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STATISTICAL ANALYSIS AND APPLICATIONS 
OF LOG-OPTIMAL INVESTMENTS 1 

I G O R V A J D A AND F E R D I N A N D O S T E R R E I C H E R 

Known facts about the existence and uniqueness of the log-optimal investment portfolio 
are presented in a simpler and more complete form than in previous publications. Five 
examples illustrate the problems around its existence and uniqueness and provide an intu
itive insight into mathematical properties of the log-optimal portfolio and the associated 
optimal doubling rate. 

1. INTRODUCTION 

Let X = (X\,..., Xm) be the random return vector for one stock market day, i. e. 
Xj is the ratio of the closing to opening price for stock j £ { l , . . . , m } . Hence 
the support of the distribution F of X is a subset of [0 ,oo)m . Furthermore, let 
b = ( 6 i , . . . , 6 m ) be an investment portfolio, i.e., each bj is the fraction of one's 
initial wealth invested in stock j . Then 

bX = ^TbjXj (1) 
i= i 

is one's terminal wealth at the end of the day. Being involved in a continuing process 
of reinvestment it seems reasonable to maximize the expected continuous compound 
rate of growth 

<f>(b) = E l o g b X 

or, for short, the so-called doubling rate (since we use here and in the sequel log = 
l°S2) by selecting an appropriate element of the set B = {b = (&i , , . . , 6 m ) : bj > 
0> J2h = 1} of all portfolios. Such an element b* e IB is called a log-optimal 
portfolio and <j>(b*) is called the optimal doubling rate. 

For the statistical model of optimal investments, and in particular for the mo
tivation of log-optimal portfolios, we refer to Algoet and Cover [1]. These authors 
consider a general statistical model of consecutive realizations of the return vectors 
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X i , X2, Here we restrict ourselves to i. i. d. realizations in which case the condi
tional distributions of return vectors considered by the quoted authors simply reduce 
to the unconditional distribution F of X on [0,oo)m. 

As mentioned on page 877 of the cited paper, "a log-optimum portfolio always 
exists and is unique if the distribution F has full support not confined to a hyperplane 
in lRm". The hyperplane condition is neither sufficient nor necessary, as the following 
two simple examples indicate. 

Example 1: Bank savings. One can either keep money in the pocket ("invest
ment" j = 1) or save it in the bank (investment j = 2). The investment portfo
lio b = (61,62) determines how one distributes his available wealth between these 
two possibilities. If the bank's interest rate is 100 • 6 % per "day" (per month, 
per year), with 8 > 0, then the return vector X = (X\,X2) is deterministic, i. e. 
P(Xi = 1. X2 = 1 + 6) = 1 and hence 

<f>(b) = log(6i • 1 + 62(1 + 6)) < log(l + 6) 

with equality iff b = b* = (0, 1). (Although X is obviously confined to the straight 
line x2 = (1 + 6)x\ in 1R2, the log-optimal portfolio b* is unique.) 

Example 2: All but one portfolio log-optimal . Consider m = 2 and a random 
return vector X = (X\, X2) such that 

P(Xi = 0 , X2= \) = p and P(Xi = l,X2>0)=\-p, 0 < p < l , 

with a conditional distribution P(X2 < y | X\ = 1) satisfying 
E(log(l +X2) \Xi = 1) = 00. Then 

<f>(h) plog(l - 60 + (1 - p)E log(6! + (1 - 6ON.2 I X, = 1) = 

00 for b = (bul-bl),b1 <E[0,i) 
- 00 for b = (1,0). 

Hence all portfolios b* = (6, 1 — 6), 6 G [0,1) are log-optimal. (Although X is 
obviously not confined to a straight line in IR2, there are infinitely many log-optimal 
portfolios.) 

The main emphasis of the present paper is to treat the problem of existence and 
uniqueness of the log-optimal portfolio rigorously. In particular, it demonstrates 
that if and only if the stock market return vector X satisfies the condition 

lo«£'*> <oo (2) 

then there exists a log-optimal portfolio b* with finite optimal doubling rate <f>(h*). 
Furthermore, it demonstrates that, provided (2) is satisfied, the log-optimal portfolio 
b* is unique if the following condition holds. 

The distribution F is not confined to a hyperplane in IRm (3) 

containing the diagonal D = {(d,... ,d) E IRm : d G IR}. 
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Note that the finiteness of the optimal doubling rate is very desirable. Indeed, 
consider i.i.d. realizations X,- of X on the days i — 1,2, Then it follows from 
the main result of [1] that the wealth 

Иln = I]bi(X1,...,Xi_1)Xi 

1 = 1 

resulting after n days from an arbitrary non anticipating measurable investment 
strategy bi _ B and b,-(Xi,.. . ,X,-i) : [0,oo) m ^ _ 1 ) K-> B, i = 2 ,3 , . . . , satisfies 
the relation 

Wn < 2nWb*)+ £) eventually with probability 1 for any e > 0. (4) 

On the other hand, the wealth 
n 

i=i 

resulting from the constant log-optimal strategy b* (Xi , . . . , X._i) = b* satisfies the 
relation 

W* > 2"(*<b*)-*) eventually with probability 1 for any £ > 0. (5) 

(Note that the relation 2 n ^ b ) - e ) < Wn < 2 n ^ b ) + e ) eventually with probability 
1, valid for every constant strategy b,-(Xi, . . . ,X,-_i) = b _ B with finite </>(b), 
motivates the use of the term "doubling rate": if < (̂b) = 1 then Wn is approximately 
doubled each day.) 

Relations (4) and (5) are equivalent to the fact that the wealth W* corresponding 
to the log-optimal investments is asymptotically at least as large as the wealth 
Wn corresponding to an arbitrary technically acceptable investment strategy. More 
precisely, the maximal achievable growth rate of the wealth Wn, 

lim sup - log Wn, 
n —•oo n 

is a.s. not greater than the growth rate of W*, 

lim -\ogW* =cf>(h*). 
n—•oo n 

For an infinite optimal doubling rate (f)(b*), there is no analogy of (4) and (5) and 
the interpretation of the log-optimal portfolio b* becomes rather problematic. 

The results of the present paper concerning the log-optimal portfolio are mainly 
based on what is proved in [7]. In order to extend the intuitive meaning of the 
doubling rate b •—• 0(b), b _ B, of the log-optimal portfolio b* and of our conditions 
for the existence and uniqueness of b*, we present a series of examples of simple 
investment problems. Such examples, suitable also for teaching purposes, are largely 
missing in the literature. 
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In practical applications of the statistical investment theory the mean-variance 
approach of Markowitz [5] still prevails. Cf. [4]) e.g. Relations of the log-optimality 
to this classical instrument of stock market analysts have been clarified in [1]. One 
can hope that the recent progress in the algorithms for evaluation of log-optimal 
portfolios (cf. [2,7,6]) will lead to a wider popularity of this non-classical and 
essentially information-theoretic method. 

2. EXISTENCE AND UNIQUENESS 

Throughout this section we use the concepts and basic agreements introduced above. 
In addition, we consider the subset 

dorn <f> C IB 

the so-called domain of^>, on which the doubling rate <j)(b) = E logbX is well-defined, 
the subset 

effdom <f> C dom <f) 
0 

the so-called effective domain of<f>, on which <j>(b) is finite and finally the interior IB 
of the set IB. 

Furthermore, let S be any nonempty subset of the set {!,..., m} of stocks, let 
I5 denote the indicator function of the set S and let 

B 5 = { b 6 l B : 6 j j = 0iff j g S } , 

be the subset of IB with support S. Note that l{i,...)m} is the unity vector 1 in IRm, 
0 

^{\,...,m} -=-B and that the set IB and its subsets IB5 have the following geometric 
interpretation. 

R e m a r k 1. IB is a regular simplex of hight one and IB5 are vertices (#;5' = 1), 
edges (#.S' = 2) and faces of IB of higher dimension. Furthermore, the components 
b\,b2,.. .,bm are the barycentric coordinates, i. e. the hights of the element b £ IB 
with respect to the perpendicular facets -B{2,3,...,m}»-B{l,3,...,m}« • • • }-B{iJ2,...,m-l}-

Finally, let c = ( c i , . . . , c m ) G IRm and let cX be defined as in (1), such that 
we obtain for c = 1 the abbreviation E | log lX| = E| l o g ^ J l j X, | . As shown in 
Lemma 1 of [7], the following characterization of the domain and the effective domain 
of (f> in terms of the finiteness of the expected value E(loglX)+ and E( log lX) - of 
the positive respectively the negative part of log I X holds. 
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T a b l e 1. Characterizat ion of dom <f>, effdom (j> and of <jf»(b) on dom <t> — effdom <f>. 

Ь ( b g l X ) + t ( l o g l X ) - dom ф effdoin ф Ф(Ъ) is on domф — effdonк^ 

= 0 0 = 0 0 C B - B = 0 = — 0 0 

< 0 0 = 0 0 = B = 0 = — 0 0 

= 0 0 < o o 
0 

эв ç в- в 
0 

= 00 if b є в , 
Є {—00,00} otherwise 

< 0 0 < 0 0 = в 
0 

эв = —00 

Note that Example 2 is an example for the third case of this table. A very natural 
example of the second case will be given in Example 3. 

Since the only really interesting case is the last one of Table 1, we are going 
to investigate it in more detail: because one might expect the typical returns for 
the stock market to be close to one, one could think of the following condition to 
establish effdom <f> = JB . 

The distribution F is confined to a cube [1 - e, 1 + e]m C IRm for some 0 < e < 1 . 

And in fact, in the Vienna Stock Market which dates back to Maria Theresa's times, 
this condition is satisfied for national stocks with e = 0.1 . As a special case of 
Proposition 3 below, we obtain the following neccessary and sufficient condition 
guaranteeing that 0 is defined and finite on the whole set IB. 

P r o p o s i t i o n 1. effdom <f> = B holds if and only if 

m 

]TE|iog;oi<oo. (6) 

By the way, this condition was the first which we took into consideration. But 
soon we noticed that it is to strong to cover as popular investment opportunities as 
the horse races or casino games like Roulette, where typically the return Xj for a bet 
is 0 with positive probability. And this, in turn, implies E|log.Yj| = 00. Condition 
(2) turns out to be most suitable as can be seen from the following statement. The 
proof of the equivalence of the first two conditions as well as the implication of the 
first condition from the third is easily seen from Table 1. The implication of the third 
from the first is achieved by the continuity of the function <f> stated in Proposition 4. 

P r o p o s i t i o n 2. The following three statements are equivalent: 

0 

(ii) dom0 = IB and effdom 0 DJB. 

(iii) A log-optimal portfolio with finite optimal doubling rate exists. 

The next statement, which follows from Lemma 3 and 4 in [7] offers an explicit 
way to describe the subset of IB on which <f> is finite. 
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Propos i t ion 3. Assume (2) and let 

C = {Sc{l,...,m}: E | l o g l s X | < o o } - { l , . . . , m } . 

Then C is hereditary in the sense that with any nonvoid proper subset S C { 1 , . . . , m} 
it contains all proper subsets S' C { 1 , . . . , m} such that S C S'. Moreover, it holds 

effdom<0=IBU ( J JBS. 
Sec 

The following lemma provides an insight into the nature of condition (3). 

Lemma 1. Let (2) be satisfied. Then 

(i) condition (3) is neccessary for the strict concavity of <fi, 
0 

(ii) provided b* €lB is log-optimal and (3) is violated then there are infinitely 
many log-optimal portfolios. 

P r o o f . Let (3) be violated. Then, equivalently, there exists an element c = 
(c\, • • •, cm) e IRm such that J2?=i CJ = 0 a n d EJLi I ci l> ° a n d cX = 0 a. s. 

0 

Now, let b e B . Then there exists an £0 > 0 such that b + e0c G IB. Hence 
(b + €c)X = b X a. s. and thereforeE log(b + ec)X = E logbX for all s <E [0, e0]. • 

We conclude this section by stating the following theorem which is a consequence 
of the previous lemma and Lemma 5 and Theorem 1 in [7]. 

Propos i t ion 4. Let (2) be satisfied. Then the function b i—> <j>(b), b 6 IB, is 
continuous and concave. Furthermore, the following two statements are equivalent. 

(i) condition (3) holds, (ii) <j> is strictly concave. 

Finally, condition (3) implies that the log-optimal portfolio is unique. 

3. SIMPLE APPLICATIONS OF THE RESULTS 

Example 3: Amer ican Rou le t t e . The set of possible outcomes u> of an ex
periment with the Roulette wheel, assumed to be a Laplace-experiment, is fi = 
{0, 1 , . . . , 36}. In the following we consider three bets with the portfolios b = 
(&i, &2,&3) • Therefore the set IB of all possible portfolios is an equilateral trian
gle with hight 1. Two different possibilites (a) and (b) are considered for the second 
and third bet. 

j =[ : bet on "Odd", 
j = 2 : (a) bet on "1-18", (b) bet on "Even" 
j = 3 : (a), bet on "Zero", (b) bet on the "Street 0,1,2". 
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Case (a) . For this case the random return vector, set down in the rules of the 
game, and the associated probabilities are as follows: 

Table 2. Return vectors for case (a) of the American Roulette. 

U! x н = (xiИ,x2(u,),xзИ) probability 

0 (1/2,1/2,36) 1/37 
1,3,..., 17 (2,2,0) 9/37 
2,4,...,18 (0,2,0) 9/37 

19,21,...,35 (2,0,0) 9/37 
20, 22,.. .,36 (0,0,0) 9/37 

It is easy to verify that E[log(xi + X2 + X3)]+ < oo and E[log(Xi + X 2 + X3)]~ = 
= oo (so that condition (2) is violated), and </>(b) = —oo. Hence our betting system 
(a) of the American Roulette is asymptotically ruining each player at an infinite 
rate! In fact, we are faced with an example of the second case in Table 1. 

Case ( b ) . For this case the return vectors and the associated probabilities are 
given in Table 3. 

Table 3. Return vectors for case (b) of the American Roulette. 

ш X(u;) = (x,(u;),X2И,xзИ) probability 

0 (1/2,1/2,12) 1/37 
1 (2,0,12) 1/37 
2 (0,2,12) 1/37 

3,5,...,35 (2,0,0) 17/37 
4, 6, . . . , 36 (0,2,0) 17/37 

It is easily seen that both conditions (2) and (3) are satisfied. Hence the doubling 
0 

rate is defined everywhere on B and finite at least on the interior B and the 
log-optimal portfolio b* is unique. This portfolio turns out to be 

b* = (6, 6,1 - 26) where 6 = 
Ъ(m7-y/ÃЩ 

9361 

i.e. b* = (0.491,0.491,0.008). To the dissappointment of potential casino players, 
the optimal doubling rate still remains negative, <f)(b*) = —0.007. Moreover, it is 
easy to verify that ElogX, -s —oo,j G {1,2,3} (consequently condition (6) is 
violated), that Elog(Xi +X3) = Elog(x 2 + X 3) = - c o and that Elog(x i + x 2 ) is 
finite. Therefore C contains only the set {1,2} and, by Proposition 2, the doubling 

0 

rate is finite both on B and on the edge {b = (6i, 62,63) E B : 63 = 0} and is —00 
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on the remaining two edges and all three vertices of the triangle IB. For a contour 
plot of the function <j> see Figure 1. 

Fig . 1. Contour plot of the doubling rate b y-+ <f>(h) for case (b) of the American 

Roulette (in barycentric coordinates). 

T h e H o r s e R a c e . Cf. Cover and Thomas (1991), Chapter 6.1. Suppose m horses 
j = l , 2 , . . . , m race, and let p = (p\,... ,pm),Pj beeing the winning probability 
of horse j and suppose the bookmakers odds are a,j : 1 for the win of horse j 

(i. e. he pays cij > 0 dollars if one bets 1 dollar on the win of this horse and 
nothing otherwise). Let us consider besides the bets j = 1 , . . . , m on each horse the 
possibility of withholding money (bet 0). Then the return vectors together with the 
associated probabilities are as shown in Table 4. 

Table 4 . Return vectors of the Horse Race. 

ÜJ X(u) = (X0(u;),X\(ш),...,Xm(u)) probability 

1 ( l , a ь 0 , 0 , . . . , 0 ) Pi 
2 ( l , 0 , a 2 , 0 , . . . , 0 ) Pi 

m (1,0,0,0,. . . , a m ) Pm 

In this case b = (bo, b\,..., 6 m ) denotes a portfolio. Before treating the general case 

we will recall the simple special case of 

E x a m p l e 4 ( h o r s e r a c e n o t w i t h h o l d i n g c a s h ) . For this case we can ignore 

the coordinate X0(u>) and restrict ourselves to portfolios b = ( & i , . . . , bm). It is 
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easy to check that both conditions (2) and (3) are satisfied and that C = 0. Hence 
0 

effdom^ = B . Let / (p ,b ) = J2T=iPj 1°l>(Pi/fy) be the /-divergence of the proba
bility distributions p and b . Then 

<f>(b) = ^Pj logcijbj = ^2pj logcijpj - / (p ,b ) 
j=i j=\ 

and since / (p ,b ) > 0 with equality iff b = p , the unique log-optimal portfolio is 
b* = p and the optimal doubling rate is <f>(b*) = YTsiPj ^°&ajPj • W e illustrate 
this general result by the special case 

/ 5 4 3 \ / l l 11 1 1 \ 
m = 3; p = v l 2 ' T 2 ' i 2 j and a = l T ' T ' T j ' 
so that b - j l . l i ) and *(b ' ) = log g ) < 0 . 

For a contour plot of the function <f> see Figure 2. 

Examp le 5 (horse race withholding cash). In this case (2) holds, whereas (3) 
may or may not hold. Let b ' = (b\,..., b'm) be defined by 

b'j= (6J + ^ ) ( l - 6 o S ' ( a ) ) - 1 , j < E { l , . . . , m } 

and let 

po = 

m , 

and S(a) = l - £ - . 

Fig. 2. Contour plot of the doubling rate b i-+ 4>(b) for the described special case of the 
horse race (not withholding cash). 
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Then b ' = b'(60) is a probability distributi on on { l , . . . , m } and it holds po G 
(0, 1]. Furthermore, 

m 

^(b) = 2->i loS(6o+ &,<.,•) = (?) 

m 

- £ P ; ,0ë [aiPi 0 " 60'S'(a))] - 7(p,Ъ'). 

Since 7(p,b') > 0 with equality iff b ' = p , we see that the optimal portfolio b* is 
of the form 

b* = (60,6*(6o),..., b*m{b0)), (8) 

where 

ftJCM = Pj fl - 60(-^~ + 6'(a))| , j 6 {1,.. .,m}. 

Here 60 6 [0,po] is still at our disposal. Now we have to distinguish the three 
cases "subfair odds", "fair odds", and "superfair odds" which are characterized by 
S'(a) < 0, = 0, and > 0 respectively. 

In the typical case of subfair odds (.S"(a) < 0) it is easily seen from (7) that the 
log-optimal portfolio is obtained by setting 6Q = po in (8) and that 

m 

<Mb*) = Y2pi loS aJPj (l - PoS(a)) ]. 
J-si 

For the cases of superfair odds (S'(a) > 0) and fair odds (5(a) = 0) one 
log-optimal portfolio is given by 6o = 0 and hence by b* = (0 ,p i , . . . , p m ) , yielding 
an optimal doubling rate 

m 

(̂b*) = X^ l o g w • 
3-1 

While, however, b* is unique for the case of superfair odds this is not true for 
the case of fair odds. The latter, since 5'(a) = 0 is equivalent to the violation of 
condition (3). In fact, all portfolios of the form 

b* = 60 • (1, 0,0,. . . , 0) 4- (1 - 60)(0, p i , . . . , p m ) , 60 G [0, p 0 ] , 

with po = minlajPj} , are log-optimal. 

We illustrate these general results by an Example on fair odds with the fol
lowing specifications: 

m = 2; p = ( - , - ) , a = ( 3,'- 1 and hence 5(a) = 0 so that all 

b* = (6, (1 - 6 ) i (1 - b)^\ , 6 e [0,1], are log-optimal with ^(b*) = 0 . 
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Notice tha t , of course, condition (2) is satisfied and tha t C — {{0}, {0, 1}, {0 ,2} , {1,2}} 
Which means tha t the doubling rate is finite everywhere on the triangle IB except 
on the two vertices (0, 1,0) and (0 ,0 , 1) where it is —oo. For a contour plot of the 
function (f) see Figure 3. 

Fig . 3 . Contour plot of the doubling rate b i—• <^(b) for the described special case of the 
horse race (withholding cash). 
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