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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 

DYNAMIC TIME PARAMETRIZATION 
OF MANIPULATOR TRAJECTORIES 

M I C H A E L VALÁŠEK 

A fundamental time-scaling property of manipulator dynamics, a velocity profile scale modifica­
tion procedure for bringing the movement along the given geometric trajectory within dynamic 
and actuating realizability, velocity profile approximating procedure on the given path, dynami­
cally realizable velocity profile synthesis problem, nonlinear time scaling and its simple approxim­
ative solution have been developed. These procedures allow to use actuator torque limits and 
inverse dynamics for exact and efficient trajectory planning without repetitive dynamics re­
calculations. 

1. INTRODUCTION 

An intensive use of knowledge about actuator torque limits and inverse dynamics 
for efficient manipulator trajectory planning algorithms has been till now very rare. 
One past approach has used fixed velocity or acceleration limits of the joints [1], [2] 
what is at best a very coarse approximation of the true influence of actuator torque 
limits on movement speed. The other one has used the exact method of optimal 
control [3], [4], [5] what requires either iterations and in advance non-anticipated 
computational costs or again an approximation and substantial computational 
costs by dynamic programming in [3]. Only a promising algorithm of suboptimal 
approximations is developed in [6], [12]. 

There has been developed a fundamental time-scaling property of manipulator 
dynamics [7], [8], [12] that allows trajectory planning with exact and efficient use 
of actuator torque limits and inverse dynamics. The dynamic realizability of a pro­
posed trajectory can be easy determined and a simple algorithm to modify the scale 
of the velocity profile can be applied in order to obtain the proposed trajectory to be 
realizable. 

In the first part of this paper we describe the fundamental time-scaling property of 
manipulator dynamics for nonlinear time-parametrization of a geometric trajectory 
and the construction of a dynamically acceptable approximation of the proposed 
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velocity profile on a geometric trajectory. A simple trajectory planning procedure 
by compounding dynamically acceptable velocity profiles on the given geometric 
trajectory is included. 

In the second part of this paper we formulate the problem of dynamically accept­
able velocity profile synthesis on the given geometric trajectory (i.e. also the problem 
of nonlinear time scaling formulated in [7]) for instance in the case when a proposed 
shape of velocity profile cannot be realized because of actuator torque limits violation 
by any scale change. A simple efficient solution of approximation of this problem 
is included. 

2. TIME PARAMETRIZATION OF MANIPULATOR GEOMETRIC 
TRAJECTORIES 

Suppose that we have a desired manipulator geometric trajectory 

(1) R = R(p) 

where generally R = [Rh 0 ; ]
T , [R ,]T is the radius vector of points on manipulator 

geometric trajectory in Cartesian coordinates, [o,-]T is the manipulator gripper 
orientation in cartesian space and p is a geometric parameter 

(2) 0 = p = pmax . 

We distinguish the geometric trajectory (or path) that is the pure shape of a geo­
metric path in space, for example straight-line, circular arc, parabolic arc etc., and 
the trajectory that is the complete time behaviour of movement on the path in space 
containing information about velocities and accelerations for example straight-line 
movement with constant velocity, with constant acceleration, parabolic arc movement 
with deceleration by linear jerk etc. 

Between geometric trajectory variables (1) and the manipulator joint variables 
9 = [#i, 02, •••, 0„]T the kinematic equations 

(3) R = K(0) 

are valid. We suppose that there exists an inverse kinematic solution for (3) 

(4) 9 = K-\R). 

Therefore (1) includes together with radius vector the gripper orientation. The rela­
tions (l) and (4) can be however easily and without lost of generality replaced by 
the trajectory plan 

(5) 9 = 0(p) 

and further we can continue in the same way. In case that (5) cannot be obtained, 
e.g. we have redundant manipulator degrees of freedom and we cannot or we do not 
want to use the methods from Appendix 2, the solution is very difficult and probably 
can be achieved only by exact use of optimal control (cf. [6], [12]). 
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Further we have a requested velocity profile along the geometric trajectory 

(6) v = v(p) 

where v is the magnitude of velocity vector along the path incuding the sign, but the 
velocity does not change its sign (the movement doesn't reverse). 

Relation (6) is very useful for further consideration but it cannot be easily obtained; 
though we often need only its values in selected points. Either we choose velocity 
profile directy in the form (6) or we choose time dependence of trajectory length 
variable s 

(7) s = s( 0. 
where according to the definition 

« ЧTľ1 

Jo 1 dp 

áp = 

and 

(9) v-Ш 
v ' dř 

= v(t) 

Now if we know the inverse function to (8) we can generate function (7) according 
to time, from it by the inverse function to (8) find p and to it from (9) v. If we know 
the inverse function to (7) we can start with p, from (8) find s, from it by the inverse 
function to (7) obtain the time t and from (9) finally v. 

The dynamic equations of motion can be compactly written (cf. [9], [10]) 

(io) « = i{0) S + 0T c(e) 6 + v(e) 6 + g(e) 
where 

n = [nt, ..., n„]Tis the n-dimensional vector of joint torques corresponding to 
the movement point, 

1(6) is the (n, n) generalized inertia tensor, 
C(6) is the (n, n, n) generalized tensor in the formulation of the Coriolis and 

centrifugal forces, 
V\Q) is the (n, n) generalized tensor in the formulation of the viscous friction forces, 
g(0) is the w-dimensional position-dependent vector of gravity forces. 

The manipulator movement realizability is restricted by actuator torque limits that 
can be generally position — and velocity-dependent. For example, for the most 
often DC electric motors with permanent magnets the restrictions have the form 

(11) n~ - F(9) 0 ^ n^ n+ - F(0) 9 

where 
n+ = [n+, n+. ..., n + Y and n~ = [n7/, n j , . . . , n ~ ] T are maximum and minimum 

constant torque limits, 
F(0) is the (n, n) generalized tensor in the formulation of velocity actuator torque 

dependency such as for the back EMF of electric motors. 
The generalization of (11) is described in Appendix 1. 
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We will synthetise dynamically realizable movement along the requested geometric 
trajectory as the time-parametrization of a geometric parameter p 

(12) p = p{t) . 

Differentiating from (l) 

(13) _ _ _ _ * _ _ 
dl dp d( ' 

Restricting R on [ R ; ]
T from (13) 

d[R ;]
T _ d[R ;]

T dp 
dt dp dt 

(14) 

But 

(15) 

and 

(16) 

IdJM 
dř 

= HP)\ 

dp 

dt 

d[R ;]
т 

dř \<P)\ dp 

dt d[Ä,] т 

dp 

d [ R ; ]
т 

âp 

- l/tøl • 

By considering the movement sign in (1) and (6) we can determine (16) in such way 
that it is valid (including the sign) 

dp (17) 
dŕ 

= f{P)-

Because of easy computation of dynamically synthetised trajectory we will look 
for an approximation of (6) by supposing (12) in the form of a polynomial 

(18) p = P0 + p . í + P2t
2 + ... = _ P , . ť ' 

An approximation is necessary even in case that (6) is directly a polynomial because 
]d[R ;]

T/dp| can be very complex function. Because of validity of (16) we must suppose 
that |d[R ;]

T/dp| is nonzero, otherwise (1) is not a satisfactory geometric parametriza-
tion of the manipulator trajectory that cannot be used for manipulator movement 
synthesis. The approximation can however be as accurate as necessary by increasing 
the degree TV of polynomial (18) or by dividing the interval (2) in to more subintervals 
and using (18) in each of them (spline approximation). 

For determining the approximation of (6) we use information about (17) such 
as points (p.,/.) on (17), i.e. 

(19) Pi = I-vJ = KOI.--. 

k = 0 dt 
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or the derivatives in points of (17) because from (17) 

<20> £-sCW>-r£-?' 
df2 df dp df dp 

. - * 
and 

(21) 

4 = 
d_p 

df2 

k = 0 

g; = Іfe(fc-i)р,fГ2 = /iЄi = ^ / U 
ř: = 0 dp 

d_Mí) 
df2 

(23) 
d[R;] 

dp 

Both (19) and (21) are valid for some unknown time point tt which is to be determined. 
Other procedure to obtain either separate values dp/df and d2p/df2 for (19) and 

(21) or by using the inverse function of (7) all dependences (17) and (20) is the follow­
ing. From (8) 

(22) ds = ds dp 
df dpdf 

and 
ds ds 

dp _ d__ _ df 
df ds 

dp 

and ds/df is from (7). Further from (22) 

(24) 

and 

(25) 

where dp/df is from (23), d2s/df2 from (7), ds/dp = |d[R ;]
T/d/?| and d2s/dp2 = 

= d/dp|d[R;]
T/dp|. 

Now we transform the time-parametrization (12), resp. (18), by the following 
transformation with c = constant 4= 0 that scales the velocity profile 

d2s 
d í 2 ' ~ 

d2S | 
r d p 2 ' ' ds d2p 

dpdf2 

d2p 

d2s 
df2 

d2s 

dp2 ffî 
dř2 ds 

dp 

(26) 
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From (19) and (21) it is obvious that this transformation is satisfied by 

(27) P'k = ckPk. 

But now from (27) follows 

(28) p' = _ P'kt'
k = £ c*Pk (l) - _ pte - p 

k = 0 fc = 0 \ c / A = 0 

s-fH.i-'-ftf/.(-r ,-f.*p/-'-.ft 
d f A = 0 A = 0 \ C / A = 0 d f 

J2 / N N / A * - 2 N d 2 n 
i £ = _/c(/<-l)P^"2 - £fc(fc-l)c*P„(-) = _ c 2 ^ - l ) P / - 2 = C

2^-| 
df A = O A=O \ c j A=O df 

and from this and (1) further 

(29) R' = R 

d___dR_d__ dR dp _ dR 

df' dp' df' d/? df df 

d___ _ d 2 ^ / d p ' \ 2 _____ d V _ d_R / dp \ 2 dff _ d_V _ 2 d_R 

df'2 ~ dp'2 \dt') dp' df'2 ~ dp2 \ dt) dp ° df2 ~ ° df2 

and finally from (4) 
(30) 0' = 0 

___ _ ___V_) __ _ __ 
df' dp' dt' dt 

d_0' _ _______ f__\2 dK~\R') ___[ _ c2 d_6 

dt'2 ~ dp'2 \dt') + dp' dt'2 ~ ° dt2 ' 

Using (30) in (10) and (11) we obtain 

(31) H' = 7(0') 0' + 0'T C(0') 0' + V(9') 0' + g(6') 

n' = c2(I(0) 0 + 0p C(6) 0) + c(v(e) 0) + g(0) 
and 

(32) «" - F(9') 0' _ n' _ n+ - F(0') & 

» - - c(F(0) 0) _ «' _ n+ - c^E(0) 0) . 

Analogically as in [7] we designate by 

(33) »_ = c2(/(0) 0 + 0T C(0) 0) = c2«_ 

n'b = c(V(0) 0 + F(9) 0) = cnb 

(34) nf = «+ - g(0) = »c
+ 

«_"' = « _ — #(0) = "<T 

the forces na dependent on accelerations and multiplications of velocities, the forces 
«_ dependent on velocity and the efficient torque limits «+ , n~ dependent only on 

159 



position. Restriction by actuator torque limits can be expressed 

(35) « ; £ c2na + cnb ^ nc
+ 

where particular members na, nb, « + , n~ are only position-dependent for the given 
trajectory plan (5) and determined time-parametrization (12). 

3. SCALING OF TIME PARAMETRIZATION OF GEOMETRIC 
TRAJECTORIES TO SATISFY TORQUE LIMITATIONS 

How fast or slow a manipulator can move along a trajectory is restricted by 
actuator torque limits. In order to determine the violation of the torque limits, 
the inverse dynamics must be solved and the computed needed torques compared 
to their limits. From these comparisons we are looking for the constant c in the trans­
formation (26) that brings the motion within the actuator torque limits. 

First we must determine the approximation (18) for the velocity profile (6) and 
trajectory plan (5). We describe how to determine the polynomial (18) for N S 4 
from the conditions (19) and (21). 

Case N = 1. We can choose only one velocity value in every interval 

p = 0 
át 

for t = 0 . 

We obtain (cf. Fig. la) 

(36) p = f0t 

The velocity profile is completely determined by the path parametrization (1). 

Case N = 2. A very important case because this approximation enables to obtain 

g(p) 1 

Fig. 1. The simpliest possible appro­
ximations of requested velocity profile. 

д(p) І 
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acceleration/deceleration (generally the change of velocity) that is different from 

the velocity profile implicitely involved in (1) and on the top of it by this simple 

approximation we do not need to know the function (6) (at most only two values). 

We can request the velocity at the start and at the end of the interval 

P - 0 , ^ - / = / i for f. = 0 
dt 

/> = Pmax, ~ = f = h for t2 = T= ? 
dt 

and we receive (cf. Fig. lb) 

(37) p=fit+f±zAt2 
4Pmax 

o < * < T = 2p™ 
h + h 

Case N = 3. We can choose three points in each of the intervals (for example at 

the start, at the end and between these) and we receive a system of nonlinear equations 

that can be solved but not so easy, or we can choose two points and one derivative 

what is however asymmetric and so we use the case N = 4, or we can choose two 

points and the time length T 

Case At = 4. We can choose two points and two derivatives at the start and at 

the end of the interval 

Рх-0, ?-/-/» 

п й2Р 
Р1 ' йё = ч = 41 

РЪ = Ртах , ~ = / = 12 
&1 

й2р 
Р2 = Ртах , ~ - Ч = Чг 

й(2 

for tx = 0 

for U ш T = ? 

and we receive (cf. Fig. lc) 

(38) p = / l M - i L ^ + qiт 
2 \ Т 2 ЗТ 

2~ .Í h - / l - ?lТ> 

4 Т 2 2T3 

< ř < T = 

Л + / 2 _ L / Г t / l + M 2 ! d g . - g 2 
12 

~ g2 

12 
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This case is equivalent to the approximation of (17) by Bezier's cubic curves. Similarly 
other procedures of curve fitting can be used. 

Now from the computed approximation of time-parametrization for each time 
t e [0; T] and each joint i we find the minimum and maximum scaling constant 
values of c that satisfy the torque limits by solving quadratic inequality (35) together 
with the condition 
(39) c ^ 0 , 

that expresses motion irreversibility. The result is an interval [c~(t), c*(t)~\, where 
any value inside this interval is a possible scale of the time-parametrization (12) 
for this joint and this point in the trajectory. This scaling interval may be violated 
by torque limits at other joints and times (or trajectory points). The resulting interval 
of scaling constant c for all movement is found by intersecting all such intervals 

(40) [c-,c+] = n[cr(t)^.-W] 

The intervals can be parametrized according to p instead of t. 
Thus we have the requested geometric trajectory (1) and the requested velocity-

profile (6). From that by the above described procedure we have derived suitable 
approximation (18) of this shape of velocity profile and we have calculated the inter­
val (40) of transformation (26) constant c. The intersection of all intervals (40) may 
be empty or c+ = c~~ = 0. If this happens, the movement along the given geometric 
trajectory with the given shape of velocity profile is unrealizable at any scale of this 
profile. If this interval is not null, the movement along the given geometric trajectory 
with the given shape of velocity profile is realizable with any profile scale within 
this interval. If c+ < 1, the velocities should be slowed down by at least the factor 
c + . If c~ > 1, the velocities should be speeded up by at least the factor c~. If c~ g 
< 1 5S c+ , the chosen scale of velocity profile is realizable or the movement can be 
speeded up by the factor c+ or slowed down by the factor c~. 

If we have the given geometric trajectory and the requested movement along this 
path by a rough shape of velocity profile even described in parts (for example accelera­
tion from zero velocity, then constant velocity movement and deceleration to zero 
velocity), we do not need to order the velocity profile (6) all at once, but we can 
compound the velocity profile from parts (in our example from three parts). We 
compute the admissible interval of profile scale for every velocity profile described 
separately. Now we can link up the scaled velocity profiles by satisfying at least 
the continuity conditions of position on the geometric trajectory and velocities, 
prospectively further continuity conditions. 

4. EXAMPLES 

The above procedure will be illustrated for the same two-link planar manipulator 
as in [7] (Fig. 2). The procedure can be easily applied to manipulators with more 
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degrees of freedom and more complex paths. This manipulator has two rotary joints 
with joint angles 0 t and 02 and parallel axes, so that the manipulator can generate 
movement only in x — y plane. Gravity is acting in the negative direction with 
magnitude g. The length, mass and moment of inertia about the proximal joint 
for each link are designated by /,-, mt and /,. 

Fig. 2. A planar two-link manipulator and a parabolic arc trajectory. 

m-,1-
+ 0 , !2+ 

m,/: 

The equations of motion are (cf. [7]) 

(41) „ 2 = 0 J I 2 + ^ c O i 

nx = 0. (lt +I2 + m2\\2 cos 02 + m ^ + " ^ + m2\\\ + 

+ 02(i2 + 1tS+^cos62\ -^l&lsme, + 

- mikh&A sin 0 2 + ll-ili cos (0. + 02) + lJ— + m2\ cos 6 A 

The inverse kinematic equation according to (4) are (cf. [7], [11]) 

Y 2 l. ,,2 _ 12 _ ,2 

(42) u — П = 

2.1Ü 

02 = a t a n 2 ( - V ( l - h2), h) 
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x = atan 2((\x + \2 cos 2 ) y - l2 sin 02x, (h + lг c o s i) x + l2 sin 2y) 

Г ðt 1 = _ J Г/2 cos (Øx + 2) h sìn (Øi + Щ p " 

LÖI + Ö2J ^/^sinø^L-/^050! - ř- s i n ö - J І A 
Г \ 1 = _ J П 2 cos ( x + 2) h sin ( i + 2 ) l p l + 

Lði + 2J /1/2sin 2 L - ' 1
c o s t - / i S І ПØ! J [ ÿ J 

_ J [hh cos 2 -l\ 1Г \ 1 
/ J . s i n . L - 1 ! - / i / 2 c o s 2 J L ( ö i + Ö 2 ) 2 J -

The parameters are \x = \2 = 0-5 m, m1 = m2 = 1 kg, Ix = Ix = mx\\\\2 + 
+ mxR-\\,R - 0-Ux,g = 9-8 m s ^ 2 . 

4.1. Straight Line Movement 

A straight line motion from [x0, >'0] = [0-5, —0-5] to [x1 ; yx~] = [0-5, 0] is to be 
generated from zero velocity into zero velocity. The straight line is parametrized 
such as p = s and the relations (14), (22), (24) are very simple. The torque limits 
for the actuators are nx = — nx = 8 Nm, and n2 = — n2 = 2Nm. A comparison 
between n + , n~ and na for the acceleration of 2 ms~"2 from zero velocity according 
(37) is presented in Figure 3. Carrying out the computations in (35) and (40), it is 
found that [c~, c+ ] = [0, 0-6976]. The limitation c+ = 0-6976 arises from joint 1 

Torque 
Nm 

5 

Torque 
Nm f 

1 

n a 1 

-Time 

' d 

-a2 0.7 s 
-•-Time 

Fig. 3. Torque profiles for acceleration on straight-line trajectory of 2 ms - 2 from [x,y] 
= [0-5, -0-5] to [0-5, 0] when n+ = ~n~ — 8 Nm and «J = - n j == 2 Nm. 
a — joint 1 — « + , n~ and na versus time, b — corresponding ones for joint 2. 
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at the time t = 0 s. Thus the fastest realizable acceleration is 2.06976 2 = 0-9733 ms~ 2 

The relation between n*, n~ and na for the motion at constant velocity l m s " 1 

is depicted in Figure 4. The interval of factor c is [c~, c + ] = [0, 3-4531]. The limita-
Torque 

Nm L 

Time 

=!——Time 

b c2 
Fig. 4. Torque profiles for a constant velocity movement of 1 ms""1 with other conditions the 

same as in Figure 3. 
Torque 

Nm i 
5 

0.5 0.7 

Vd 
-"-Time 

' d 

Torque 
Nm 

1 

Fig. 5. Torque profiles for a deceleration movement of - 2 ms 2 with other conditions the same 
as in Figure 3. 

: 

- _ n c 2 

_ _ n Q 2 0.5 
> — * - ~ 

0.7 s 

nČ2 
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tion c+ = 3-4531 arises from joint 2 at the time t = 0T125 s. Thus the fastest realiz­
able constant velocity is 1. 3-4531 = 3-4531 ms" 1 . Comparison between n + , n~ and 
na for the deceleration of — 2 m s - 2 into zero velocity according (37) is shown in 
Figure 5. The interval of factor c is [c~, c+ ] = [0, 3-0371]. The limitation c+ = 
= 3-0371 arises from joint 1 at the time t = 0 s. Thus the fastest realizable decelera­
tion into zero velocity is 2 . 3-03712 = 18-4476 ms"1 . By compounding investigated 
velocity profiles we can synthetise the movement for example as follows — first 
the acceleration of 0-9733 ms" 2 from zero velocity into the velocity of 0-5 ms" 1 

for the time of 0-5137 s, then the motion at constant velocity of 0-5 ms" l and at the 
end the deceleration of —18-4476 ms" 2 into zero velocity for the time 0-02710 s. 
During acceleration and deceleration the manipulator covers the path of 0-1284 + 
+ 0-0068 = 0-1352 m. The remaining path of 0-5-0-1352 = 0-3648 m the manipu­
lator covers at the constant velocity of 0-5 ms" l during the time interval of 0-7296 s. 

4.2. Parabolic Arc Movement 

A parabolic arc movement in Figure 2 with the velocity profile determined by 
a linear jerk, by a zero jerk at the end of motion and by zero velocities at both ends 
of the trajectory. The parametric equations of the path are 

(43) x = 0-5 - p + p2 

y = -0 -5 + 0-5p2 

0 = p < 1 . 

The requested velocity profile v and arc length time dependence s are determined 
according (7) and (8) (the length of arc is 0-77015 m) 

(44) v = 0-77015(4T3 - 12T2 + 8T) 

s = 0-77015(T4 - 4T 3 + 4T2) 

0 = T <. 1 . 

The time parametrization of p can be approximated according to (38). For computa­
tion of the needed values we use (23) and (25), where ds/dp = -J(5p2 — 4p + 1). 
It can be easily found that 

dpi 

ãl = Л «- o, 
p = 0 

dP\ = q i = 8 . 0-77015 = 6-16120 , ^ 1 = f2 = 0 and 

= q2 = - i 0-77015 = -2-1783 . 

d t 2 | P =o d ř | p = 1 

á^p 
dř2 

Thus 

(45) p = 3-0806í2 - 2-8188í3 + 0-6920í4 

0 g / < l -2s . 
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Now by (45) we can generate the motion and by (35) and (40) we determine the 
interval of factor c as [c~, c+ ] = [0, 0-916] where the limitation c+ = 0-916 arises 
from the joint 1 at the time of 0-480 s. We must scale down the time parametrization 
(45). According (27) the realizable time parametrization is 

(46) p = 2-5848/2 - 2-1665/3 + 0-4872.4 

0 < t < 1-31 s. 

The comparison among the requested profile of velocity (44), the approximated 
profile of velocity (45) and the scaled profile of velocity (46) is shown in Figure 6. 

Fig. 6. Velocity profiles for a parabolic arc movement in Figure 2. The comparison among the 
requested velocity profile t>(44), the approximated one va (45) and the scaled one vs (46) versus 

parameter p is shown. 

Not very nice approximation is due to a very bad implicit profile of velocity involved 
in (43). For better approximation of the velocity profile shape (44) would be ne­
cessary to subdivide the interval of p. 

SYNTHESIS OF DYNAMICALLY REALIZABLE TIME 
PARAMETRIZATION OF GEOMETRIC TRAJECTORIES 

According to the above described procedure we can determine whether the movement 
along the given geometric trajectory with the given shape of velocity profile is possible. 
If the movement is impossible for the given shape of velocity profile (i.e. for the given 
velocity profile with any constant scaling factor), does there exist any other velocity 
profile for which the movement along the given geometric trajectory is possible? 
We shall try to answer this in what follows. 

The relation between dp/dt and d2pjdt2 in (35) is fixed for the given shape of 
velocity profile. By its varying we can get any shape of velocity profile. Let us de­
signate dpjdt = 41 and d2pjdt2 = d2. Employing (35) together with (29)-(34) 
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wa can write 

(46) .- - , ( 9 ) s ( m í^ífi + (íOfiť m
 ó-£^íi) n 

dp2 \ dp J dp 

(47) 

where 

+ ((-(#, + m 23S) ., + (/(tf) Í O S ) . . s .• - ,« , ) 

n ; á Ad2 + JBdi + Z)<i2 < nc
+ 

p2 / D \ 2 p2 
wr= + —í- < A; (d , + —- | + D;d2 < n i + - ! -

4A ; " V 1ÁJ ~ 4A, 

dp 

dЖ-^it) 

[A;] = A = z ( ö )^) + (^)Jc(ö) 

[ßЛ = Д = (F(0) + F(ø)) 

[D ; ] = ö = 7(0) d-Г-ҶД) 
dp 

The relation (47) is with the condition d_ ^ 0 in the plane dx — d2 for joint i the 
domain in Figure 7. But for the other joint there can be acceptable another domain 
and the admissible domain for the given position is found by intersecting the domains 

J1 

Fig. 7. A possible mutual relation between Fig. 8. A possible mutual relation between 
dx = dp/dt and d2 = d2p/dt2 for one joint dx and d2 for one position and more joints, 

and one position. 

of all joints (see Fig. 8). i.e. the domain in the plane with parabolic arc boundaries. 
Such domain is for every position on the geometric trajectory. In one such domain 
for one position d_ and d2 can fill all points. The mutual position of <f t and d 2 
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for one time behaviour of p for the domains of different positions is however depen­
dent, because between d, and d2 the differential relation is valid. 

Finding of the domain boundary of possible functions in the functional space, 
that satisfy the conditions (47) for all positions on the path, is a very difficult problem. 
We can however find different approximations of the solution of this problem. 
A very simple one is the following. 

We intersect the domains (47) for all positions in some segment of the geometric 
trajectory. We receive a general domain in the dt — d2 plane. In this domain we place 
the rectangle ABCD with sides parallel to the coordinate axis (cf. Fig. 8). This is 
possible in different ways and this can be used for continuous attaching of approxima­
tive rectangles according to the reached velocities in intervals on the all trajectory. 
Now the admissible velocities and accelerations on the all trajectory segment can 
change independently in the limits 

(49) Po rg p = Pf 

diA = d1D = dl S di S dX = d1B = dlc 

d 2 4 = d2B = d2 ^ d2 g d2 = d2D = d2C . 

For the synthesis of the time parametrization of p we can use relations (37), where 
Pmax — Pi ~ Po a n d where the start velocity f1 and the end velocity f2 in the interval 
satisfy 

(50) 2(pt - p0) d2 £fl-f\£ 2(Pl - p0) dt . 

It is possible to construct further approximations in the similar way. 

Another problem is the construction of a suitable rectangle or rather the general 
domain valid for the all trajectory segment. Again we can use the following approxima­
tion. If for one joint the parameters of two domains (47) 1 and 2 (in two positions) 
satisfy 

(51) D, > 0 , D2 > 0 

-*a s 4- > o 
D2 Dt 

Bi^B, 

nk^"k or ^ ^ 
D2 Dt D2 D1 

then the upper parabolic boundary of the domain in Figure 7 for the parameters 2 
is all within the domain for the parameters 1 or the lower parabolic boundary of the 
domain in Figure 7 for the parameters 1 is all within the domain for the parameters 2. 
For other combinations of signs in (51) analogical considerations are valid. By using 
of this property we can find the parabolic boundaries (if (51) is valid then the boundary 
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parabolic arcs have the parameters max AJD, max B, min n*jD and min A\D, 
min B, max n~ JD) as in Figure 8 for one position, but now valid for the all trajectory 
segment. The intersection for all joints we find easily. 

We have also derived the solution of the problem of nonlinear time scaling formulat­
ed in [7]. 

6. EXAMPLE 

In [7] there is an example of an unrealizable movement at any (constant) velocity 
for the same manipulator and the same straight-line path as in Section 4,1. The actua­
tor limits were nf = — n\ = 6 9 Nm and n2 = — n2 = 1 Nm. We shall show that 
there does still exist such a velocity profile which enables the movement along this 
straight-line. 

Using the considerations (51) the admissible (approximated) domain of dt and d2 

for the whole of straight-line is constructed in Figure 9. From Figure 9 it is apparent 
that only the movement with deceleration is realizable and thus the following time 
parametrization of the straight-line with the geometric parametrization p = s 
according to (37) is dynamically admissible 

(52) p =2t - Q-8t2 

0 S t = 0-282 s 

The time parametrization (52) is illustrated in Figure 9 as the line BA and its re-

(-.(ms-1) 

Fig. 9. An approximated domain of possible d± and d2 for both joints and for the whole straight-
line movement from [x, y] = [0-5, —0-5] to [0-5, 0] when «jh = —«f = 6-9 Nm and n2 = 

= — no = 1 Nm. 
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Fig. 10. Torque profiles for deceleration on straight-line movement as in Figure 3-5 of -1-6 ms 
from the velocity of 2 ms - 1 when nf = — n~ — 6-9 Nm and nf = -n2 = 1 Nm. a — joint 

1 and b — joint 2 as in Figure 3. 

alizability is demonstrated in Figure 10 where it is shown the comparison between 
n*, n~ and n„ for both joints. 

7. CONCLUSIONS 

The time-scaling property of manipulator dynamics allows to use the actuator 
torque limits and inverse dynamics for an exact and efficient trajectory planning 
without repetitive dynamics recalculations. In the first part of the paper there are 
described a simple algorithm for velocity profile scale modification so that the 
movement to be dynamically realizable along the given geometric trajectory and 
several procedures for an approximation of the given velocity profile on the given 
path as well. In the second part of the paper the problem of dynamically realizable 
velocity profile synthesis along the given geometric trajectory and its simple approxi­
mative solution are presented. This is also the solution of the problem of nonlinear 
time scaling formulated in [7]. It is also possible to use the described procedures 
for a manipulator geometric trajectory planning in the space or modifications of 
unsuitable manipulator paths [8]. 

APPENDIX 1 

If the-actuator torque limits cannot be written in the simple form (11) as in the 
case of permanent magnet dc electrical motors we have instead of (11) a more complex 

171 



inequality. The actuator torque limits are given by the limits of the actuator control 
variable and the actuator dynamics is determined by a differential equation. Generally 

(53) «- £H(n, — ,...,0, &,&, 

where 

u+ = [u + , u +,..., u + Y and u~ = [w7/, u j , ..., u,7]T . 

are maximum and minimum constant torque control variable limits, and H is the 

differential equation of the actuator torque dynamics written as a vector. Never­

theless we can use the above developed theory. 

According to the considerations in (28) —(30) 

(54) * * ш t , t o ,• = 0 , 1 , 2 , 3 , . . . 
àťJ âtJ 

andfrom(31)-(34) 

(55) ^ ü . = C І + 2
 d Ч | c.i + l d Ч , CJ^£ 

àťJ átJ àtJ átJ 

and 

(56) 
d=è^ + ö-Ą+ -A + ... 
dř Ô õ д 

Substituting (54) and (55) into (53) we obtain instead of the quadratic inequality 
(35) a more complex inequality for the scaling constant value of c (for example 
in the case of non-negligible inductance of electrical motor we obtain the third 
degree inequality), but other considerations and procedures are still valid. 

APPENDIX 2 

If there are more joint variables than trajectory variables, i.e. the kinematic equa­
tions (3) have infinite number of solutions, we speak about redundant degrees of 
freedom by the manipulator. In this case equations (4), (5) are not valid and we cannot 
use the above described theory. The simpliest way how to obtain equations (4), (5) 
to be valid in this case is to add further conditions to the equation (3) in order to 
make the solution of (3) unique. 

We must distinguish two cases. Either the number of joint variables of the manipu­
lator is less or equal to 6 or is greater than 6. Because every robot task has its geo­
metric orientation which however can be at first not specified, the first case of re­
dundancy can be easily transferred into unique solution of (3) by adding the informa­
tion about orientation, i.e. about the orientation of robot gripper. The orientation 
of the robot is at least given at the both terminal positions and between them the 
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behaviour of orientation can be replaced by the linear or other interpolation function 
of the geometric parameter p between these terminal orientations. 

The truly redundant case is the second one. In this case even the complete in­
formation about the robot orientation is not enough for the uniqueness of 
the solution of (3). In order to obtain this we can either prescribe the motion of 
other points or bodies of the manipulator in the form (1) or prescribe the behaviour 
of the redundant degrees of freedom in the form (5) or use these redundant degrees 
of freedom for the minimization of some performance index. 

The first possibility can be very difficult especially if the number of redundant 
degrees of freedom is not equal to the number of degrees of freedom of whole number 
of points or bodies. The second possibility is very easy and natural, e.g. we prescribe 
the complete position of the manipulator in the initial and terminal positions and 
the behaviour between them is prescribed as a linear or other approximation function 
of the geometric parameter p as in equation (5). These methods enable us completely 
to use the described theory of the first part of the paper in the case of redundancy. 

There could be difficulties if we look for the synthesis of dynamically realizable 
time parametrization of geometric trajectory according to the second part of the 
described theory. The choice of the behaviour of redundant degrees of freedom can 
make this synthesis unsuccessful however there exists a solution of this synthesis. 
In this case we must use the third possibility and formulate the task as an optimization 
one and look for an admissible solution of it. In the whole complexity it is the problem 
of optimal control [12]. Such optimization problems has infinite number of para­
meters. But we can formulate a simpler optimization problem only with finite number 
of parameters which can make use of above described theory. We describe the 
behaviour of redundant degrees of freedom by an approximation function of the 
geometric parameter p as in (5) which is determined by a finite number of parameters. 
Such approximation function can be a spline function the optimization parameters 
of which are the coordinates of its node points in the space and its own parameter 
is the geometric parameter p. This spline function can describe the motion of further 
points or bodies of the manipulator as equation (l) or the behaviour of redundant 
degrees of freedom as equation (5). By the change of these parameters we change 
the shape of redundant degrees of freedom behaviour. The results of Section 5 
can be applied and are just parametrised by these optimization parameters, i.e. 
the domains as in Figure 8 or Figure 9 are parametrised by them and we search 
the solution not in one domain but in many domains according to these parameters. 
According to them we can search the minimum of some performance index, e.g. 
energy consumption, or the dynamically realizable time parametrization of the 
manipulator motion which has other desired property, e.g. zero deceleration, maxi­
mum velocity etc. 

(Received March 5, 1986.) 
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