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\ 

THE DAMPED MODIFIED ITERATED KALMAN 
FILTER FOR NONLINEAR DISCRETE TIME SYSTEMS1 

M Y O U N G H O O H AND U J I N C H O I 

The modified iterated Kalman filter, which will be called MIKF for brevity, is derived 
from the modified Newton method to approximate a maximum likelihood estimate. The 
MIKF is also obtained by an iteration scheme for the extended Kalman filter equations. 
A convergence analysis of the MIKF is given. By the damping method, we can reduce the 
total CPU time needed to estimate the state variables or may even obtain a convergent 
scheme when the MIKF diverges. A numerical example shows the effective convergence 
behavior of the damped MIKF. 

1. INTRODUCTION 

The extended Kalman filter (EKF) is a well-known method for estimation of un­
known state variables in nonlinear discrete time systems. Although the EKF gives 
efficient estimation properties, it converges slowly or even diverges in particular prob­
lem. To achieve better convergence performance, a higher-order estimation technique 
is used despite of computational complexity. The comparative convergence perfor­
mance of the EKF and the higher-order methods, the iterated and second-order 
Kalman filters, can be found in [1] and [4]. 

The damped modified iterated Kalman filter is introduced to make a compromise 
the accuracy and complexity between the extended and iterated Kalman filters. The 
derivation of the MIKF is based on the modified Newton method for approximating 
a maximum likelihood estimate, and it 's convergence analysis is given. The modified 
Newton method was first considered by Kantorovich and the error bounds for this 
scheme ^were provided by Smooke [9]. The MIKF is also obtained by an iteration 
scheme for the EKF formulae. When a single iteration is performed, the modified 
iterated Kalman filter reduces to the EKF. 

By the damping method for convergence acceleration, we can reduce the total 
CPU time needed to estimate the state variables or may even obtain a convergent 
scheme when the MIKF diverges. The damped MIKF shows better convergence 
behavior than the EKF and requires less calculations than the iterated Kalman filter 

This studies were supported in part by the Wharangdae Research Institute Program, Korea 
Military Academy. 
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(IKF) to attain a given error tolerance. The decision as to which of the three types 
of methods should be used depends on several factors, including convergence and 
computational efficiency. The bistatic ranging example is included in this point to 
illustrate the difference between the EKF, the IKF and the damped MIKF algorithm. 

2. PROBLEM DESCRIPTION 

Consider the following nonlinear stochastic system described by the state-space 
model: 

Xk+i = fk(xk) + wk) k = 0 , 1 , . . . (1) 

Uk = hk(xk) + vk, k = 0,l,... (2) 

where k denotes time, xk is the n x l state vector, yk is the rax 1 observation vector, 
fk is the nonlinear vector valued function, hk is the nonlinear measurement vector, 
and wk and vk are the mutually independent zero-mean guassian white noise vectors 
with variance matrices 

Qk = E[wkw
T

k] (3) 

Rk = E[vkv
T] (4) 

in which E[-] represents the expectation and superscript T denotes the transpose of 
a matrix or vector. Let xk be the n x l estimate vector. 

Let hk be third-order differentiate. It is assumed that xk,yk,Pk and Rk are 
known where xk and yk are independent gaussian vectors with [1] 

xk ~ N(xk,Pk) (5) 

yk ~ N(hk(xk),Rk). (6) 

The purpose of this paper is to obtain an improved estimate and corresponding 
estimation error covariance of the state vector by using the damped MIKF. 

3. THE MODIFIED NEWTON METHOD 

The problems of finding the simultaneous solution of n nonlinear equations and 
optimization problems for nonlinear multivariate functions are very closely related 
to each other. Specifically, the problem of finding the minimizing point of a nonlinear 
function F(x) of n real variables is equivalent to the problem of solving the system 
of n nonlinear equations in n unknown variables 

VF(x) = 0 (7) 

where VF(x) denotes the n component gradient column vector of first partial deriva­
tives of the function F(x) [10]. 

The modified Newton method seeks the solution of (7) using the iterate procedure 

xi+1 = x{ - J~l(x°) VF(x{), 1 = 0 ,1 ,2 , . . . (8) 
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where x t + 1 is the (z + l)th solution iterate, J(x°) is the n x n nonsingular matrix 
of the second partial derivatives of F evaluated at x° and the initial estimate x° 
is given. Let J be the numerical approximation to the analytic Hessian matrix J . 
Then the modified Newton method can be rewritten as 

x t + 1 =xi-J~l(x°)VF(xi), i = 0 ,1 ,2 , . . . . (9) 

For a convergence analysis of this method we refer to [5]. Let n be an n x 1 free 
variable vector. Let F(n) be a function of n and observations Y(l), Y(2),..., Y(N), 
which will be derived from a likelihood function. The true value of n and the solution 
of the equation VF(n) = 0 will be denoted by x and x+, respectively. 

Theorem 3.1. Let F(n) be third-order differentiate with respect to n in the open 
ball U = U(x,fi) and assume that N~ld3F(n)/dnpdnqdnr, p, q, r = 1, 2 , . . . , n, is 
bounded in probability for all n ~ U. Assume that J(x°) is nonsingular and the 
(p, q) component of J(x°) converges in probability to a constant Cpq. In addition, 
assume that x° and x+ are \/N-consistent estimate of x, that is, \ /N(x0 — x) and 
\ /N (x + — x) are bounded in probability. Then N^l+1\xx - x+), t = 1,2,..., 
converges to 0 in probability. 

P r o o f . Expand VF(xl) about x+ as 

V. V ) = VF(x+) + J(x+) (x
i-x+) + ̂  | £ > » - x+)dJ(n*)/dnr 1 (x l -x+) (10) 

where 17* lies between x+ and xl
r. We also expand J(x+) about x and find 

n 

J(x+) = J(x) + £ > + - xr)dJ(n**)/dnr (11) 
r = l 

where n** lies between xr and x+. 
Substituting (11) into (10) and the result into (9), we obtain 

x{ -x+ -J~l(x°)VF(xi) 

: [ / -J~" 1(x°)J(x)] ( x l ' - x + ) 

-J~~ V ) I X > + - ~r) dJ(n**)/dnr 1 (xl - x+) 

-\j~\x°)\Ťl{Xr - *t) dJtf)/d~r\ (x* - ž+) 

J~H*°) I Ž(*J - *r) dJ(fj)/dnr i (x* - x+) 

~J-l(x°) i E ( £ + - ~r) dJ(rT*)ld~r \ {z* - *+) 
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-\j~-\^)l^(xl-x+)dJ(Vn/dnrUxi-x+) (12) 

where fj lies between xr and x®. To prove convergence, we will use mathematical 
induction. We assume that N-"(a:1""1— x+), i= 1, 2 , . . . , converges to 0 in probability 
as N —+ oo. Letting i = i — 1 in (12) and multiplying both sides by N2(l+1)) i — 
1,2,..., we obtain 

N^i+1\xi-x+) = J-1 l^Ni(x°r - xr) dJ(r,)/dnr\ N*^-1 - x+) 

-J-1 I J2N^(x+ - xr) dj(n**)/dnr \ N^(xi~1 - x+) 

- i j " 1 I J2NH4'1 - *r) dJ(r,*)/dnr 1 N^a?*"1 - x+). (13) 

Since J'^x0) dJ(fj)/dnr, J-l{x*)dJ{rf*)ldnri and j"1^0) dJ(n*)/dnr are 
asymptotically bounded and N^x1-1 — x+) is bounded in probability, the whole 
terms on the right of (13) converge to 0 in probability. • 

4. DERIVATION OF THE MIKF 

For any a E Rn, we define the Euclidean norm of a to be the real number j | ot 112 = 
yaTa. Let a nonlinear function F(n) be given by 

m = iMitfiijj (H) 
where u : Rn —> Rn has continuous third partial derivatives with respect to all of its 
variables. Then we find that 

VF = 2(u')Tu. (15) 

Letting u'-(n) denotes the n x n Hessian matrix whose entries are the second partial 
derivatives of the jth variable of u, we obtain 

n 

(VF)'(rj) = 2u'(n)Tu'(n) + 2^T Uj(n) u'f(V). (16) 
j = i 

By dropping the second term, we obtain from (9) 

xi+1 = xl - (w'(x0)T
U

/(.r0))-1ti '(x i)Tw(.r i). (17) 

The term 

n 

2j2uj(x°)u'j'(x°) 
i= i 

is called the truncation error or perturbation matrix of the analytic Hessian at x°. 
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Adding xk to yk, we can define an augmented (m + n) dimensional observation 
vector 

yk 
Yk 

Xk 

Then it can easily be shown that 

Yk~N(dk(xk),Bk) 

where 

dk(xk) Bk = 
Rк 0 
0 Pк 

(18) 

(19) 

(20) hk(xk) 

Suppose that Pjt, Rk, and HTR^Hjc+P^1 are all invertible. The likelihood function 
is 

L(nk) = Cexp i-\(Yk - dk(nk)}7'B;1(Yk - dk(nk))\ (21) 

where nk is a free variable replacing Xk and C = (27r)~(m+n)/2|Hjfc|~2 is a constant 
independent of r)k. The logarithm of this likelihood function is 

\rvL(r]k) = -l-(Yk-dk(r1k))TBk

l(Yk-dk(r]k)) + \nC (22) 

The method of maximum likelihood is one of choosing an estimate xk for Xk which 
mpximizes L(r]k). Notice that maximizing L(rjk) is equivalent to minimizing the 
quadratic function 

T D - 1 , m i n ( n - dk(r)k)Y Bk

l(Yk - dk(nk)) (23) 

Thus a stochastic optimization problem described by maximum likelihood is diverted 
into a deterministic minimization problem represented by (23) [8]. 

We shall now derive the modified iterated Kalman filter by applying the modified 
Newton method (17) to the problem of finding the maximum likelihood estimate of 
xk. Comparing (23) with (14), we can define 

VF(rjk) = (Yk - dk(nk))TB^(Yk - dk(rjk)). (24) 

Consequently, u : Rn —• Rm+n and its first derivative are obtained as 

u(rjk) = B;*(Yk-dk(r)k)) (25) 

AVk) = -B^d'^k). (26) 

Substituting (25) and (26) into (17), we obtain 

. ' + 1 = ^ + ( 4 ( ^ ( 5 ; ^ ; ^ (27) 

where x^ = xk. Further simplification is obtained by denoting 

Hkti = h'k(xi), Hk = h'k(xl). (28) 
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We then have 

*(*i) = 
For an m x n matrix of the form 

<f\ 

Һ'Л4) 
i 

Hк, 
i 

(29) 

0-2 

A = 

0 

in which <rt- > 0, we define its pseudoinverse to be the n x m matrix 

- i 

A* = 

i 

øv 
1 

. - 1 

0 

In all of these matrices, elements not displayed are zeros. The pseudoinverse of 
a matrix is uniquely determined although the singular-value decomposition is not 
unique [6]. An m x n matrix A is said to have full rank if rank(A) = min(m, n). It 
is assumed that Hj^; is of full rank. Hence from (18), (20) and (29) we have 

.i+i _ 
'k — 

4 + W HkHk + PkT
l(Hl

ktiR-k\yk - hk(xk)) + Pk
l{xk - x\)) 

= (HTR-k
lHk + IT1)"1 (HliR-k

l(yk - hk{x\)) + HTR~k
lHkx\ + P~lxk) 

= xk + (HTR-k
lHh + P^y'HliR,1 

•fob - fc*(4) - Rk(Hl^HTR-k
lHk{xk - 4 ) ) . (30) 

Let us derive the error covariance associated with the updated estimate £ + . Dif­
ferentiating equation (23) with respect to nk and equating to zero, we obtain 

4Ы тsгҶn-4Ы) = o (31) 

which is the well-known maximum likelihood equation for xk. The following as­
sumption will be needed to get the error covariance of £-+. It is assumed that .r+ 

is sufficiently close to xk, so that hk{xk) can be expanded in a power series about 
x+ retaining only first-order terms. The measurement function hk(xk) may then be 
written as 

hk{xk) = hk{x~l) + Hk{xk - x\ Í32Ì 
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where Hk = h'k(xk) is a constant. 
Since x̂ " is simply the solution of (31), we have 

* ( * _ ) T * _ l P . - rf*(*?)) = HlRl\Hk(xk - x+) + p4j + P - 1 ^ , - x+) = 0. 

It is easily seen that 

x+ - x_ = (HTR^Hk + P^rHHjR^v, + P^.x* - x„)). (33) 

Hence the error covariance of x + turns out to be 

P+ _ Cov(x+-x_) 

- £[(x + - x _ ) ( x + - x _ ) T ] 

= (HJR^H,+p„-ir1(1-T Rr1^*^]^ XH„ 
+ P - ^ [ ( X _ - x_) (x_ - X_)T]P-1)(H,TP-1H_ + P " 1 ) - 1 

- (HlR-'Hk + p-1)-1 (34) 

where P_ = Cov(x_ — x_). We next derive an approximate error covariance of x\ . 
It is also assumed that an initial approximation xk is sufficiently close to x_ and xk . 
Then it can be proven that x\+1 converges to x_ and x^". Hence the values of h'k do 
not change much in a neighborhood of x£ and the effect of replacing H_i#- by H_ is 
small. By repeating the above process to get P+, we obtain 

Pi^^iHlRk'H. + P,1)-1. 

The modified iterated Kalman filter formulae are summarized as follows: 

x i+l _ „. , v. ./.,. _ _,./.*_ _ n.íiiS \*uTr>-l = ik + A'„i:(j/_ - hk(x\) - Rk(Hk<iYHl H^H_(x_ - x\)) (35) 

^ + 1 = (HlR^Hk + P,1)-1 (36) 

where 

J5TM = fti(4). --¥ = **(»*). KKi^iHlR^Hk + p-1)-1!^,1. 

The iteration process can be stopped when further improvement from additional 
iterations is small enough. The maximum number of iteration steps that the user 
will permit is necessary to avoid the possibility of the computation going into an 
infinite loop. 

Remark . A convergence analysis of the MIKF is entirely analogous to that of 
Theorem 3.1. 

5. THE EKF AND MIKF 

This section establishes the relation between the modified iterated Kalman filter and 
the extended Kalman filter. From (35) and (36) with * = 0, we obtain 

Хк + 1<к(Ук - hk(£k)) (37) 

P.+ _ (HTR-k
lHk + Pk-

lYl (38) 

+ _ 
k — 
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where 

Xk=x°k, Hk = h'k(xk), Kk = (HTR-k
1Hk + Pk

1)-1HTRk
1. 

By the matrix inversion lemma, the expression for Kk and Pk can be rewritten as 

Kh = PkHKHkPkHj + Rk)-1 (39) 
>+ 
k 

P+ = (I-KkHk)Pk. (40) 

Thus the MIKF reduces to the EKF when a single iteration is performed. 
We now obtain the MIKF through an iteration technique to improve the updated 

state estimate (37). The update equations producing the complete extended Kalman 
filtering are given by 

x+ = xk + Kk(yk - hk(xk)) (41) 

Kk = -E[xk(hk(xk)-hk(xk))
T] 

• {E[(hk(xk) - hk(xk))k(xk) - hk(xk))
T] + Rk}'1 (42) 

P+ = Pk + KkE[(hk(xk)-hk(xk))x
T] (43) 

where the caret (") denotes the expectation operation and xk = xk — xk [4]. Taking 
the Taylor expansion of hk(xk) around x\ produces the following 

hk(xk) = hk(x\) + Hk)i(xk - x\) + ... 

where Hkii = h'k(x\). Assuming that xk is close enough to xk, so that x\ converges 
to xk and the effect of approximating Hk>i by Hk is very small, we have 

\ hk(xk) * hk(x\) + Hk(xk - x\). (44) 

Multiplying the left side of Hk in (44) by Rk(Hj',)*HjR^1, we obtain 

hk(xk) S hk(x\) + R^H^yHjR^H^x, - x\). (45) 

Substituting (45) into (41), we obtain the iterative expression for the updated state 
estimate as follows: 

x%k+1 - %k + Kkti(yk - hk(xk)) 

= xk+ Kk)l {yk - hk(x\) - Rk(HlttfH
TRllHk(xk - 4 ) } • (46) 

Substituting (45) into (42), and using the matrix inversion lemma, we also have 

Kk,i = PkHlR-'HkHl.R^R^Hl.yHjR-'HkPkHjR^HkHl.Rk + H*)"1 

= (HTR;1 Hk+ (HTRk-
1HkH;tiRk(H

T>)*)-'P-1)'1 

• (HTRllHkH*k>iRk(Hltf)-1 HTR^HkHiti 

= (HjR^Hk + (HlR-'H.HliR^Hl^yy'p-1) H^RJ1 . (47) 
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Note that (47) differs from the gain matrix of the MIKF. In order to get asymptotic 
result, it is necessary to approximate HkRk HkHk {Rk(HkiY by identity matrix 
under hyperthesis .rl

fc

+1 is sufficiently close to xk. Thus we only obtain the following 
approximate gain matrix 

Kkti 2 (Hi Rk'Hk + P^)HitiRll. (48) 

Then we have 

:T Pl+L = Pk + KkiiE\(hk(xk)-hk(xk))il 

= Pk-Kk^R^HliYHlR^HkPk 

= Pk-(HlRk

lHk + p-l)-lHT

kR-k

lHkPk 

= {HliqlHk + P;1)-1 . (49) 

6. DAMPING METHOD FOR THE MIKF 

Although the MIKF shows efficient convergence behavior, it requires many calcu­
lations for treating system nonlinearities. To ensure convergence, we need to have 
a sufficiently close initial estimate to the state variable and the condition for being 
sufficiently close is not easy to check. To overcome these disadvantages, we apply 
the damping method to the MIKF. 

Let z be an n x 1 column vector, A = (a.j) be an n x n matrix and define the 
maximum norms of z and A by 

Ik lL = max \zi\ 
l < i < n 

\\A\L = m a x ^ l a - j l . 
1 <,i<-n І=l 

Smooke [9] presented an error estimate which bounds the size of the sequence of 
modified Newton iterates by the terms of a recurrence sequence scaled by the initial 
Newton step. From an error estimate for the modified Newton method, we take 

.<+! -4lL<^)l l4-4" ł IL» - = 1,2,... (50) 
where w(c) is a function of c and c is the constant satisfying the Kantorovich hypothe­
ses. In damping, we use the relationship (50) as a repetition criteria to accelerate 
the convergence of the MIKF. If, after (i + l)th iteration procedure, we find that 
\\xk

+ — xi | | does not satisfy the inequality (50), then we choose xl

k as a new initial 
estimate and restart the MIKF algorithm. 

The damping parameter w(c) is to be chosen to make x\ converge to xk as rapidly 
as possible. The exact bounds of w(c) for the MIKF was not found. However, 
carrying out experiment with several values of w(c) and comparing the effect on 
the convergence speed, we can choose an optimal value of w(c). As a result, we can 
encourage the speed of convergence or may even avoid the divergence caused by a 
poor initial estimate. 
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7. A NUMERICAL EXAMPLE 

To compare the damped modified iterated Kalman filter with the extended and 
iterated Kalman filters, we consider a two-dimensional bistatic ranging problem 
when noisy measurements are taken. This example was studied algebraically by 
Bell [1]. The iterated Kalman filter formulae are given as follows: 

where 

.*'+- — Xk + Kk>i(yk - hk(xk) - Hk>i(xk - x\)) 
pi+l _ - (I-Kk>iHk>i)Pk 

•1 \ -1 tlT D - l Hkii = h'k(zk), Kkìi - (HІҖ^H^І + Ph-
l)-lHІtiR-k 

curгent objectи íO.l) 

/ 
/ 

/ 

/ 
/ statě estimate • (0,/í) 

/ 
/ 

Vl 
(-1,0) 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
X 

(1,0) 

(51) 
(52) 

ranging stations 

Fig. 1. 

The object being tracked is currently located at x and two ranging stations are 
sited at (—1, 0) and (+1, 0). The current object state, state estimate, and the current 
measurement are taken as 

x = 
' 0 " 

1 , x-
' 0 ' 

, У = 
' 1 ' 

1 (53) 

where /3 ~ N(2.0, 0.12) or (3 ~ N(0.5, 0.12). The covariance matrices of x and y are 
given by 

r ' n 1 *-IS "J (54) P- 1 0 
0 1 

where x and y are independent and p ~ N(0.01, 0.0012). The measurement function 
h : R2 —> R2 and its derivative are taken as 

W = 5 L ( 6 - i ) a + đ 
h'(ţ) = б + i 6 

б - i 6 
(55) 

where £ = [£j £2^• We chose w(c) — 0.25 and Monte Carlo simulation experi­
ments of 100 runs were performed. The computations were performed on a SUN C 
computer. 
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The comparative convergence performances of several types of filtering algorithms 
are shown in Figure 2 and Figure 3 with 0 ~ N(2.0, 0.12) and (3 ~ N(0.5, 0.12), 
respectively. 

This example shows that the convergence speed of the damped MIKF is slower 
than that of the IKF in the first few steps, but it becomes quite fast as the number 
of iterates increases by the damping method. Figure 3 also demonstrates that the 
damped MIKF converges while the MIKF diverges because of an inappropriate initial 
estimate. We obtain similar results for different values of w(c),/3a,ndp. 

EKF: - 0 -
IKF: -И-

Damped MIKF: 

* И И И И * 

4 6 
Iteгation 

Fig. 2. 

ln||.ť -

Damped MIKF 

• O O O O O O O O O O O O ^ 

6 8 10 
Iteгation 

8. CONCLUDING REMARKS 

Fig. 3. 

We have derived the modified iterated Kalman filter from the modified Newton 
method to approximate a maximum likelihood estimate, and showed a convergence 
analysis of the MIKF. Applying the damping method to the MIKF, we can reduce 
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the total CPU time needed to solve a given estimation problem or may even obtain 
a convergent scheme when it diverges. 

A numerical example illustrates the difference between estimation accuracy and 
computational complexity, which demonstrates the effectiveness of the damped MIKF. 
Depending on several factors, which are required to the particular problem, such as 
convergence assurance and computational efficiency, one can choose an appropriate 
method. 

A prediction error algorithm has also been derived by using the principle of max­
imum likelihood for the estimation problem and its asymptotic behavior is given in 
[7]. It remains further study to compare the damped MIKF with Ljung's prediction 
error method. 

(Received May 18, 1995.) 
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