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K Y B E R N E T I K A — V O L U M E 7 (1971), N U M B E R 5 

On Parameters of an Evaluation Function 
for Heuristic Search as a Path Problem* 

EUDOVÍT MOLNÁR 

The analysis about parameters of an evaluation function for heuristic search as a path problem 
is done. It is shown that parameters should be not constants but functions which change their 
values during search of a problem. The theoretical results were reached in the worst case analysis 
and verified by experiments in which the knowledge of the problem space was used. 

INTRODUCTION 

Many problems of Artificial Intelligence can be generally represented by a set of 
discrete states of a problem and a set of operators which can be applied to them. The 
task is to find a sequence of operators which produce a correct or asked sequence of 
states as a solution to a problem. 

To describe such problem we will use a graph which contains a set of nodes cor­
responding to discrete states of a problem and a set of edges between nodes corre­
sponding to operators. We distinquish one node as the initial and try to find a path 
to another designated the goal node. Such path is called a solution to our problem. 

When we solve this kind of problem we can be seeking: 

a) the shortest path, 
b) the minimum number of nodes produced. 

Our work will be oriented to the second aspect. 
For finding a path Doran and Michie [1] have developed a general problem 

solving algorithm (Graph Traverser) which uses an evaluation'function to direct 
search for the goal node. An evaluation function is purely heuristic and estimates 
a distance to the goal node. 

* The paper was written while the author was the Visiting Research Worker at the Department 
of Machine Inteligence and Perception of the University of Edinburgh as the student of the British 
Council. 



Hart, Nilsson and Raphael [4] have proposed a compound evaluation function. 387 
The first part is a current distance from the start node to any node x and the second 
one is an estimated distance from a node x to the goal node. 

Pohl [6] has done experiments with a weighting of parameters for each part of an 
evaluation function and discovered that improvement in a solution can be reached 
for some values of parameters. 

Similar experiments have been done also by Michie and Ross [5] who have done 
the optimalization of parameters of the heuristic part of an evaluation function. 
However, till now no analysis about a weighting of parameters of an evaluation 
function has been done and "the best" values for them were found only by experi­
ments. The purpose of our paper is to show some relations between parameters and 
the heuristic part of an evaluation function. At first we will define the algorithm for 
heuristic search which is similar to the algorithms used in [1], [4] and [6]. 

THE PROBLEM SPACE AND ALGORITHM FOR HEURISTIC SEARCH 

We will consider a graph 

G = {X, Q} 

where X is a set of nodes corresponding to discrete states of a problem, Q is a predicate 
over X x X. 

A path over G is defined as a sequence x0, x,, ..., xk from X for which £2(x;, xi+,) 
is true i.e. there is the edge between xh xi+1 for i = 0, 1, . . . , k - 1. We can define 
x0 = s as the start node and xk = t as the goal or terminal node. For the set of all 
immediate successors we define an operator T such that 

T(x;) = Xt = {xJQ(xb x)} . 

We define also an operator set T' = {F[, T'2, ..., T'm} on which is imposed an ordering 
such that an index gives a place in F', and where m is a number of operators. T- is 
(possible partial) function r[ : X -> X. (T- is a function with domain X and codo-
main X or TJ is a function on X to X.) 

The relation between F' and F is: 

r(x() = xt = u rfa) 
i=i 

where U F'j is union of all applicable operators. 
J = I • 

If an operator is applied to any node x ; a new node, say xt+i is produced. We say 
that xi+1 is the successor of x ; or x ; is the parent (predecessor) of xi+1. If all applicable 
operators were applied to a some node Xj we say that a node Xj is fully developed. 
Otherwise a node Xj is partially developed. 



388 A search for a solution is directed by an evaluation function / : X -+ R (a set of 
reals). 

We will use an evaluation function in the form: 

f(n) = co g(n) + co' h(n) 

where co, co' are parameters, g(n) is a number of edges from the start node to a node n, 
h(n) is an estimate of a number of edges from a node n to the goal node. 

Let s be the start node, t the goal node, S a set of fully developed nodes, S' a set of 
partially developed nodes. r\ the first applicable operator for a corresponding node 
which wasn't applied on it yet. 

The algorithm which will be used can be now written: 

1. Place s in S' and assign j(s) to it. 
2. Select B/mln from S' such thatj(n) is minimum. 
3. If S u S' is greater than limit then stop. 
4. Apply r't to n / m i n and put it in S', assign j(TJ(n/ml J ) to Tj(n/miJ. 
5. If TJ(n/ml J is the goal node then stop. 
6. If n/min is fully developed then take it from S' and put it in S. 
7. Go to 2. 

Note. In addition a value of an evaluation function it is attached to each node a pointer to its 
parent (predecessor) which allows us to trace a path from the start node to any other node. 

THE RELATION BETWEEN PARAMETERS AND HEURISTIC PART 
OF AN EVALUATION FUNCTION 

For our purpose we will use the easy analysable space the regular binary tree i.e. 
the tree, every node of which has two successors (Fig. 1). 

Fig. 1. 

We will carry out a worst case analysis in the spirit of the error analysis in numerical 
problems. Let h'(n) be a perfect estimator, e a bound on the error 0, 1, 2, 3, ..., 



h(n) a given heuristic function, 

h'(n) - e ^ h(n) g h'(n) + e . 

To make h(n) as bad as possible we add e to each node on the shortest solution path 

and subtract e from each node off the shortest solution path. Suppose that the shortest 

solution path is k steps long. 

If tis the goal node we can write: 

f(t) = co g(t) + co' h(t) = co g(t) + co' h'(t) + co'e = cok + co'e . 

For any other node n off the shortest solution path we can write: 

f(n) = co g(n) + co' h(n) = co g(n) + co' h'(n) — co'e . 

Since we must visit all nodes on and off the shortest solution path whose value is less 

(in the case of ties i.e. nodes with an equal value of an evaluation function we choose 

"the worst" node) than a value of the goal node, therefore 

/(»)>/(')> 
(° d(n) + °>' h'(n) — co'e > cok + ro'e , 

g(n) + — h'(n) > k + 2 — e . 

Fig. 2. 

Let w be a number of steps off the shortest solution path. Then (see Fig. 2) 

g(n) + h'(n) = k + 2w 

and 

g(n) + h'(n) - h'(n) + — h'(n) > k + 2 — є , 



2w + k + h'(n) (— - l) > k + 2 — e 
\C0 J CO 

co' h'(n) (co' 

cy 2 \co 

Since we w a n t t o have w as smal l as possible we p u t 

. co' h ' (») / _ ' 
w = 1 + — s ^-' • 1 

co 2 \a> 

(1) w , ! + _ _ _ + £ _ _ _ / _ _ _ _ « 
2 2 _ V 2 2 

From (1) we can see that for given h(n) and E we can find such co, co' which give us the 
least value of w i.e. such an evaluation function which for a given heuristic function 
and a bound on the error visits the least number of nodes off the shortest solution 
path. If we put e.g. co equal constant then we can find the best co' and the contrary. 

From (1) we can see also another interesting property of parameters co, co'. Since 
h(n) changes its value with a change of n, it means that co, co' should be not constants 
but functions which change their values with a number of steps of a node n from the 
start node. 

To have w as small as possible in a first part of search where the expression 

_ ( _ ) _ _ 
2 2 

has a value greater than 0, we must have 

co' > co 

in a relation which gives us a minimum value of w. Since w is a number of steps off 
the shortest solution path it must be w >. 0. It means that in a first part of search we 
should put a greater weight on the heuristic part of an evaluation function h(n) and 
in a last part of search on g(n). 

These results, in spite of the fact that they were reached in a worst case analysis, 
gives us indications how to weight parameters also in a real problem space. 

In our analysis we have used a constant bound on the error in each step of search. 
A similar analysis could be done with a bound on the error as a function. This would 
be more reasonable and closer to a real problem space. The results reached in this 
way indicate the same conclusion as the results reached above. In the same way we get 

(2) w _ 1 + /M+M + £_ ( e ( 0_H n ) ) 
2 2 2co 

where e(n), e(t) are bounds on the error for nodes n and t respectively. 



EXPERIMENTS 

For our experiments we have chosen as the problem space the Fifteen puzzle 
(Fig. 3), the problem space complex enough (there are 15!/2 possible solvable posi­
tions) and which is well known from [1], [5], [6]. As the heuristic part of an evalua­
tion function we have used 

;= I 

where px is a number of moves (steps) of an i-th piece from the home position. For 

1 2 3 4 
5 6 7 8 
9 10 11 12 

Fig. 3. 13 14 15 -

deriving of parameters we have used so called "reversals" i.e. positions of two pieces 
which are in a reverse order (in the column or line) and are in their "home" column 
or line. For reversals we can write: 

*(") = £>; 
7=1 

where Pj is equal 1 if a piece j is in the reverse order with another piece, otherwise pj 
is equal 0. 

Parameters were derived from (2), but e(t) was put equal e(n) and co was put equal 1. 
Since we want to produce a minimum number of nodes we want to have w as small 

as possible i.e. w = 0. Then from (2) we can write 

l h(n) + e(n) 

co' 2 2 

2co h(n) - e(n) 

h(n) + e(n) + 2 
co = — . 

(hn) - e(n) 

The evaluation function which has been used is 

/•/ \ / \ h(n) + e(n) + 2 , , x f(n) = g(n) + V / W h(n) 
h(n) - e(n) 

where g(n) is a number of edges from the start position to a position n, h(n) is an 
estimate number of edges from a position n to the goal position, e(n) is equal R(n) 

15 

and R(n) = £ pj defined as above. 
J = I 



This evaluation function was tested on 50 randomly generated Fifteen puzzles. 
The size of a partial tree was 200 nodes, resignation occered when 500 nodes were 
encountered. 

The results were compared with the results reached with the evaluation function 
without weighting parameters (parameters equal l) i.e. 

f(n) = g(n) + h(n) . 

The both results are in the table 1. 

Sample size % of puzzles 
solved 

The average number of nodes 
encountered/puzzle 

without weighting 
parameters 

50 4 493 

with weighting 
parameters 

50 48 402 

CONCLUSION 

The analysis about parameters of an evaluation function for heuristic search as 
a path problem was done. The results showed that parameters should be not constants 
as they were used till now, but functions which change their values during search of 
a problem. The theoretical results were verified by experiments in which the knowledge 
of the problem space was used for deriving of weighting parameters. The improvement 
which was reached in the solution showed us an applicability of the theoretical results 
to the real problem space. 
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O parametroch vyhodnocovacej funkcie pre heuristické hladanie 
ako problém cesty 

IlUDOVÍT MOLNÁR 

V článku sa zaoberáme otázkou parametrov vyhodnocovacej funkcie pre heuristic­

ké hladanie ako problém cesty. Ich analýzou pre najhorší případ sme přišli k uzávěru, 

že by to nemali byť konstanty, ale funkcie, ktoré menia svoju hodnotu v priebehu 

hladania cesty, pričom změna by malá prebiehať tak, aby sa na začiatku hladania 

kladla váčšia váha na heuristickú časť vyhodnocovacej funkcie, než na časť neheu-

ristickú a táto by sa postupné zmenšovala. 

Teoretické uzávěry boli ověřované experimentálně a výsledky potvrdili ich správ­

nost'. 

Ludovit Molnár, prom. fyz., Katedra matematických strojov EF S VŠT {Department of Computer 
Science - Slovák Teclmical University), Vazovova lib, Bratislava. 
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