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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 3 

Statistical Testing Procedure for Lengths 
of Formalized Proofs 

I V A N K R A M O S I L 

A statistical testing procedure is proposed, which enables to test, given a formula of a for­
malized theory, whether there exists a proof of this formula the length of which does not exceed 
an a priori given threshold value. Such a decision rule may be of great importance when applied 
to automated problem solving as it prevents us from looking for solutions which are inappropriate 
from applicational points of view. 

1. INTRODUCTION 

Some recent results in the domain of automated problem solving have proved 
interesting connections between problem solving and theorem proving (cf. [4] or [5] 
for more details and further references). Roughly said, looking for a solution of 
a problem we may describe this problem as well as our knowledge about the environ­
ment and our tools for solving it in an appropriate formal language, then we con­
struct a special formula of this language and try to prove it. Supposing we are success­
ful in this effort, we may derive a solution to the problem in question from the 
obtained proof; here we admit also the so called branching solutions or branching 
plans which take into consideration simultaneously several possibilities how to solve 
the problem, the actually one is being chosen during the execution of the solution. 

After a short consideration we must admit that not only the existence of a solution 
itself, but also its complexity, length, cost, etc. may play a very important role when 
an automated problem-solving is to be practically applied. For the sake of simplicity 
we shall limit ourselves to the length of the solution in question as the decisive crite­
rion of its applicational appropriateness. Here, using the notion of length for 
a branching plan we mean the number of occurrences of operators in the longest 
branch of this plan. If we study in more details the proofs of the corresponding 
assertions in [4] or [5] (namely the so called Second Correspondence Theorem), we 
can derive, that in case a solution to the problem in question exists, its length is 



majorized by the length of the corresponding proof (length of a formalized proof is 
taken as the number of occurrences of formulas in this proof). So we are in the fol­
lowing situation: if the length of proof is too great, it is very difficult to find such 
a proof because of the well-known fact that theorem-proving procedures are of at 
least exponential space and time computational complexity. However, in such a case 
the corresponding solution is not too desirable or adequate because it may be also 
very complicated, hence, expensive or difficult to apply. On the other hand, an upper 
bound for the length of the proof in question can serve as an upper bound for the 
length of the solution, hence, an information about the length of the proof would be 
very useful when deciding whether to look for the proof itself or whether to give up 
such an effort. In this paper we present a statistical testing procedure which decides, 
whether the length of the shortest proof of a formula exceeds a given integer value 
or not. This procedure is based on an appropriate statistical deducibility testing 
procedure and can be seen as its modification and generalization. 

2. STATISTICAL TESTING PROCEDURE FOR LENGTHS 
OF FORMALIZED PROOFS 

Let us consider a formalized language SS; the same symbol will be used for the set 
of all well-formed formulas of this language. Let 3~ c S£ be the set of all theorems, 
as usual, ST is supposed to be the minimal set of formulas from S£ containing a recur­
sive set s/Q c S£ of axioms and closed with respect to the usual logical deduction 
rules corresponding to the logical type and order of the language S£. The usual 
logical axioms of the logical calculus corresponding to S£ are supposed to belong 
to s/0. The pair <j§?, 5~> or the triple (Sf, stfQ, 3$) will be called a formalized 
theory; 3% is the set of deduction rules. 

Axioms and deduction rules enable to define the notion of formalized proof either 
in the classical sense of a certain sequence of formulas termined by the desired asser­
tion, or in the resolution-based sense of a derivation of the empty clause from axioms 
enriched by the negation of the desired assertion. Then we are able to define, in an 
appropriate way, also the notion of the length of proof; in what follows, we shall 
suppose that such a definition has been adopted. At the intuitive level we shall work 
with the classical idea of length of proof taken as the number of formulas (occur­
rences of formulas) in a classical proof, however, the results will hold also for the 
resolution-based proofs, with the number of resolutions necessary for obtaining the 
empty clause taken as the length of proof. 

Definition 1. Let (Sf, ST} be a formalized theory, denote, for each a e 2T, by 9(a) 
the set of all formalized proofs (in the chosen but already fixed sense), set 9 = 
= (J 9(a). Let I be a mapping from 9 into the set Jf — {0,1, 2, . . .} of naturals, 



for each deS> the ^alue 1(d) is called the length of the proof d. Define, moreover, 
for each a e i f the minimal length of proof of a, denoted, again, by 1(a) (this should 
not lead to misundertandings), as follows: 

(1) 1(a) = M {1(d) :de 2(a)}. 

We adopt the usual convention according to which, tor i?(a) = 0, ie.., a e i f - 3~, 
we set 1(d) = oo. 

Definition 2. Let R _ 1 be an integer, let a e if. The R-neighbourhood of a will 
be denoted by &(R, a) and defined as follows: 

(2) 6(R, a) = {x: x e X, l(x -> a) < R} 

(the dependence of 0(R, a) on the other parameters need not be expressed explicitly). 

Theorem 1. If a e ££ - F, then (J ®(R, a) c if - iT. If a e ST and /fa -» a) = 1, 
R = I 

then &(R, a) n ^ #= 0 for each R = 1. 

Proof. Deduction rules leads from theorems again to theorems, hence, for ae 
e 3! — 2T, Q(R, a) may contain only non-theorems. If a e 9~ and l(a -» a) = 1, 
then a e C(R, a) for each R _ 1 which proves the theorem. If a -> a is an axiom and 
length Z is taken as the number of formulas in a proof, the condition l(a -> a) — 1 
is satisfied automatically. Q.E.D. 

In what follows, the most basic notions of probability theory are supposed to be 
known. Let us describe a statistical deducibility testing procedure which enables to 
estimate, on statistical grounds, whether a formula from i f is a theorem or not; the 
procedure is based on examining of the proofs of the tested formula using some at 
random sampled auxiliary axioms or premises. 

Definition 3. Let <if, £T) be a formalized theory, let <£2, V, P> be a probability 
space. Let au a2, ...,aN be mutually independent and equally distributed random 
variables defined on (Q, £f, P>, taking their values in S£ and such that for all a E i f 

(3) P({m :meQ, at(m) = a}) > 0 . 

(This is possible due to the fact that the set of well-formed formulas of a formalized 
theory is always countable). 

Let M _ W be a natural, let "C" = {t, f}, where t and f are two abstract values 
"true" and "false". Define, for each a e if, a random variable T(a, •) on <[Q, ¥, P>, 
taking its values in "V, by setting 

N 

(4) {m : m e Q, T(a, m) = t} = {m : m e Q, £ x((9(R, a), at(m)) = M} , 
i = l 

N 

{m : meQ, T(a, m) = f} = {m : m e Q, £ x(G(R, a), at(m)) < M] . 



Here %(®(R, a), •) is the characteristic function (identifier) of the subset G(R, a) cz S£. 
The mapping T = T(Sf, s/0, 01, R, M, N) of the Cartesian product S£ x Q into T 
will be called statistical deducibiltty testing procedure (in at random sampled 
extensions) for the theory <J5?, 3~y. When no misunderstanding threats we shall . 
speak briefly about "test T". 

N 

Clearly, £ %(<9, (R, a), a,(co)) denotes the number of cases, when at(co) belongs 
< = 1 

to &(R, a), hence, when we are able to prove a, using a;(o>) and a proof of length at 
most R. If T(a, co) = t, the formula a is proclaimed to be a theorem, if T(a, co) = f, 
a is not proclaimed to be a theorem, hence, it is proclaimed to be a non-theorem. 
In both the cases such a decision is connected with a certain risk of error, some 
possibilities how to investigate this risk will be given below. The notion of statistical 
deducibility testing procedure will be used also in the case of a compound mapping 
T(a(-), •) of the Cartesian product Q x Q into "V, where a(-) is a random variable 
defined on <0, S", P} and taking its values in the set Sf of formulas. In this case 
the tested formula itself results from a random sample; this fact enables to consider 
the qualities of the test T in a global sense, not only with respect to a particular 
formula. 

The basic principles of the test defined above was proposed in 1959 by A. Spacek 
[3] and later developed (cf. surveyal work [1] on this subject). Until now, such a test 
has been always interpreted as a test of the potential provability, i.e., as a statistical 
decision procedure for answering the question whether there exists at least one proof 
of the tested formula no matter which its length or other qualities may be. However, 
because of the reasons mentioned in the introductory part the lengths of proofs play 
an important role in this work. Hence, let iV0 > 0 be an integer chosen in such a way 
that the proofs with lengths greater than N0 are not acceptable or interesting for us 
(e.g., because of the practical impossibility to construct or apply the corresponding 
sequences of operators). Therefore, having a formula a e Sf,we do not want to know, 
whether a e ST ox not (i.e., whether 1(d) < oo or 1(a) = oo), but we are interested 
in the question, whether l(a) ^ N0 or 1(a) > N0. We propose to use the test Tin this 
way: 

(5) if T(a, co) = t , proclaim, that 1(a) S N0 , 
if T'a, co) = f, proclaim, that 1(a) > N0 . 

Of course, the risk connected with this decision rule is not the same as the risk, 
connected with the original decision problem and can be even greater, however, we 
shall see that the difference is rather small, specially when N0 increases. Said in other 
words, the information contained in the random event T(a, co) = t contains also a lot 
of information about the value of 1(a) and we intend to excerpt it from the results of 
the test T. Our leading idea is to make the maximal profit of the rather great imple-
mentational effort and time and storage consumptions connected, at least at presence, 



with the attempts to implement statistical deducibility testing procedures using -13 
a computer. 

3. THE RISK CONNECTED WITH STATISTICAL DECISIONS 
ON THE LENGTH OF FORMALIZED PROOFS — 
GENERAL CONSIDERATIONS 

Let us denote, for i = 1,2,. . . 

(6) ^r(i) = {x: x E se, l(x) = i} , ST^i = {x: xeSS, l(x) = oo} = se - ST . 

Theorem 2. For each a e if, 

&(R, a) <= ( (J ST(i)) u ST^ . 
i=l(a)-R 

Proof. For a e SS — ST the assertion is proved in Theorem 1. Let aeST, let 
i S 1(a) — R, if there were some j e J ( i , n &(R, a), then a shortest proof of x, 
concatenated with a proof of x -» a of the length at most R and terminated by a 
represents a proof of a the length of which is smaller than 1(a), hence, a contradiction. 

Q.E.D. 

Theorem 3. Let a be a random variable defined on the probability space <0, S^, P> 
and taking its values in SS, let for each x e if 

(1) P({co :coeQ, a(co) = x}) > 0 . 

Then, for each x e f and each R ^ 1, if l(x) -> oo, then 

(8) P({co :coeQ, a(co) e &(R, x) n ST}) -» 0 . 

Proof. Using Theorem 2 

P({co : co e Q, a(co) e 0(R, x) n 5"}) ^ P({co : co e Q, a(co) e (J ^ ( 0 } ) = 
i=l(x)-J? 

= £ P({co : co e Q, a(co) e ^ ( i ) } ) -> 0 , if /(x)-> oo, as 
i=I(x)-ii 

£ P({co : co e Q, a(co) e ^ ( i ) } ) = P({co : co e Q , a(co) e ^"}) ^ 1 . 
i = l 

Q.E.D. 
Consider a statistical deducibility testing procedure ^", let a be a fixed random 

variable satisfying (7). Denote 

A, = {co : co e Q, a(co) e ST(t)} , i = 1, 2, ..., oo , 



B = {co:coeQ, T(M, N, a(co), co) = t} . 

Let a formula a(0) e i f be tested, then the probability of occurring just j formulas 
from Q(R, a(0)) among 0,(00), a2(co), ..., aN(co), i.e., the probability that we will be 
able just ./-times to prove a(0) using 0,(00), a2(co),..., aN(co) as auxiliary hypotheses, 
reads: 

(9) Q (P(0(R, a(0)))Y (1 - P(0(R, a(0)))f"-, 

where we denote 

P(<9(R, a(0))) = P({co :coeQ, 0,(00) e &(R, a(0))}). 

Hence, the probability that a(0) will be proclaimed to be a theorem equals 

(10) . £ Q ( W ? , a(0)))y (I - P(C(R, a(0))))N-J • 

This expression, can be understood also as P(BJ{co : co e Q, a(co) = a(0)}), which gives 

(11) P(B\Aj) = E(P(B\{oo :coeQ, a(oo) = a(0)})JAj) = 

z ( i f!) cw> «(o)»y (1 - w , «(o)r -)... 
_o(0)eg-Vj=M W / / 

P({co:a(co)e^rU)}) 

... P({co :coeQ, a(co) = a(0)}) 

P({co:a(co) €$-">}) 

The well-known Bayes formulas read, in our case: 

P(Aj\B) = P(B\Aj). P(Aj). [ £ P(fi/A,) . P(Aj) + P(BJAX) . P(AW)Y- . 
J = I 

Above all, we are interested in the probability with which the minimal length of 
a proof for a(co), sampled at random, does not exceed an a priori given N0, i.e., we 

No 
are interested in P({J AjB). Substituting into (11) the following assertion can be 

;=i 
immediately proved. 

Theorem 4. 

(12) P({co :coeQ, l(a(co)) ^ N0}j{co : co e Q, T(M, N, a(co), co) = t}) = 



z ( z (í(N) m*> <Q)w (i - ?m °(°w-j 

j = l \B(0) 6y(J) \ j = M \ _ j ; 

*£ ( E f Ž H ("(<"(*> «(o)))y (i - p(ťP(i?, «(o)))W 
j = l \ B ( 0 ) S ^ ( J ) \ J = M \ j / 

... P({co : co E O, g(co) = a(Q)})) _ 
"... P({co : co e O, a(co) = a(0)})) ~~ 

.£ ( * ) ( W . «(0)))y (1 - P(<9(R, a(Q)))f^l{m : l(a(m)) = N0}) ... 

£ (.fM ( * ) ( W «(o)F(i - W-. «(o)))f-) 

•••P({ca:caeQ, /(t.(<o)) = iV0})  

£ ( j _ ("J)(p(<~(*> fl(°))))J' (i - W . fl(°))))N"J)' 
* U O 00 

where _] x ; denotes ( _) x,) + xB . 
j = i j = i 

Denote by f(NQ) the right side of (12), as an immediate consequence of (12) we can 
derive the following expression for the probability that a formula, proclaimed by T 
to be a theorem, actually is a theorem. 

Theorem 5. 

(13) P({m :meQ, a(m)e Sr}j{m : T(M, N, a(m), m) = t}) = lim/(N0) = /(oo) = 
iV0-oo 

const + 
0(0)65? 

I ( I ÍWW(«. «(o)))У (i W *(o)))Г J'ì..." 
,ÍЄ-З-\І=M \j) ) 

' ... P({m :meQ, a(m) = a(Q)})' 
where 

const = i ( iJi (N) m*> -(ow (i - w** <mrj) • 
J = l \«(0)SyU) \j=M \J ) J 

. P({o> :meQ, a(m) = o(0)})) . 

4. THE RISK CONNECTED WITH STATISTICAL DECISION 
ON THE LENGTH OF FORMALIZED PROOFS — SPECIAL CASES 

Even a simple insight into the general expressions derived above shows that these 



No 

formulas rather play the role of declarative expressions for the probability P( (J AjB), 
i = l 

which are, however, inpracticable for its actual computation. First of all, it is caused 
by our ignorance of the probability distribution generated on the set Z£ of formulas 
by the random variable a. Second, even knowing this distribution it is very difficult 
to compute P(@(R, a0)) for a given R, a0 and it is practically impossible to express, 
in general, the value of this probability as an explicit function of a0. Here we meet 
a problem of basic importance for every application of statistical or probabilistic 
methods in mathematical logic, namely, with the problem of incompatibility of 
formally logical and probabilistic structures on the set i ? of formulas. Intuitively 
said, sets of formulas which are easily definable in the logical structure, just the sets 
&(R, a), for example, can be very hardly described in probabilistic terms, it is why 
the values P(&(R, a)) are hardly to compute. On the other hand, the subsets of SS 
which can be easily defined in probabilistic terms, e.g., the set of all formulas which 
are sampled by a random variable, u o r a , , say, with the probability smaller than an 
a priori given e > 0 can be hardly expressed as, say, the set of all logical consequences 
of a small and simple set of axioms. This incompatibility causes the fact that we have 
to be satisfied, when applying probability theory and statistics in mathematical 
logic, with rather rough estimations. This is also the case of this paper. 

When desiring to replace the general expressions mentioned above by some more 
applicable ones, certain assumptions concerning the both structures on Z£ seem to 
be inevitable. As we do not want to limit too much the generality of our results by 
limiting ourselves to a particular case of random variables a and au we prefer to 
formalize our assumptions in the terms of the minimal lengths of proofs, i.e., using 
the variable l(x). Hence, we do not suppose to have at our disposal the particular 
values of P({co : a(co) = a(0)}) or P(&(R, a(0))), but rather their expected values for 
the sets of formulas with the same values of 1. Denote 

(14) Pi = P(At) = P({co : l(a(co)) = i}) = P({co : a(co) e ^ ( 0 } ) , i = 1, 2 , . . . , i = oo , 

« =fJpi = P({co-a(co)er}), 
i = l 

ei = P({co : a^co) e 0(R, a(co))}j{co : a(co) e ZT^}). 

The sequence {p1} p2, ..., pw} represents a probability distribution on the set 
{l, 2, ...} u {oo}, let us consider the there following types of probability distributions. 

(I) Poisson distribution with the parameter X, 0 < X < oo, i.e. 

(15) Pi = a . e ^ A i - 1 ( ( i - l ) ! ) - 1 , i = l , 2 , . . . , 

Pco — 1 — « ' 

(in fact, it is a relativized Poisson distribution with a playing the role of the 
other parameter). 



(II) Geometric distribution with parameters A, a, 0 < X < 1, 0 = a _• 1, i.e., 

(16) pi = a(l - A)A i _ 1 , i = 1,2, . . . , 

px = 1 - a . 

(Ill) Equidistribution with parameters K,a,K^. 1 integer, 0 < a < 1, i.e., 

Pi = a K " 1 , i = 1,2, ...,K, 

p. = 0 , i = K + 1,K + 2 , . . . , 

p ^ = 1 — a . 

When applying statistical deducibility testing procedures T(M, N) we limit our­
selves to the two simplest cases when either M = N (case A) or M = 1 (case B) 
in order to avoid computational difficulties. The connections between the cases A 
and B and the case of general values M,N, M < 2V have been studied and the 
mentioned special cases have been proved to serve as good approximations of the 
general ones. Combining the cases A, B with the three considered probability distribu­
tions we obtain six possibilities to be studied in details in what follows. 

First of all, let us take the last simplifying assumption. We can write &(R, a) = 
= (§(R, a) n ST)VJ (<S(R, a) n (££ - £T)). Let us suppose, that P(&(R, a) n 
n (££ - F)) = c ^ 0 for each a e ££ and that P(&(R, a) n ST) decreases geometrical­
ly with 1(a) increasing. This assumption is satisfied, e.g., if there is a set of non-
theorems enabling to prove everything, e.g., the set C0 = {x: x e ££, Z(nonx) < R} 
can play this role, as we are able to prove x -* a for each x e C0, a e ££ by proving 
nonx. The assumption that P(@(R, a) n ST) decreases agrees with Theorem 3, the 
geometric character of this decreasing is supposed because of its computational 
simplicity. This gives 

(17) e ; = c + (1 - c) ci"1 , 0 < cj < 1 , i = 1, 2, . . . 

ex = c = lim e ; . 

Hence, P(0(R, a)) = 1 for each axiom a e i 0 = 5"(1), which agrees with an intuition. 
We could adopt some more complex assumptions concerning the character of e;, e.g., 

= c + (1 - a - c) cг

 x + c[ x , 0 < cuc2 < 1, i = 1, 2 , . . . , e^ = c 

however, we shall limit ourselves to (17), as the computations given below can be 
easily modified to such or similar more sophisticated cases. 

Now, let us study in more details the six particular cases described above. 

Case IA (Poisson distribution, M = N) 

Considering the Poisson distribution with the parameter X, denote 

0>(n,X)= f e-*i". 



218 There exist many more or less precise approximations of these residual sums which 
can be found in textbooks and monographies of mathematical statistics. Here we 
shall not treat this matter into more details and we shall consider the expressions 
0>(n, X) for primitive terms. Writing, for abbreviation, n(x) instead P(@(R, xj) and 
p(x) instead P({co :coeQ, a(co) = x}), and using the convexity of the function x", 
n > 1, x E <0, 1> we obtain 

^ M I I (n(x)T .p(x) 
P( u° AJB) = iL-feaii!! , 

. Vi=1 ' I I(,M*)r*.K*) + Z (*(*)«*) 
oo No oo JV0 

using (12). The sum £ can be written as £ + £ the both occurrences of J] in 
J = l J = l JVo + l j=l 

(18) can be minimized using convexity, the other expression in (18) can be majorized, 
Hence, denoting by L(j) the random event {co :coeQ, l(a(co)) = j], we obtain 

/ N o \ La 

iVo 

l E^W^f/LO^.oe-^O-l)!)-1 

I E^aHr/LO^.ae-^-l)!)-1... 
y = i 

iVo 

YE((n(a(co))riL(j)).o-e-W(j - 1)1)-* 
... + E((n(a(co))r°lL(N0)). &(N0, X) + (l-aj7

 = 

[ No N0 ~\N 

£ cac-^-\(j - I)!)"1 + £ cae-^)- 1 ((/ - l)!) '1 

/=•' £̂ f J _ 
r jv0 JV0 -iiv 

y^caz-^-^} - l)!)"1 + ̂ c a e - ^ ) - 1 ((j - l)Q--J + ... 

[ JVo JV0 "liV 

£a*-W-\(j - l)!)"1 + Eicae-^ciy-1((j - l)!)"1] 
... a(c + (1 - c) d p ) • &(N0, X) + (l- a) cN~~ 

From this inequality immediately follows 

Theorem 6. Under the conditions IA 

(19) P({co :coeQ, l(a(co)) = iV0/{co : T(N, N, a(co), co) = t}) = 

= [ca(l - 0>(NO - 1, X)) + (1 - c) g(l - 0>(NO - 1, X)) e-w-'-ry 

[ca(l - 0>(NO - 1, X)) + (1 - c) a(l - 0>(NO - 1, X)) e"-<-"««>]» + ... 

[ca(l - >̂(iV0 - 1, X)) + (1 - c) a(l - 0>(NO - 1, 2)) e"**1-•">]* 

... a(c + (1 - c)cN°)N S?(N0, X) + (l- a) c" 



Theorem 7. Under the conditions IA 

(20) P({co :coeQ, a(co) e Sr}\{co : T(N, N, a(co), co) = t}) ^ 

^ / ( iV) = aN(aiV + (l-a)ciV)-1, 

where 

lim/(iV) = 1 , if c < a , lim/(iV) = 0 , if c > a , 
JV->co )V->ao 

\imf(N) = (2- a ) - 1 , if c = a . 
JV->a> 

Proof. The assertion follows by taking the limit value of (20) for N0 -> oo, as 
^(/V0, X) -> 0 for each X .f(N) can be expressed as (1 + (1 - a) (coT1)") -1 , which 
gives immediately the assertions concerning the limit values for N -+ oo. Q.E.D. 

Let us introduce an illustrative example. Consider a formalized theory <if, &") 
which is complete in the sense that each formula either is a theorem or the negation 
of a theorem. Let the random variable a sample each formula with the same proba­
bility as its negation, let a do not sample (i.e., samples with zero probability) formulas 
which have the form of a multiple negation (this is equivalent to the demand of 
preliminary deletion of all double negations in SC). Then, clearly, c = \, a = \, 
hence, even in the extremum case c = a = \, (20) gives 

P({co :coeQ, a(co) e 3T}\{co :coeQ, T(N, N, a(co), co) - t}) = f, 

no matter which the values of the other parameters may be. Modifying the random 
variable in such a way that c < a and choosing appropriately N we can always 
assure an apriori given degree of reliability with which a formula proclaimed to be 
a theorem actually possesses the property of theoremhood. 
Case HA (Geometric distribution, M = N) 

Theorem 8. Under the. conditions IIA 

(21) P({co :coeQ, l(a(co)) = JV0}/{ca : co e Q, T(N, N, a(co), co) = t}) = 

> [c(l-.l") + ( l-c)(l-(M)")r  
- [c(i _ A"°) + (1 _ c) (1 - (CiXf °)f + (c + (1 - c) cN°)N XN° + (1 - a) a - V ' 

Proof. Similarly as in the case IA we deduce that 

JVo 

P ( l U i / B ) _ 
i = i 

uc + a-^ci-r^i-x)^1 

^ _ i . 

£°(c + (1 - c ) c i - 1 f a ( l - A ) ! ' - 1 + (c + (1 - c)cN°)N £ ail - X)X"1 + 
i = l i = iVo+l 



220 + (1 - a) C
N 

and (21) can be deduced from this inequality by simple analytical calculations. Q.E.D. 

Theorem 9. Under the conditions IIA 

(22) P({co :coeQ, a(co) e ST}\{co : co e Q, T(N, N, a(co), (to) = t}) k 

^ ( 1 + (1 - a f . a - ^ ) " 1 =f(a,N), 

where lim f(a, N) = 1 for each a, 0 < a fS, 1, lim f(a, N) = 1 for each N. 
N-^oo a-»l 

Proof. (22) follows from (21) when N0 -> co, also the assertions concerning 
f(a, N) can be deduced by corresponding limit transitions. Q.E.D. 

Intuitively said, when a formula is proclaimed to be a theorem, the reliability of 
this decision increases if N and M increase (remember that M = N in Case A) or if a, 
i.e., the a priori probability of sampling a theorem, increases. Both these conclusions 
agree with the intuitive point of view. The difference between Theorem 9 and Theorem 
7 (when the limit value of the reliability did not equal, in general, one) is caused by 
the fact that the geometric distribution prefers theorems with shorter proofs, as in 
this case pt is a descending function of i. On the other hand, in the case of the Poisson 
distribution with the value X of parameter the preferred theorems are those with the 
lengths of proofs approximately equal X, as X is the mean value of the considered 
Poisson distribution. 
Case HIA (Equiprobable distribution, M = N) 

Theorem 10. Under the conditions HIA, setting N± = min (N0, K), 

(23) P({co :coeQ, l(a(co)) S N0}l{co : co e Q, T(N, N, a(co), co) = t}) ^ 

> alN.K-'c + (1 - c) *-*(<:?' - l ) ( C l - l ) - 1 ] *  

~ alN.K-'c + (1 - c ) ^ 1 ^ - l ) ( C l - I ) " 1 ] " + (c + (1 - c)cN>)«(K -

-NjK'1 +(l-a)cN. 

Proof. Similarly as in the case IA we deduce that 

(a) 
Wo 

(24) P( U A;JB) ^ 
; = i 

> alNpK-'c + (1 - c j X - 1 ^ - l) (C. - l ) - ' f  

~ alNoK-h + (1 - c ) * - 1 ^ 0 - l ) ( C l - I ) " 1 ] " + (c + (1 - c)cNo)a(K -

-N^K'1 +(l- a)cN 

supposing that N0 < K, 
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(25) P(lU/B)_ 
; = i 

> aLc + q - c ) ^ 1 ^ - ! ) ^ - ! ) - 1 ] ^ _ f f x ^ 
- a[ c + (i _ c)X--(cf - l)(d - 1)"T + (1 - a)cw n ' 

supposing that N0 Sg X; this expression serves also as the limit value of (24) for K 
fixed and N0 -> oo. Combining (24) and (25) we obtain (23). Q.E.D. 

Theorem 11. Under the conditions IIIA 

P({co :coeQ, a(co) e T}j{co : co e Q, T(N, N, a(co), co) = t}) ̂  f(K, N) 

(cf. (25)), where 

lim/(K, N) = 1 for each K , \\raf(K, N) = a for each N . 
JV^oo K^<x> 

Proof. The first assertion follows immediately from the fact that f(K,N) in (25) 
does not depend on Ar

0. The limit assertions for f(K, N) can be derived by immediate 
computations. Q.E.D. 

Now, we shall investigate, in a similar way, also the Case B, i.e., the case when 
M = 1. We can suppose that N ^ 2, as if N = 1, then M = N and this case is covered 
by Case A. Set M = 1 into (12) and compute; using the abbreviations introduced in 
Case I A: 

No 

(26) P( U AJB) = 
i = l 

No 

£ £ [1-(!-*(,))"].!<„) 
= J = l **•?<» > 

No — 

V ^ [1 - ( 1 - < * ) ) * ] . !<*) + Z [ l - ( l - < * ) ) » ] . - > ) 
j "= l xe.rO> xeSe-f 

No 

I ( l - ( l - c - ( l - c ) c / ) N ) . P ( A , ) 

> -_ > 
= JVo -

I(l - ( 1 - e _ ( i _ c)cj.f). P(A,) + (1 - a)(l - (1 - cf) 
J = I 

JVo 

P ( U A , ) ( l - ( l - c f ) ( l - c ^ 
> Lai _ 
— JVo oo 

P ( U ^ ) ( l - ( l - c f ( l - C r f ) + P ( U A;)(l-(1-Cf(l-C^f) + 
j=l j=JVo+l 

+ (l-a)(l-(l-cf) = 



JVo 

P(IM-) 
J = l 

a + {1-*\-?i-%\iY-#r 
This result and its particular consequences can be expressed as follows. 

Theorem 12. Consider a statistical deducibility testing procedure with M = 1, 
i.e., the Case A. Then, denoting 

pNo = P({co : co e Q, l(a(co)) ^ N0}j{co : co e Q, T(l, N, a(co), co) = t}) , 

px = p({co :coeQ, a(co) e 3~}\{co :coeQ, T(l, N, a(co), co) = t}) , 

the following assertions hold: 

(a) 
JVo 

ZP({co:coeQ,l(a(co))=j}) 

PN0 ^ J - -
a + {1-a\-(l-lniC-c»y 

(b) 

Poo = « > 

(c) 
lim P({co :coeQ, l(a(co)) S N0}j{co : co e Q, T(l, N, a(co), co) = t}) = a , 

2V-+00 

(d) setting 

K . t N . * , ) . . ^ - . ) - ; : ' ; , - ; ) ^ , , 

and considering the Case I (i.e., Poisson distribution), then 

pHo£(K1{N,No))~
io0(No-l,X), 

(e) considering the Case II (i.e., geometric distribution), then 

pNo ^ (JC^iV, No))"1 «(1 - AWo), lim pNo(N) = «(1 - ANo), 
N->ao 

(f) considering the Case III (i.e., equiprobable distribution), then 

pNo ^ (K,(N, JVo))"1 . a . K-1 . min (N0, K), 

where K = max {i : p(At) > 0} is the parameter of the equiprobable distribution. 

Proof. Assertion (a) is nothing else than (26), (b) and (c) follow from (a) by taking 



the corresponding limit values. Assertions (d), (e) and (f) follow also immediately 
from (a) when substituting the values for the corresponding probability distributions. 

Q.E.D. 

5. CONCLUSIVE REMARKS 

The closing section of this paper offers a possibility to mention another point of 
view from which a statistical testing or estimation of lengths of formalized proofs may 
be seen as a rather important matter. When considering the class of deduction rules 
which generate, starting from axioms, the set of all theorems, we have always sup­
posed that this class contains usual deduction rules of predicate logic and, perhaps, 
some more rules consistent with those former ones. All our statistical reasoning, 
estimations, etc., which depend on the adopted deduction rules by the mean of sets 
&(R, a), can be, however, repeated also in case we admit also inconsistent deduction 
rules, i.e., rules which can lead also from true premises to false conclusions. E.g., 
the statistical induction, which implies from the validity of a finite number of instances 
of a formula, its general validity can be seen, after an appropriate formalization, 
as such a rule, also a statistical deducibility testing procedure itself can be seen in 
such a way. A slightly different intuitive background for such deduction rules offers 
the fuzzy logic [2]. 

In every such case the reliability of a proof operating with such not quite reliable 
deduction rules decreases when the number of applications of such rules increases. 
On the other hand, such deduction rules can be very "powerful" in the sense that 
they offer short proofs of formulas, which are provable also without these rules, but 
only using very long and inpracticable proofs. In such cases, hence, any information 
about the length of a proof contains also a lot of information about the validity of 
the conclusions of the proof in question. In other words said, a statistical estimation 
of the length of a proof is, under such conditions, nothing else than a statistical 
deducibility testing procedure which tests the derivability of the conclusions of the 
tested proof using only the usual, reliable deduction rules. Hence, the qualitative 
difference between the cases N0 < oo and N0 = oo disappears. It seems to be very 
interesting and desirable to investigate various statistical deducibility testing pro­
cedures also from this point of view which touches the very deep logical and philo­
sophical foundations of mathematics and which proves itself to be very close to some 
basic ideas of the so called alternative set theory. 

(Received August 20, 1979.) 
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