic polynomial of the minimal realization of S. 

Second we write 

S = C(zl - A)"1 B + D = C z - ^ I - z - U ) - 1 B + D 

and introduce two polynomials a, b e $ [ z - 1 ] such that 

(9) s-j;. 
It follows that 

(10) a - z~"& t 

b = z~"B , 



and (8) implies 

(a, b) = l , 

( a , z " 1 ) = l . 

Representation (7), in particular the d, is useful when analyzing the system. For 
the purpose of system synthesis, however, we prefer to use representation (9). The 
reader will have noticed it in [7], [8], [9], where the symbol £ stands for z _ 1 . The 
main advantage of this representation stems from the fact that any polynomial 
of 5 [ z _ 1 ] can be realized as a system (6). This is not true of polynomials of S[z] . 
It means that the system can be synthesized in terms of a and b and the physical 
realizability of the resulting system is inherently guaranteed, while synthesis proced­
ures based on a and b should manipulate only the ratio Sjd as a whole. Since 
polynomial manipulations are much simpler than manipulations with rational func­
tions, it is the polynomial algebra that seems to be a natural mathematical tool for 
the discrete system analysis and synthesis. 

The polynomial det (I — z _ 1 A) = z _ " d e t ( z l — A) will be called the pseudo-
characteristic polynomial of S. Hence a in (9) is the pseudocharacteristic poly­
nomial of the minimal realization of S. 

The pseudocharacteristic polynomial may be quite different from the characteris­
tic polynomial. Example: 

A = I"0 1 _ | , a = det (zl - A) = z2 , a = det (I - z~lA) = 1 . 

Nevertheless, the pseudocharacteristic polynomial is as good for determining the 
system stability as the characteristic polynomial. In view of the definition of stability 
in g [z ] it is clear that det (zl - A) is stable if and only if det (I - z _ 1A) is stable, 
see [8]. 

It should be emphasized that the expressions Sjd and bja, even if called the transfer 
functions, will not be regarded as functions of complex variables but simply as 
rational functions over g in the indeterminates z and z" 1 , respectively. 

THE CHARACTERISTIC POLYNOMIAL 

As the name implies the characteristic polynomial is one of the most important 
characteristics of a system. It conveys information about the order of the system, 
its stability, and to some extent about the zero-input dynamical behavior. 

It is to be noted that the characteristic polynomial cannot be inferred from the 
transfer function of the system unless the system is its minimal realization. None­
theless we shall show that under certain natural assumptions a formula for the chara-



152 cteristic polynomial of the feedback system can be developed starting from the trans­
fer function description of its components. 

Fig. 1. The feedback system configuration. 

For this purpose consider the feedback configuration shown in Fig. 1, where SP 
denotes the system to be compensated and 01 is the compensator. 

Let the Sf be defined by the equations 

(11) xk+1= Axk + Buk, 

yk = Cxk + Dufc , 

where x e g" and let the 32 be defined by the equations 

(12) z*+1 = Fz, +Gek, 

uk = Hzfc + Je fc, 

where z e gT. 

Since the discrete closed loop must contain a delay of at least one time unit to be 
physically realizable, we shall agree on including this delay into the system to be 
compensated by assuming that D = 0 in (11), or that dS < da in (7), or that z _ 1 \b 
in (9). 

A detailed representation of the feedback system is given in Fig. 2. The state 
equation of the system shown therein becomes , 

where 

(13) 

tx k + l I j r Xfc 

Z* + lJ L Z J ' 

= ГA - BJC BHl 

"L-GC F J 

The characteristic polynomial of the system is defined as 

t = det (zl - K) e g[z] 

and has the degree 

(14) дč = rø + n . 



Assuming that both Sf and M are minimal realizations of the transfer functions 153 

(15) 

5 = C(zl - A ) _ 1 B = - , v â 

R = H(zl - F ) _ 1 G + J = - , 
V r 

Fig. 2. A detail of the feedback system. 

we have 

Then we claim 

â = det (zl - A) , 

r = det (zl - F ) . 

Theorem 1. Given the feedback system shown in Fig. 1, where both Sf and 3ft. 
are minimal realizations of S = bjde 5 { z - 1 } and R = j | r e g { z " ' } , respectively. 
Then the characteristic polynomial £ of the feedback system is given as 

c = dr + Bs. 

Proof . We apply the well-known formula [3] 

det T U V l = det Z . det (U - V Z ^ W ) 

LwzJ 



154 to compute 

c = det (zl - K) 

= det (zl - F ) . det[zl - A + BJC + BH(zI - FY 1 GC] 

= det (zl - F) . det (zl - A + BRC) 

on using (13) and (15). 

Making use of the formula [5] 

det (zl - A + BC) = det (zl - A). det [I + C(zl - A ) " 1 B] 

we obtain 

c = det (zl - F) . det (zl - A) . det (l + SR) 

and hence 

. л , âř + ЬS 
c = ra det = ar + bs 

âř 

by the assumption of minimal realizations. • 

The pseudocharacteristic polynomial of the feedback system is defined as c = 
= det ( I — z - 1 K ) e g [ z _ l ] and by reasoning analogous to that in Theorem 1 
we obtain 

(16) c = ar + bs , 

where S = bja, R = sjr and a = det (I - z_ 1A)', r = det (I - z - 1 F ) . 

In view of (10) it follows that 

c = (z-'a)(z-f) + (z-b)(z-»s) = z-<'» + "> c . 

Expression (16) has been obtained in [9] using a different argument. 

Example 1. Given the system 5" to be compensated as a minimal realization of 

and the compensator St as a minimal realization of 

0-5z + 1 0-5Z-1 + z'2 

R = 
z 2 + l-5z + 1 1 + l-5z _ 1 + z""2 

both over the field St. Then the characteristic polynomial of the closed-loop system is 

c = (z - 1) ( z 2 + l-5z + 1) + (0-5z + 1) = z 2 ( z + 0-5) 



and the pseudocharacteristic polynomial becomes 

c = (1 - z _ 1 ) ( l + L 5 z _ 1 + z~2) + z~'(0-5z-1 + z'2) = 1 + 0-5Z" 1 

Example 2. Consider the system Sf = {A, B, C, D} over ~\, where 

•P- B = 

C = [1 0] , D = [0] , 

S = 
z - 1 

and the compensator 9t = {F, G, H, J} over 5,, where 

F = [ - l ] , G = [ l ] , 

H = [1] , J = [0] , 

R = . 
z + 1 

It is to be noted that Sf is not a minimal realization of S. 

Then by definition 

c = det (zl - K) = det 
z - 1 0 - 1 
0 z - 1 - 1 
1 0 z + 1. 

= z2(z - 1) 

dr+ 6s = ( z - l ) (z + 1 ) + 1 = z 2 . 

The two polynomials do not coincide due to the nonminimal realization of S 
and there is no way of computing the actual characteristic polynomial via the transfer 
function representations. 

ASSIGNING A CHARACTERISTIC POLYNOMIAL 

Having established an expression for the characteristic polynomial of the feedback 
system we are interested in solving the problem of assigning a desired characteristic 
polynomial. This problem is also referred to as that of pole assignment since, in fact, 
we are assigning desired eigenvalues to the K matrix. 

The pole assignment by state-variable feedback has been solved in [2]. We recall 
that given a system (11) there exists a state feedback uk = — Lx t such that 
det (zl — A + BL) is a preassigned monic polynomial of degree n belonging to 
5[z] if and only if system (11) is completely reachable. 



156 Using a constant output feedback uk = — 3yk we cannot make det (zl — A + 
+ BJC) equal to an arbitrary monic polynomial of degree n belonging to 5 [ z ] , 
even under the stronger assumption that system (11) be a minimal realization [ I ] , 

W-
Thus we are naturally led to use a dynamical output feedback realized by a com­

pensator (12). This is the problem of pole assignment by dynamical compensation 
which is formally defined as follows: 

(17) Given the configuration of Fig. 1, where Sf is a minimal realization of S = Bj 
jde^lz'1}. Find a compensator M which is a minimal realization of some 
R e 5 { z _ 1 } such that the characteristic polynomial of the feedback system be 
equal to a desired monic polynomial £ e 3 [ z ] -

It will be shown that this is impossible in general. A condition for a minimally 
realized compensator to exist will be derived together with an effective algorithm 
to solve for the compensator. An interesting observation is that the compensator, 
if it exists, need not be unique. The restriction that 91 be a minimal realization is 
essential for otherwise the actual characteristic polynomial would not be given by 
Theorem 1. 

Theorem 2. Problem (17) has a solution if and only if the linear Diophantine 
equation 

(18) Bx + ay = c 

has a solution x°, y° such that 

dx° = dy° = dc - da. 

The compensator is then obtained as a minimal realization of 

x° 
R ш-

Уu 

and it is not unique in general. 

Proof . The proof is trivial in view of Theorem 1. It just remains to check that 91 
is a system according to our definition. Indeed, the condition dx° ^ dy° makes R 
physically realizable while (x°, _y°) = 1 guarantees that 91 is a minimal realization 
of R. The condition dy° = cc — da is then equivalent to (14). • 

It is to be noted that given a system Sf of dimension n, we cannot assign a charac­
teristic polynomial i of a degree less than n due to (14). Such a £ would leave no 
room for the compensator. 



Example 3. Consider the system over 3ft which is a minimal realization of 

z - 1 

and find a compensator >R of minimal realization so that c = z. 

We are to solve the equation 

x + (z - 1) y - z , 
which gives us 

x = 1 + (z - 1 ) f , 

y « 1 - f, 

for an arbitrary r 6 5l[z]. 

Since £a = 1, 8c = 1, we have to take a / such that 8y = 0, i.e. / = t 0 # 1. Then 

X = T0Z + (1 - T0) , 

>' = 1 - "to , 

Further ex SL 8y necessitates the choice T0 = 0. Hence 

X° = 1 , 

y° = i , 

and the minimal realization of R = 1 is the unique solution of our problem. 

Example 4. Now consider a minimal realization of 

s-1-
z 

over SR and find a compensator ffl of minimal realization which makes c = z2 — 1. 

Equation (18) reads 

x + z>> = z 2 - 1 

and the solution obtains as 

x = - 1 - zt, 

y = Z + t , 

for any t e SR[z]. 

Since da = 1, 8c = 2, we have to take a r such that 8y = 1, i.e. / = T,Z + r0, r, 4= 1. Then 

X = - T,z2 - T0Z - 1 , 

>> = (1 + T.) Z + T0 , 



and we have to confine ourselves to r, = 0 to get dx g dy. Hence all compensators result as 

a minimal realization of 

—T n z — 1 

for any real T 0 4= ± 1 . For T 0 = ± 1 the x° = ±z — 1, and y° = z ± 1 would not be relatively 
prime and hence the minimal realization of R would yield a different characteristic polynomial 

c = z ± 1. 

Example 5. Let us have the finite automaton over 32 described as a minimal realization of 

and try to assign the polynomial c = z .' 

We are to solve the equation 

x + z2y = z3 . 

Remembering that all computations are to be carried out in the modulo 2 arithmetics, we obtain 

x = z 3 ±z2t, 

y = t 

for an arbitrary / e 32 M-
Since da = 2, 8c = 3, we have to take a t such that dy = 1, i.e. t = T,Z + T 0 , T1 =fc 0, Then 

X = (1 + T l ) Z 3 + T 0 Z 2 , 

y = T,Z + T0 

and it seen that the only choice to get dx JJ By is z1 = l, T 0 = 0. Then, however, x° = 0, y° = z 
and we have destroyed the primeness of x° and y° because (0, z) = z. We conclude that the 
problem has no solution in the class of minimum-realized compensators. 

Indeed, R = 0/z = 0 would have the minimal realization -M = {0, 0, 0, 0} and the associated 
characteristic polynomial would become c = z 2 . 

On the other hand, there are nonminimal realizations of R = 0, e.g. 3t = {F, G, H, j } with 

F = [0] , G = [0] , 

H = [1] , J = [0] , 

that do yield the desired c = z 3 . This solution cannot be found on the basis of transfer function 

description, however. The resulting feedback system is degenerated and it is shown in Fig. 3. 

Fig. 3. The feedback system in Example 5. 

% 

z-1 

% % 
И 

zv 
И 



The problem of assigning a given pseudocharacteristic polynomial has been solved 

in [9]. It has always a solution since the compensator is not restricted by relation (14). 

CLOSED-LOOP STABILITY 

Consider the closed-loop system shown in Fig. 1 and apply an external input 
signal W to the system, see Fig. 4. Then all possible transfer functions are listed 
below in (20), the most important of them being denoted as 

(19) 

(20) 

K = 
SR 

1 + S R 

Y = KW, 

E = (1 - K)W, 

U = R(l - K) W. 

As mentioned in the Introduction the feedback system need not be a minimal 
realization of the transfer function K, even if both Sf and <M are minimal realizations 
of S and R respectively. Then the K does not fully describe the closed-loop system 
any more in that the system may contain certain parts which have no relation to K. 
Therefore, the K may conceal the closed-loop system instability. 

To illustrate the difficulties arising in the feedback system stability analysis, consider 
the following example. 

Example 6. Given the system S* to be compensated by 

0-5 

and the compensator 91 by 

S = 

R = 

z - 1 

z - 1 

both over the field Sfu 

Then 

к = 
0-5 

z + 0-5 

Fig. 4. The feedback system with an input W. 



160 that is, 

Y = 
0 5 

+ 0-5 
W, E = 

z + 0-5 
W , U = 1Ғ 

z + 0-5 

and one might get the impression that the overall system is stable. This is false, however. The 
characteristic polynomial of the system is given by Theorem 1 as 

t = (z - 1) z + 0-5(z - 1) = (z - 1) (z + 0-5) 

and it is not stable. 

What has happened? A minimal realization of S is 

A = [ l ] , B = [ l ] 

C = (0-5] , D = [0] 

and that of R becomes 

F = [0] , G = [1] 

H = [ - l ] , J = [l] 

The state-space equation of the overall system, which has dimension 2, reads 

+ Lwt , 

where 

[ Xk+Ì I _ j£ ГX/Л 
Zfc+J L-J 

_ ГA - BJC B H l _ Г 0-

~ L-GC ғ J L-o-

c ::a 

- ľ 
0 

rank [L, KL] = rank = 1 < 2 , 

the feedback system is not a minimal realization of AT, I — K, or R(\ — K). Hence the transfer 
functions are insufficient to describe the system. 

We have shown that stability of the transfer function K does not, in general, 
imply stability of the closed-loop system. Our next task is, therefore, to find addi­
tional conditions for K that would guarantee the closed-loop stability. 

One result frequently used in the literature but not always rigorously proven 
states that the feedback system shown in Fig. 4 is stable if and only if the transfer 
function K can be written in the form K = SM, where M is an arbitrary element 
of g + { z - ' } . This is true only for stable systems as the following counterexample 
indicates. 



Example 7. Consider the system over 3\ described by 161 

0-5 

and choose 

which is stable. Then 

s = 
z - 1 

м = ^ i 

K = °í, R= Z~l 

z - 0-5 

by virtue of (19) and the characteristic polynomial 

t = (z - 1) (z - 0-5) + 05(z - 1) = z(z - 1) 

is not stable. 

Otherwise speaking, the class of all transfer functions K that yield a stable closed-
loop system is, in general, less than K = SM and it is given in the following theorem. 

Theorem 3 . Given the feedback system shown in Fig. 4, where & and Si are 
minimal realizations of S = bja e g { z - 1 } and R = sjre ^ { z - 1 } , respectively. Then 
the feedback system is stable if and only if the transfer function K has the form 

K = bM, 1 - K = aN, 

where M and N are elements of g + {z - 1 } that satisfy the linear Diophantine 
equation 

(21) bM + aN = 1 . 

Proof . Stability of the feedback system is equivalent to stability of its pseudo-
characteristic polynomial c. 

Necessity: Let c be stable. We have 

K=-™- = - * - = bS-, 
1 + SR ar + bs c 

1 ar r 
1 - K = = = a - . 

1 + SR ar + bs c 
Denoting 

M =-, N = 

we obtain K = bM, 1 — K = aN. Since the c is stable both M and N are stable, and 
since K + (1 — K) = 1 equation (21) follows. 



Sufficiency: Let K = bM, 1 - K = aN, where 

M = - , JV = -
c c 

are stable and suppose to the contrary of what is to be proved that c has an instable 
factor e, c —- c0e. Then 

M = — , tf= — 
c0e c0e 

and due to the stability assumption the e must be cancelled in both M and N. 

It follows that e\r, e\s and since (r, s) = 1 by the assumption of minimal realiza­
tions, the e is a unit of ^ E 2 " 1 ] - Hence e is stable contradicting our hypothesis and, 
in turn, the c is stable. • 

The above theorem specifies just all possible transfer functions K that yield a stable 
feedback system. Referring to Example 7 with 

0-5 0-5Z-1 

z - 1 1 - z _ 1 

all admissible K are obtained by solving the equation 

0-5z_1M + (1 - z~ 1 )JV= 1 . 

By virtue of (5) the general solution is 

M = 2 + (1 - z _ 1 ) T , 

N = 1 - 0-5z_1T 

for an arbitrary T e g + {z ~x} and, therefore, only the K of the form 

K = z _ 1 [ l +0-5(1 - z - 1 ) T ] 

yield a stable system. TheK = 0-5z_1 in Example 7 does not evidently fall within the 
class. 

An interesting interpretation of Theorem 3 is as follows. 

Corollary 1. With the notation used in Theorem 3, let 

M = ^ , ( m 1 , m 2 ) = l , 
mt 

N = ^ , ( n 1 , n 2 ) = l , 
n, 



K= h , (kx,k2)=i, 
fei 

i - * = lf, (li,/2) = i . 
li 

Then we haue 

(22) c = m t(fl, s), 

(23) = » i ( 6 , r ) , 

(24) = k,(a, s) (b, r), 

(25) = h(a, s) (b, r). 

Proof . By Theorem 3, M = s]c and N = r]c. Then c = mA(c, s) = « t(c, r). 
Since c = ar + bs and (r, s) = 1 we conclude that (c, s) = (a, s) and (c, r) = (/>, r). 
Hence (22) and (23) follow. 

Further K = bs]c by (19). Then c = ky(c, bs) and we are to prove that (c, bs) = 
= (a, s) (h, r). To do so denote 

a = ax(a, s), b = bt(b, r), 

r = rt(/>, r ) , s = st(a, s ) . 
Then 

c = (air1 + b1sl)(a,s)(b, r), 

bs = hjSj^, s) (b, r) 

and because (a t , s t) = l , ( / j t , r t ) = 1 by definition and also (a,, bj) = l , ( r t ,S j ) = 1 
we conclude that the polynomials bisi and a1r1 + bisl are relatively prime. Hence 
(c, hs) = (a, s) (b, r) arid (24) follows. 

Further, /2// t = 1 — fe2/fei = (fet - k1)jki and hence lx = kx up to a unit 
of afc"1]. Then (25) follows. D 

Interpreting the (a, s) and (b, r) as the "zero-pole" cancellations in the cascade 
•S^and remembering that different polynomials c and fet indicate a nonminimal re­
alization, we can say that the closed-loop system shown in Fig. 3 is a minimal realiza­
tion of if if and only if there are no "zero-pole" cancellations in the cascade ^0t. 
In view of this interpretation Theorem 3 guarantees the closed-loop stability by pro­
hibiting unstable "zero-pole" cancellations. See Example 6. 

Before concluding this section we shall give further consequences of Theorem 3. 
Given a polynomial m e 5 ' t2"1] w e consider the factorization 

m = m + m~ , 

where m+ is the stable factor of m having highest degree and belonging to 3 [ z - 1 ] . 
This factorization is unique up to units of 5 [ z _ 1 ] , see [7]. 



164 Corollary 2. Given the feedback system shown in Fig. 4 where Sf and 0t are 
minimal realizations of S = bja e g { z - 1 } and R = sjr e g { z - 1 } respectively. Then 
the characteristic polynomial of the feedback system is stable if and only if the K 
has the form 

K = b~Mi, I - K = a~Nx, 

where Mx andNx are elements o / g + {z - 1 } that satisfy the equation 

(26) b~Mx + a~Nt = 1 . 

Proof . Set 

M - - * - , iV = ^ 
b+ a + 

in (21). Since l /a + and 1/6+ are units of g + {z _ 1 } , the M and JV are equal to the M, 
and Nt modulo units of ^{z"1}. Therefore, it makes no difference to solve 
equation (26) instead of (21), they are essentially the same. Q 

This corollary gives visually the least necessary predetermination of K and 1 — K. 
It is interesting that the stability condition in the form (26) has been first obtained 
in [11] using completely different arguments. 

In case £f is a stable system the statement of Theorem 3 greatly simplifies. 

Corollary 3. Given the feedback system shown in Fig. 4, where £? and & are 
minimal realizations of S = bja e 3f{z-1} and R = sjre g { z - 1 } , respectively, and 
let a be stable. Then the feedback system is stable if and only if the transfer 
function K has the form 

K = bM, 

where M is an arbitrary element of g + { z - 1 } . 

P r o o f . The a being stable, lja is a unit of g + { z - 1 } . Therefore, we can set 

N = N± 
a 

in (26) to obtain the equivalent equation 

bM + N2 = 1 . 

Here M can be taken arbitrarily within ~i+{z~1} since then 

N2 = 1 - bM 

always belong to ~{+{z~1} and is uniquely determined by M. Otherwise speaking, 
the condition K = bM is sufficient to guarantee the other condition 1 — K = aN. • 
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of Sf were stable, no predetermination of K would be necessary and the system could 

be "completely compensated". This is impossible, however, because z - 1 \b due 

to our agreement on incorporating the necessary delay into Sf. 

The above results are fundamental for the synthesis of feedback systems and their 

stabilization. The sections to follow are devoted to their applications. 

THE EXISTENCE OF A STABILIZING COMPENSATION 

We have seen that given a system Sf it is not possible to make the closed-loop 

characteristic polynomial equal to an arbitrary polynomial. The question now is 

whether or not the characteristic polynomial can be stable. The affirmative answer 

is plausible but the author is not aware of any direct proof. 

Theorem 4. Given the system Sf as a minimal realization of S = bja e ^{z^1}, 

there exists a compensator .3? which is a minimal realization of some R e 3;{z-1} 

such that the feedback system shown in Fig. 4 is stable. 

Proof . By definition, (a, b) = 1. Therefore, elements M,N always exist in g + { z - 1 } 

that satisfy equation (21). Then the transfer functions K = bM and 1 — K = aN 

satisfy the hypothesis of Theorem 3 and hence the feedback system is stable. 

The compensator yielding this K is given as a minimal realization of 

1 _ _ _ _ _ a bM _ M 

~Sl-K~~baN~~N 

by virtue of (19). • 

Example 8. Consider again the system Sf over 3t given by 

- f S 
and find all stabilizing compensators having minimal realization. 

The Diophantine equation 

0 ' 5 z _ 1 M + (1 - z'^N = 1 

has the general solution 

M = 2 + (1 - Z _ 1 ) T , 

iV = 1 - 0-5z--1T, 

whsre r e g + { z - 1 } arbitrary. Hence a minimal realization of 

д = ___________ 
1 - 0-5z - 1 Г 



166 is a stabilizing compensator for Sf regardless of T. Among all solutions, R0 = 2 is the one yiel­
ding least dimension of Si. The associated characteristic polynomial then becomes c0 = z. 

SYNTHESIS OF OPTIMAL FEEDBACK SYSTEMS 

The most important applications of Theorem 3 fall within the scope of optimum 
feedback system synthesis. Generally speaking, the closed-loop system must be stable 
and minimize an optimality criterion. It is, therefore, natural to first specify all 
possible transfer functions K that guarantee a stable closed-loop system via Theorem 
3. The freedom in choosing M and N can then be exploited for optimization. 

It will be shown in what follows that the optimal control strategy requires "zero-
-pole" cancellations between if and 0~ in order to minimize an optimality criterion. 
Thus the optimal feedback system has intrinsically a nonminimal realization. We 
have seen earlier, however, that unstable "zero-pole" cancellations would destroy 
stability of the closed-loop system. Thus the whole synthesis procedure is a compro­
mise between the two, i.e. only stable factors can be cancelled between if and M. 

As a simple and instructive example of the feedback system synthesis we shall 
consider the time optimal control problem: 

(27) Given the configuration of Fig. 4, where if, the system to be controlled, is 
a minimal realization of S = b\a e 5 { z - 1 } and the external input sequence is 
described as W = qjp e ^ z " 1 } . Find a controller & which is a minimal realization 
of some R e ^{z'1} such that the feedback system is stable, the control sequ­
ence U is stable and the error sequence E vanishes in a minimum time kmin 

and thereafter. 

For convenience denote (a, p) — d and 

(28) a = a0d , 

P = dp0 . 

Theorem 5. Problem (27) has a solution if and only if p0 is stable. The compen­
sator M is unique and is given as a minimal realization of 

R_ «o+*° 
Pob+y0' 

where x°, y° is the solution of the linear Diophantine equation 

(29) b'x + a0py = q + 

such that 8y° = minimum. 



Proof . Recalling (20), we have 

E = (l - K)W. 

To guarantee a stable closed-loop system we have to set 1 - K = aN for some 
J V e g + { z - 1 } . It follows that 

£ = aN^ = a0N ?- . 
P Po 

Since the error sequence is to vanish in a minimum time and thereafter, £ must be 
a polynomial of minimum degree. Therefore 

(30) N - -If- , 

a0q
 + 

where y is a polynomial of «5[z_1] to be specified later. This choice yields the error 

(31) E=a0q~y. 

Using the other stability condition of Theorem 3, K = bM with M e g + { z - 1 } , 
we can write 

E=W-KW=?--bMq 

pE = q — bMq . 

The £ is a polynomial of minimum degree whenever pE is so. It follows that bMq 
must be a polynomial of minimum degree. This is effected by the choice 

(32) M = - £ - -
b+q + 

where x is an unspecified polynomial of S [ z _ 1 ] as yet. 

To guarantee the closed-loop stability the M and N must obey the linear Dio-
phantine equation (21). Substituting (30) and (32) into (21) and taking (28) into 
account we end up with equation (29) governing the x and y. Inasmuch as £ is to be 
a polynomial of least degree, equation (29) should be solved for x°, y° such that 
dy° = minimum, see (31). This solution, if it exists, is unique and gives us the optimal 
controller as a minimal realization of 

R _ M. - ntv° 
N Pob

+yџ 



168 and the optimal performance measure 

fcmin = 1 + da~ + dq~ + dy° . 

In view of (20) 

rj = RE=M^!, 
Pob + 

which is stable if and only if p0 is stable. Then (b~, a~p) = 1 and, in turn, equation 
(28) has always a solution. • 

It is important that M be a minimal realization of R. Otherwise the characteristic 
polynomial of the feedback system would not be given by Theorem 1 and the closed-
-loop stability might be destroyed. 

The time optimal control problem has been solved in [9] in a completely different 
way. Succintly speaking, the explicit formula for the pseudocharacteristic polynomial 
c has been manipulated there so as to minimize fcmin while keeping the c stable. 
In that way we have avoided the use of Theorem 3. 

A similar procedure can be repeated for other problems of optimal control and 
filtering, namely the least squares control problem, minimum variance filtering 
problem, etc., see [10]. 

Example 9. Given the system Sf over 9i by 

z~l(\ + 0-5Z'1) 
5 = 

( 1 - z " - ) ( l - 0 - 5 Z " 1 ) ' 

find a controller 3t that makes the system output follow the reference signal 

1 - z " 1 

in a minimum time A:min. 

By Theorem 5 we are to solve the equation 

Z - 1 X + (1 - Z-*)y = 1 . 

The general solution reads 

X = 1 + (1 - Z - 1 ) * , 

y = \ - z~xt, 

where t eSR[z - 1] arbitrary. The solution satisfying dy° = minimum becomes 

x° = 1, 

yo = l . 



Ä ш l - 0 - 5 z -

1 + 0-5z" 

M = , JV = í , ІC 

1 + 0-5Z"1 1 -OSz'1 

t = z(z + 0-5) (z - 0-5), kmin = 1 . 

Note the "zero-pole" cancellations in the cascade &&, which cause a nonminimal realization 
of the closed-loop system. Since the cancelled factors 1 + 0-5z~x and 1 — 0-5z _ 1 are stable, 
the stability of c has not beed destroyed. 

Example 10. Given the system S? over D. by 

z - ' ( l - 2 Z - 1 - z-2) 

and solve the time optimal control problem for the reference signal 

1 
W = 

1 - z-1 

Since b~ = z " 1 (1 — 2z _ 1 — z- 2 ), we solve the equation 

z~\\ - 2Z" 1 - z-2) x + (1 - z- 1 ) y = 1 

and obtain 

/ = 1 +-3-Z"1 +\Z~2 . 

Hence 

_ i 
R = 

1 + f z - 1 V\z-' 

E = 1 + \z~x +\z~2, kmiB = 3. 

If the system were defined over the field Sft, b~ = z _ 1 ( l — (1 + yj2)z~1) and we would 
obtain 

R = 

J_ 
V2 

( l-(W2)--0(l + ̂ - - ) ' 
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E = 1+
l-±Jlz-\ kmin = 2. 

V2 
The difference in optimal strategies over the fields 0. and SK is due to the fact that the poly­

nomial 1 — 2 z _ 1 — z~2 is irreducible in Q [ z _ 1 ] while it has a stable factor in SR[z-1], which 
may be compensated. This is to emphasize the importance of the underlying field. 

An important feature of the paper is that it incorporates unstable systems into 
the framework of this theory. We shall use the following example to justify that 
it is no luxury to do so. In some situations we cannot afford to confine ourselves 
to stable systems. 

Example 11. Consider the system 5^ over the field 3ft described by 

z - 2 

S = 
1 - 0-75z -1 

and solve the time optimal control problem for the reference input sequence 

w=LL±2Kl 
1 - 0 - 7 5 Z - 1 ' 

The Diophantine equation 

z~2x + (1 - 0 -75Z - 1 ) j ; = 1 + 0 - 7 5 z _ 1 

has the solution 

x° = 1-125, 

y° = 1 + l - 5 z _ 1 , 

and, in turn, the controller becomes 

R = - M 2 5 . 
1 + 1-5Z"1 

The associated closed-loop transfer function is 

l - 1 2 5 z - 2 

K = 

and the characteristic polynomial 

1 + 0-75z" 

c - z2(z + 0-75) . 

It is to be noted that the optimal control strategy requires an unstable controller 
even though both the system y to be controlled and the reference input If are stable 
and minimum-phase. 
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The paper has given rigorous foundations for the analysis and synthesis of feedback 
systems in the frequency domain by using the algebraic approach. Potential difficul­
ties in stability analysis of feedback systems have been discussed and a fundamental 
theorem for the synthesis of feedback systems has been proved. An explicit formula 
for the closed-loop characteristic polynomial has been developed and its application 
to the pole assignment problem discussed. 

Most of the results established in the paper may have seemed intuitively obvious. 
This is due to the inherent simplicity of single-input single-output systems. A generali­
zation of the results to multivariable systems, which will be considered in a future 
paper, is by no means a trivial matter and the results are much less transparent. 

(Received October 2, 1973.) 
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