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K Y B E R N E T I K A — V O L U M E 16 (1980) N U M B E R 5 

Conjugate Gradient Algorithm for Optimal 
Control Problems with Parameters 

MlLOS BOCEK 

This paper presents an extension of a conjugate gradient algorithm for the solution of non-linear 
optimal control problems with parameters. Several numerical examples are treated to study 
the properties of the proposed algorithm. 

1. INTRODUCTION 

The basic conjugate gradient method for unconstrained optimal control problems 
was proposed by Lasdon et al. in [1]. The penalty function approach to the solution 
of inequality constrained optimal control problems has been considered in [2] and 
the clipping-off technique that solves optimal control problems with magnitude 
constraint on the control inputs is described in [3, 4]. The proposed algorithm is 
more simple and easier to apply than an alternative sequential conjugate-gradient-
restoration algorithm of [5]. On the other hand, the algorithm of [5] need not to use 
penalty function to deal with optimal control problems with terminal constraints. 
Also the robust conjugate-gradient algorithm in [6] can compute optimal controls, 
however without parameter optimization. 

2. OPTIMAL CONTROL PROBLEM 

The aim is to minimize the cost functional 

(1) J = cp[x, 7i](f + L(x, u, %, t) At 
J to 

subject to the differential equation constraint 

(2) x(t) = f(x, U, 7t, t), x(t0) = x0 , 



magnitude constraints imposed on the control inputs 

(3) aJ = Uj(t)Sbj, j = l , 2 , . . . , r , 

and on the parameters 

(4) ck^nk = dk, k= 1,2,..., a . 

Here / denotes a non-linear n-dimensional vector function of n-dimensional state 
vector x, r-dimensional control input vector u, and g-dimensional parameter vector 
7i. Further t0 is the given initial time, t{ is the terminal time, which is assumed to be 
given, and q> and Lare scalar functions. It is assumed that, given a control u, a para­
meter n, (2) can be solved for a unique x = x(u, n). Thus J = J(u, n) is a unique 
function of u and n. Finally, it is assumed the existence of the gradient of J(u, n) 
and that J(u, n) is bounded below. 

As usual (see [7]), let H denote the Hamiltonian function given by 

(5) H(x, X, u, n, t) = XTf(x, u, n, t) + L(x, u, n, t), 

where X(t) is an n-dimensional vector function, T denotes the transposition. Then 
necessary optimality conditions are for the case without magnitude constraints (3), 
(4) as follows — see for instance [3] and [8], 

*»-(£)...-• 

8u 

(9) ('A + f* -* -d . - -0 . 
\^/t = ,r Jr„ 3n 

It is assumed that dH\du is continuous in u and dHjdn and dcpjdn in n. All expressions 
are evaluated along the optimal solution x*, u* and n*. All vectors, including also 
gradient of various functions, are supposed to be column-vectors. 

Conditions (8), (9) yield (see for instance [9]), that the variations per unit gradient 
stepsize of u and n can be taken as 

(10) 9(t)-f, 
ou 
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(П) hJ^ , дИ л + — d í 
Sn/t=tr J,„ ôк 

3. CONJUGATE GRADIENT ALGORITHM 

For the sake of simplicity in the explanations that follows, a scalar control input 
and parameter will be considered only. The extension to multi-control inputs and 
multi-parameters is rather straightforward. 

The conjugate gradient method computes the direction of search in the j-th iteration 
as follows: the conjugate gradient direction of u is determined by 

(12) 

where 

(13) 

and 

(14) 

pЦ^-gҚђ + ß^-Қt), 

gҚt)gҚt)dt 

ai-1(()ai-1(ř)dí 

ІҐ \ д н 

õu 

provided that g' 1(t) g* *(t) dt + 0 and /?° = 0, the conjugate gradient direction 
J to 

of % is determined by 

(15) q'= -ti + fqi~1, 

where 

(16) y' = 

and 

(IV) 

ҺV 
h'-1^-

*« = (* 
õn)t=tt 

provided that hi-1hi_1 + 0 and y° = 0. 
The new estimate of u(t) is then 

• ' " dř, 

(18) ui+1(t) = uҚt) + a< pҚt) 



and that of 7r 

(19) rri + 1 = 7r; + a'q', 

where a' is determined by one-dimensional search so as to minimize 

(20) J(ui+1, ni+l) = min J(u{ + xlp\ nl + a'V) . 

The proof of the convergence of the algorithm can be performed analogously as in [1]. 

4. CONSTRAINTS TREATMENT 

Let us consider the case in which there is a control variable u(t) and a parameter 7r 
which must satisfy magnitude saturation constraints. Generalization to more than 
one control variable and one parameter is straightforward. The necessary optimality 
conditions (8), (9) are replaced (see [8], [10], by 

(21) H(x*, X, u*, n*, t) = min H{x*, X, u*, n*, t), 

(22) óę 

LW.= 
+ — df <5TT > 0 

where x*, u*, n* are optimal solutions, U denotes the admissible control region — 
see (3), 5n is any feasible parameter change. 

Before J(ui + l, ni+1) is computed in each trial of the a-search, ui+1(t) and ?r i+1 

are truncated according to the upper and lower bounds (see [3]) in the following way: 

(23) u\t) + a* p\t), if a ^ ui+1(t) S b, 
u i + 1 ( ( ) = - a , if ui+1(t)<a, 

\ b, if ui+1(t)>b, 

тj + a;ҙ', if c g тr i + 1 й d, 
Г І + 1 = - C , i f 7 Г І + 1 < C , 

X ď , i f 7 Г І + 1 > C . 

5. SUMMARY OF ALGORITHM 

STEP 1. Set i = 0 and select the initial estimates u° and 7r°. 

STEP 2. Solve the state equations (2) forwards with u — ul, n = n', and the 

adjoint equations (6), (7) backwards, and then compute pl and ql from (12), (15). 



STEP 3. Set 
M;+1(f) = Mi(.) + a'y( f) and 

7t' + 1 = n* + a'gj . 

Before J ( M ; + 1 , TC' + 1 ) is computed, M' + 1 ( I ) and 7t'+1 are truncated, if necessary, 
according to (23). Choose a' to minimize (20). 

STEP 4. Repeat steps 2 and 3 until 

| j ( l . ; + 1 , 7 l ( + 1 ) - J(U;,7I;)| < 5\/(«', 0 | 

where (5 is a specified positive number (here 8 = 10~4). 

6. EXAMPLES 

The described algorithm was implemented on the IBM 370/135 computer in single-
precision arithmetic and was programmed in PL/1. The integration was performed 
using the IBM DERE subroutine. The definite integrals were computed using IBM 
QSF subroutine. 

Example 1. Minimize the cost functional 

J = I/2И1.5 + 1/2 Г ' u2àt 

subject to the differential constraints 

Xx - X2, X ! ( 0 ) = 7C , 

X2 = — Xj + M + x2(l — xl), x2(0) = 1 . 

To obtain the problem with fixed initial state, as required in (2), let us perform the 
substitution 

yi=xt - n, y2 - x2. 

In this way we obtain the following problem 

J = l / 2 [ ( y 1 + „ ) - ] . . , + l / 2 f 1 ' 5
u 2 d , , 

h = y2, yM = 0 , 

j 2 = -(iVi +n) + u + y2[\ - (yt + TI)2] , y2(0) = 1 . 

The initial estimates were chosen as u = 0, % = 0. The interval of integration was 
divided into 50 steps. The algorithm has converged in 3 iterations to the J = 0-30323, 
n = 103902. The converged solution for the Example 1 is given in Table 1. 



Table 1. 

t У\ Уг u 

000 0-OOOOOE+00 l-OOOOOE+OO -6-26581E-01 

0-15 1-28989E-01 7-12482E-01 - 6 Ю 4 9 8 E - 0 1 
0-30 2-12591E-01 4-01632E-01 -5-81324E-01 
0-45 2-50Ю7E-01 102659E-01 -5-39093E-01 
0-60 2-44980E-01 -1-65173E-01 -4-83889E-01 
0-75 202314E-01 -3-98320E-01 -4-16408E-01 
0-90 1-269ПE-01 -6-03270E-01 -3-38439E-01 
1-05 2-22014E-02 - 7 - 9 И 3 9 E - 0 1 -2-53152E-01 

1-20 -1-Ю193E-01 -9-74541E-01 -1-64951E-01 
1-35 -2-70563E-01 -1-16624E+00 -7-89282E-02 
1-50 -4-6Ю71E-01 -1-37820E+00 0-00000E+00 

In [11] the values J = 0-30549 and it = 1-03820 were reached within 7 iterations 

by the method of [12]. Comparing these results one observes faster convergence 

of the proposed algorithm for the solution of this type of problem. 

With the control and the parameter constraints u 2; —0-4, n ^ 1 was reached 

within 3 iterations J = 0-31655, n = 1. The converged solution for the Example 1 

with constraints is given in Table 2. 

Table 2. 

t УÍ Уг u 

000 OOOOOOE+00 1-OO0O0E+00 -4-00000E-01 
0-15 1-32744E-01 7-6П94E-01 -4-00000E-01 
0-30 2-26583E-01 4-86913E-01 -4-O0OO0E-O1 
0-45 2-78648E-01 2-08859E-01 -4-OOOOOE-Ol 
0-60 2-90137E-01 -5-17519E-02 -4-OOOOOE-Ol 
0-75 2-64383E-01 -2-87520E-01 -4-00000E-01 
0-90 2-04958E-01 -5-01941E-01 -4-O0OOOE-O1 
1-05 1-14440E-01 -7-O2937E-01 -3-46228E-01 
1-20 -5-43584E-03 -8-94921E-01 -2-62924E-01 
1-35 - 1 - 5 4 П 5 E - 0 1 - 1 0 8 8 3 0 E + 0 0 -1-38924E-01 
1-50 -3-32345E-01 -1-29047E+00 0-00000E+00 

Example 2. Minimize the cost functional 

J =\ (x + nf u2 dí - 2 ln (x(l) + n), 



460 subject to the differential constraint 

x = (x + n)2u, x(0) = 0 , 

and parameter constraint n ^ 1. 

The initial estimates were chosen as u = 1, it = 0 and the interval of integration 

was divided into 100 steps. The algorithm has converged in 6 iterations with J = 

= —1-00333 and n — 1. The converged solution for Example 2 is given in Table 3. 

Table 3. 

t X « 

0-0 0-0OOOOE+00 8-29442E-01 
0 1 8-92603E-02 8-06543E-01 
0-2 1-92482E-01 7-79291E-01 
0-3 3-12204E-01 7-46683E-01 
0-4 4-5И48E-01 7-07574E-01 
0-5 6 П 8 8 4 E - 0 1 6-60717E-01 

0-6 7-96141E—01 605053E-01 

0-7 100365E+00 5-40226E-01 
0-8 1-23073E+00 4-67572E-01 
0-9 1-46941E+00 3-9138ІE-01 
1 0 1-709ПE+00 3-19592E-01 

The result is in a very good agreement with the analytical solution J = — 1, 

- 1, x = e' - 1, u = e" ' . 

7. CONCLUSIONS 

The conjugate gradient algorithm for the solution of optimal control problems 

with parameters has been presented in this paper. The solved numerical examples 

show traditionally good convergence properties of conjugate gradient algorithms. 

(Received January 21, 1980.) 
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