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K Y B E R N E T I K A — V O L U M E 7 (1971), N U M B E R 4 

On Directable Automata 
JÁN ČERNÝ, ALICA PIRICKÁ, BLANKA ROSENAUEROVÁ 

The paper is concerned with the shortest directing word estimates for non-initial Medvedev 
automata. 

Let si = (A, X, 8) be a Medvedev automaton with the set of states A, the set of 
input signals X and the transition function 8. 

8 maps the set A x X* into the set A (where X* is the set of all words over X). 
The definition of 8 can be extended to the set A' = 2A of all subsets of A. This 
extended mapping we designate 5', that means 

5'(B, p) = {8(b, p):beB} . 

Fig. 1. 

If C = 8'(B, p), we shall sometimes use the brief designation By C. For every B e 
e 2A, ]sj will designate the number of elements in B. Putting a'0 = A and using 8' 
and A', we can define the total initial automaton sf' = (A', X, 8', a'0) corresponding 
to si. 



290 Example 1. Let * 4 = ({0; 1; 2; 3}; {0; l } , 5) where 5 is defined on the fig. 1. The multigraph of 
the corresponding * 4 is on the fig. 2. 

Fig. 2. 

If there exists a word peX* and a state a e A such that A - y {a}, we shall call 
directable and p the directing word of si. 



If s/ is directable then there exists a path from A to {a} on the multigraph of sd'. 291 

Let us designate l(p) the length of the word p and put 

n(s4) = min l(p) 
I 

where the minimum is taken over the set of all directing words of s4'. 

In example 1 n ( « 4 ) = 9 and the shortest directing word is 100010001. 

Let IIk be the set of all directable automata with k states. Let 

n(k) = sup n(stf). 
Menk 

In [ l ] it was proved that 

(1) (k - l ) 2 ^ n(k) g 2k - k- 1 ; k = 1,2, ... 

In [2] the following inequality was found: 

(2) n(k) ^ 1 + ik(k - 1) (k - 2) 

which is better than the abovementioned one for k ^ l . 

We see that the upper and lower estimates of n(k) in (1) are equal for k = 1, 2, 3, 

but their difference is an increasing function of k for k ^ 4 (see table 1). 

k 1 2 3 4 5 6 

{k - l ) 2 0 1 4 9 16 25 
2* - k - 1 0 1 4 11 26 57 
3 . 2 " - 2 - 2 1 4 10 22 46 
(/c/3) - (З/t/2) + (25A:/б) - 4 1 4 10 21 39 
л(fc) in Theorem 2 9 
л(&) in Theorem 3 16 

If J</ = (A, X, <5) e IIk we can choose a directing word xu ..., x„ such that in the 

sequence {<5'(A, Xj .. . x})} we have 1. no two identical terms, 2. no couple of terms 

with the equal numbers of elements containing a state pair b, c such that S(b, x) = 

= S(c, x) for some x. Thus 

» « - + I K ) - C : 2 ) + I ] — -
Improving the Starke's method from [2] we can obtain the following theorem. 



Theorem 1. For every integer K = 2 the following inequality holds: 

(3) n(Jt) < ifc3 - _k2 + f fc - 4 . 

Proof. Let si = (A, X, S) e llk. We are going to look for a directing word p of s/ 
such that 

/(/>) < ifc3 - f fc2 + f fc - 4 . 

Let us suppose that p = x, . . . x,(p) = x^^Xj ... xfck.2 ... xh] where h,- has the prop
erty that 

| » V ( i 4 , x 1 . . . x „ . _ 1 ) | _ _ j + l ; \5'(A,Xl...xhJ)\<j ( 7 = l , . . . , f c - l ) . 

Note that the case of h} = hJ_1 is possible. Then 

I(P)-I + Z ( V I - * I 

First we are going to prove that p can be chosen such that 

(4) fc,.. - fc, g Q ) - Q - ; + 3 (; = 2 , . . . , fc - 1) 

(the right hand side is obviously not less than 3). 
Because s4 is directable, there exists such x , e l that |<5'(A, x,) | = fc < fc. Then 

we put x, = xhk^ = xhl, (/!*_. = .. . = fcj). 
Let us assume that x1 xhj has been already chosen. 

a) If |<5'(A, xx ... xhj)\ < j then we put hJ_1 = hj and 

»,- ,-*,-o<Q)-/j)-; + 3 . 
b) If ]<5'(A, x : . . . xhj)\ = j and if there exists such xeX that |<5'(A, Xl ... xhjx)\ = 

<. j — 1 then we put hj_1 = fc,- + 1 and xfc,_, = x. Obviously 

*I-.-»l-i<(])-lj)-^3--
c) If |<5'(A, Xj . . . xAj)| = j and no such xeX exists that |<5'(A, x, ... xAjx)| = j — 1 

then because of the directability of sf there exists such x e X that 

Bj = 5'(A, x. . . . x4.) + C, = S'(A, Xl ...xhjx) . 

In Bj there are I J = j'(j — l)/2 different pairs of its elements and in C} there are 



at least further j — 1 pairs. Let {b, c} be such a pair form these ( J + j — 1 pairs 

which possesses the shortest word q with the property that S'({b, c}, q) is one point 
set. 

Since the number of all pairs from A is I 

%) = 7 + 2. 

If b, c e Bj then we put xhj+ _ ... xhj_, = q. I. b, c € Cs then xAj+ _ ...xhj_1 = xg. 
In both this cases 

»_-l-»_*('!\-(i)-J + *. 

Thus we have found the word p by induction. Obviously p fulfils the condition (4). 
Then 

fks 

KP) = - + ï Г 

7 = 2 

- 7 + 3 = \kг - f fc2 + Ңk - 4 

which concludes the proof. 
In table 1 there are calculated the first values of 

\kz - \k2 + fk - 4 . 

Corollary 1. // an automaton s/ e IJk possesses two different pairs of states {a, b} 
and {c, d] such that 

\5'({a,b},x)\ = \S'({c,d},y)\ = l 

for some x, y e X then 

n(s4) ^ _k3 - \k2 + 2fk-4-(k-2). 

Corollary 2. If an automaton stf e TIk, k__ 4 possesses two disjoint pairs {a, b} 
and {c, d} such that {c, d} -* {a, b} -* {/} for some x, y e X and fe A, then 

n(stf) z%_ i/c3 - | k 2 + fk - 4 - (k - 3) . 

The p r o o f of this assertion is based on the inequalities 

K-_ - h_._ __ Q ) - (k - ^ - (k - 1) + 3 - 1 = 2 , 

h-3 - \„2 s Q - (k - V (k - 2) + 3 - (fe - 4) = 6 



which immediately follow from the fact that every k — 1 tuple of states must contain 
{a, b} or {c, d} and k — 2 tuple, excluding at most 4 must also contain {a, b} or 
{c,d}. 

Theorem 2. n(4) = 9. 

Proof. We shall prove that for every automaton srf e /74, s& = (A -= {l, 2, 3, 4}, 
X, 5) the inequality n(,s/) ^ 9 is valid. Therefore considering (l) n(4) = 9. 

Because s4 e nA is directable, there are 2 possibilities: 

1. There exist two such pairs {a, b} that |<5'({a, b}, x)\ = 1 for some xeX. 
Then according to the corollary 1, n(s4) — 8. 
2. There exists exactly one pair with that quality, say {l, 2}. Then we must solve 2 

cases: 
2.1. There exists y e X that {3, 4} y ( l , 2}. Then by the corollary 2 n ( ^ ) ^ 9. 
2.2. For every y eX d'({3, 4}, y) 4= {1,2}. Then because of directability of s4 

there exists such a pair {i,j} that / e {l, 2}, _/' e {3, 4} and 5'({i,j}, y) = {1,2} for 
some y e X. If there are 2 such pairs, then there exists a word a that 

hy - h2 g 5 , h2- h3 = 3 and /(a) ^ 9 . 

Thus let us assume, that the pair {/, j} is only one. 
In the further cosiderations every xeX which fulfils |<5'({l, 2}, x)| = 1 we shall 

denote x. It is impossible that {/,;'} y {1,2} because then <5'({l, j } , x) = <5'({2,y'}, x) = 
= {1,2} what is in contradiction with our assumption. 

Thus there are only 2 possibilities for 3c: 

a) There exists a state b that 8(b, x) = 1 and 5(c, x) 4= 2 for every state c. 

b) There exists a state Z> that d(b, x) = 2 and d(c, x) 4= 1 for every c e A. 

Therefore 2 cases are to be solved: 

2.2.L There exists x that a, is valid. 

2.2.1.1. {/, j} = {1, 3} or {1, 4}. Then [ l , 2, 3, 4} y {l, 3, 4} y {l, 2, a}; a = 3 
or 4 and there exists a directing word p that l(p) ^ 9. 

2.2.1.2. {/,7'} = {2, 3}. (The multigraphs of y e l , <5({2, 3}, y) = {l, 2} are on the 
figures 3, 4, 5, 6.) 

If there is x' that b, holds, then A ^ {l, 2, a}, a e {3, 4} and n(s4) ^ 9. 
Let us assume that for every x only a) is valid. Then there exists z e X that 

{1, 3, 4} y {2, 3, 4} and obviously |«5'({l, 2}, z)\ = 2. 

2.2.L2.L There exists z with abovementioned quality such that {2, 3} - ^ {l, 2}. The 
corresponding multigraph of z is on the figure 3 (it is z t) or fig. 4 (it is z2). 



We shall construct the directing word p — xxx2 ... xn, n ^ 9. 

Zy . X i X 2 x 3 x 4 — XZ^Z^X Or X1X2X3X4X-; z=z XZ%Z^Z-yX 

so that A -^Y^- {1, 4} or {3, 4} what is allways possible. Then the others x ; = z1 

for i ^ n - 1, x„ = x and ra2 - «3 ^ 4, h, - h2 ^ 4. 

z2 : x tx 2x 3x 4 = xz2z2x . 
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Fig. 3. Fig. 4. 

Fig. 5. Fig. 6. 

If A -g^g- (1, 3}, then x ; = z2 for i £ 5. 
If A ^ ^ 5 * ( l , 4} -g {3, 4}, then there exists u e x that 3(4, u) = 1 or 3 and we 

put x5 = u or x5x6 = z2u so that we should get {l, 2}, {l, 3} or {2, 3}. Then the 
others x ; = z2, for i ^ n — 1 and x„ = x. 

If A •^j^y {3, 4} it is possible to use the preceding method. 
In every case with z2, h2 — h3 = 3 and hl — /i2 5i 5. 

2.2.L2.2. For every z, {1, 2} ~^ {l, 2}. Then obviously 3 y 1 and 2 - 7 2 (only the 
figure 5 and 6). The corresponding multigraph of z is on the figure 7 (z3) or 8 (z4) 

z3 : x t x 2 x 3 = xz 3y . 

If A (1, 2, 3} --* {1, 2, 4}, then x4 = x or x4x5 = z3x so that we should get 
{l, 3} or {l, 4} and then the others x; equal z3 or y for / ^ n — 1, x„ = x. 



If A -^Z* {1, 2, 4} ^7 {1, 2, 3}, the preceding method can be used. 
In the both cases h2 — h3 ^ 4 and hr — h2 ^ 4. 
z4: It can be solved by means of similar considerations as the preceding ones so 

that h2 - h3 = 3 and hx - h2 = 5. 
2.2.1.3. {..j} = {2, 4}. The same procedure as in 2.2.1.2, we only change the states 3 

and 4. 

Q^=>Q o 

Fig. 7. 
^ 

Fig. 8. 

2.2.2. For every x b), is valid. It is symmetric with 2.2.1. 

Remark 1. Except of the automaton $r4 (example 1) we have found another auto
maton ^>4 (fig. 9) not isomorphic with <2f4, such that n(^ 4 ) = 9. For ^ 4 it is valid 
that for the shortest directing word h2 — h3 = h. — h2 — 4 while for ^ 4 it is 

h2 - h3 = 3 , «! - h2 = 5 . 

Fig. 9. 

Remark 2. Adding the new state 4 to %A we can easily obtain the automaton °US 

for which n(^5) = 16 (see [ l]) . On the other hand no automaton 0>s with n(^5) = 

^ 16 we could find by adding a new state to ^ 4 . The following theorem is valid for 
the automata with 5 states. 



Theorem 3. n(5) = 16. 

Proof. Because the proof is analogous as in theorem 2, we are not going to explain 
it in details. It is divided into the following main points: 

1. Every mapping <5(0, x) is compressive, i.e. for every input symbol x|<5'(A, x)\ < 
< |A|. 

1.1. There exist four states i,j, k, I, such that for some 

x,yeX\5'({i,j},x)\ = \S'({k,l},y\ = 1 . 

1.2. There exist three states i, j , k such that for some 

xeX\8'({i,j,k)\ = 1 . 

1.3. There exist three states i, j , k such that for some 

x,yeX\8'({i,j},x\ = \5'({j, k}, y)\ = 1. 

1.4. There exists the pair i,j such that for every xeX |<5'({i,y}, x)| = 1 and for 
every {k, 1} 4= {i,j} and every x e X\d'({k, I}, x)\ = 2. 

2. There exist such a symbol xeX that the mapping <5(0, x) is a permutation of 
the elements of A. 

2.1. The permutation is of the type 1; 2; 3; 4; 5 (every state is mapped into itself). 
2.2. Of the type 12; 3; 4; 5 (l -> 2; 2 -> 1 and others into themselves). 
2.3. Of the type 12; 34; 5. 
2.4. Of the type 123; 4; 5 (a cycle from 123). 
2.5. Of the type 123; 45. 
2.6. Of the type 1234; 5. 
2.7. Of the type 12345 (the total cycle). 

Remark 3. The hypothesis n(k) = (k - l)2 may be found not valid only for 
k £ 6. 

(Received May 26, 1969.) 
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O usmernitelhých automatoch 

JÁN ČERNÝ, ALICA PIRICKÁ, BLANKA ROSENAUEROVÁ 

V článku sa študujú odhady pre čísla n(k), definované v [1] ako sup min l(p), 
SÍElIkPEP(rf) 

kde sé = (A, X, 5) je neiniciálny Medvedevov automat, P(s/) je množina jeho 
usmerňujúcich slov, definovaných v [ l ] , a TIk je množina všetkých usmernitelných 
automatov s k stavmi. Zlepšujú sa odhady pre n(k) získané v [1] a [2], a to tým, že sa 
dokážu tieto vety: 

Veta 1. Pre všetky k ^ 2 je n(k) S k3J3 - 3fc2/2 + 25/c/6 - 4. 

Veta 2. n(4) = 9. 

Veta 3. )?(5) = 16. 
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