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K Y B E R N E T I K A - V O L U M E 21 (1985) , N U M B E R 1 

SOME FUNCTIONALS ON SETS OF STATIONARY CODES 

ŠTEFAN ŠUJAN 

Functionals of Kieffer-Rahe type measuring the degree of non-invertibility of stationary codes 
are defined, and their continuity properties are studied. General approximation theorems in the 
spirit of Sinai's weak isomorphism theorem and Ornstein's isomorphism theorem are derived. 

1. INTRODUCTION 

The theory of Bernoulli process and the associated coding techniques [3] found 
numerous applications in ergodic and information theories (see, e.g., the survey [6]). 
In this paper we address the question of abstract (topological) backgrounds of these 
techniques, without touching the problems connected with actual constructions 
of the corresponding codes (as to that cf. [6]). The main tool will be certain functionals 
on sets of stationary codes called Kieffer-Rahe functionals following [2], where 
similar quantities have been introduced for the purpose of universal coding in ergodic 
theory. We study various continuity properties of these functionals which result, 
in particular, in abstract formulations of Sinai's and Ornstein's theorems. 

2. KIEFFER-RAHE FUNCTIONALS 

Let A be a finite set with | A | elements. If s4 = {E : E <=. A}, then (Az, s4z) (Z = 
= {..., — 1, 0,1, . . .} will denote the measurable space consisting of Az, the set of all 
doubly-infinite sequences x = (xt; i e Z) with xt e A, and s4z, the usual product 
ff-field of subsets of Az. We let M(A), E(A), and B(A) denote the sets of all ^ - i n 
variant, Ti-invariant and ergodic, and Bernoulli probability measures on (Az, stfz), 
where TA is the usual (two-sided) shift on Az [6]. 

We make the following notational convention. If pu ..., n„ are probability measures 
on sequence spaces, and if an object, 0(jxu ...,n„), is defined, then we shall write 
also 0(XU . . . ,Z„), where Xt are processes with dist(Z ;) = fit, 1 rg i ^ n (e.g., 
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if 3(nu fi2) is the d-distance between fit, fi2eM(A) and if XUX2 are stationary 
processes with the state space A, dist(Xj) = fiu and dist(X2) = \i2, then we shall 
write3(/u1,p2) = 3(X1 ,Z2)). 

If B is another finite set, 3fA(B) will denote the set of all measurable partitions 
P = (Pb; b e B) of Az indexed by B. Also, FAB will stand for the set of all stationary 
codes qj: Az -» Bz. By definition, <p e FAB if 

(1) i p 1 ^ 2 c J3/Z and (p oTA = TB a <p~. 

The formulae 

(2) P„ = (cp-^b}; beB), where yeFAB, <p(x) = (cpx)0 ; 

(3) ((pPx)t = b if T > e P 6 , where P = (P6; 6 e B ) e %A(B) 

establish a one-to-one correspondence between equivalence classes (resulting from 
mod 0 identifications) of FAB and 2tA(B) relative to any fixed /i £ A1(A). This means 
that two codes <p~, \j/ e FAB are equivalent if cp = \p mod„ 0, i.e., if fi{x: cpx =j= i/7x} = 0. 
Two partitions P, Qe %A(B) are equivalent if P = Q mod,, 0, i.e., if |P - Q\ft = 0, 
where 

(4) |p -G| , = iSM^Aeb), 
2>efl 

and A stands for the set-theoretical symmetric difference. Let 

(5) PA = ({xeAz:x0 = a}; as A). 

Then y {TAPA; ieZ} = a(\J{TAPA: i e Z}) = sdz, i.e., PA is a generator in the 
strict sense. F o r ; e {0} u N (N = {1, 2,...}) put 

(6) PAJ = V r i ^ • 
i=-j 

For each jf, let Qjl\ Qj2\ ... be an enumeration of all those partitions of Bz whose 
atoms are finite-dimensional cylinders, and | g j ° | = I-P^.JI » ' 6 N, For any \i e M(A) 
and P E ̂ ( B ) we define 

(7) Gifi, P) = t I-3'1 inf l ^ ^ f - Px,i • 
j = 0 i g l 

If v, v' G M(B), let <2(v, v') denote their 3-distance (see [3] or [6]). If p. e M(A), 
v e M(B), and P e ^ ( B ) , then we define 

(8) F(n, v, P) = G(n, P) + d(n<p-p \ v). 

F and G will be called Kieffer-Rahe functionals (in [2], G was not considered expli
citly, and F was considered in the special case when F(n, v, P) = F(n, v , P), where 
ft \-* v,, was a certain correspondence). 

It is well-known that a countable (possibly finite) measurable partition P of Az 
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is a generator (with respect to TA and fi, pie M(A)), i.e. 

(9) V TAP = stfz mod,, 0 , 
ieZ 

if and only if the code <pP (B = P) is invertible. This may be expressed in terms of G 
as well: 

Lemma 1. A finite measurable partition P of Az is a generator with respect to TA 

and / i ; / ie M(A), if and only if G(n, P) = 0. 

We omit the standard proof (based on the idea of the proof that an almost every
where injective measurable mapping between two standard probability spaces is 
automatically invertible cf, e.g., [3, Appendix A]). 

Lemma 2. Let \x e M(A), P(n), P e S£A(B) be such that \P(n) - P|„ -* 0. Then 
G(fi, P(,,)) -* G(n, P). In other words, the function P -> G(n, P) is continuous relative 
the semimetric (4) on S.'A(B). 

Proof. This follows from the fact that, for fixed i and;', 

WV&QF-PAJI-W^QP-PAMS 

£iIA$««Q?(k)*$rlQ?W\> 
k 

where the summation is over all atoms of gj°. In fact, it remains to observe that if 
Pe^A(B) then the set q>P~1Qj)(k) may be expressed in terms of taking unions, 
intersections, and shifts of the atoms of P (we do not present cumbersome general 
expressions and give only an example: if Q(p(k) = {y e Bz: y0 e {b±, b2], y% = b3} 
then y"pXQf(k) = (Pbl u P f c ) n TA

lPbi). • 

Lemma 3. Let /< e M(A) and v e M(B). Then 
(a) the function P i-> E(^(, v, P) is continuous relative to the semimetric (4) on 

2£A(B); and 
(b) the shifts (T^, p) and (TB, v) are mod 0 isomorphic (cf. [8] for the definition) 

if and only if there is a P e &A(B) such that F(n, v, P) = 0. 

Proof. Both assertions are implicitly contained in [2]. In order to prove (a), use 
Lemma 2 together with the following facts: 

d(^P\tirpQ')^\p - e|„ (cf.[3]); 

\d(x, y) - d(x, z)\ g d(y, z) 

(the latter is valid for any semimetric, and is a simple consequence of the triangle 
inequality). In light of Lemma 1, part (b) just recalls definitions in a different form. • 

The key steps of Ornstein's coding technique may be conveniently expressed in 
terms of F and G: 
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Lemma 4. (a) Let it e E(A) and v e B(B) satisfy hfl(TA) = hv(TB) (h stands for 
entropy [1]). For any e > 0 there is a 5 > 0 such that for any Q e &A{B) satisfying 
3 ( ^ Q S V) < <5 we can find a Pe2"A(B) with |P - g|„ < e and E(ii(p~\ v) = 0. 

(b) Suppose, in addition, that p. e B(A) and /i„(Ti) = hv(TB). For any e > 0 
there is a 5 > 0 such that for any Q e '£ A(B) satisfying F(\x, v, Q) < 8 we can find 
a P e ^ ( B ) with |jP - Q\n < e and F(JX, v, P) = 0. 

Part (a) says that having a coding sufficiently close to the Bernoulli measure v 
we can change that coding slightly, and thereby get a conding that yields v exactly, 
i.e., under which v becomes a factor (= a stationary coding) of p (thus, strong 
Sinai's theorem is valid; cf. [7] for its information-theoretic implications). 

Part (b) does not follows immediately from (a). Indeed, the possibility of con
structing a sequence of partitions which become ever "more generating", and the 
encoded measures become ever "closer" to v e B(B) is the core of Ornstein's technique 
(see [3], Lemmas 1.4.7, 1.4.10, Proposition 1.4.11). 

3. CONTINUITY PROPERTIES 

On M(B) we place the weak topology. As well-known [4], it is metrizable, and we 
define the weak metric dw by 

(10) ^ (v,v ' ) = f 2 - Z | v " ( b ) - ( v ' ) " ( b ) | , 
n= 1 befl" 

where v"(b) = v{y e Bz: y"0~' = b} , _y0
_1 = (y0, ..., j '„_,) ; and similarly for V. 

Theorem 1. Let y. e B(A), v e B(B), and P e &A(B). Then F(fi, v, P) = 0 if and 
only if for any e > 0 there is a 3 > 0 so that F(p, v', P) < z for any v' e E(B) satisfying 
dw(v, v') < 5 and \h(v) - /i(v')| < 5 (h(v) stands as an abbreviation for hv(TB)). 

Proof. First let us prove sufficiency of the latter condition. Using it choose 
a sequence v(,,) e E(B) such that 
(a) dw(v™, v) -» 0 , 
(b) |h(v(,,)) - h(v)\ - » 0 , and 
(c) F(n, vM, P) ^ 0 . 
Since v e B(B), (TB, V) is finitely determined [3, 6] so that (a) and (b) entail 
(d) d(v{"\ v) ->0. 
Since F(j.i, v(,,), P) = G(f.i, P) + d(fji(p~\ v(n)), the only way in which (c) may happen 
is that G(n, P) = 0. By (d) and (c), 

l(li(Pp\ v) < d(wp\ v(B)) + d(v("\ v) -> 0 . 

Hence d(n<p~\ v) = 0 so that F({i, v, P) = 0. 
We prove necessity indirectly. Suppose P(ii, v, P) = 0 but the condition is false. 

Then we find an e0 > 0 such that for any 5 > 0 there is a v' e E(B) so that c/H(v', v) < 
< 8, \h(v') — h(v)\ < d, but F(p, v', P) > e0. Hence, pick a sequence v(n) e E(B) 
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with d(v(n), v) -+ 0 (use again bernoullicity of v) and Ffj., v<">, P) ^ £() for any n e N.) 

Using triangle inequality, 

G(fi, P) + ddxqi;1, v) + d(v, v(">) £ Jfy, v(">, P) £ £o . 

Take the limit as n -» oo: 

F(n, v, P) = G(fi, P) + d(wp\ v) £ E0 ; 

a contradiction. D 

Remark 1. Let ^ e B(A), v e B(B), and P e J^(B) be such that F(/i, v, P) = 0. 
Then (p~P e FAB is invertible so that (p"p~1 e FBA is a well-defined stationary code. 
If P " 1 € &B(A) corresponds to cpP'1 (cf. (2)), then F(v, \i, P~l) = 0. Hence, Theorem 
1 can be formulated also dually, i.e., for fixed v and for changing JX, respectively. 

Theorem 2. (Sinai's Theorem). Let X e M(A) and Ye M(B) be such that there 
exist processes Xw e M(A), Y<"> e M(B), and partitions Q<"> e 2£ A(B) (n e N) such 
that 

(a) a(x<»>,x)-+o, 
(b) a(Y<">, Y)»o, 
(c) |g("> - P\x - 0 for some P e J^ (P) , and 
(d) a(^Q()I)X

(">, Y(">) -+ 0 as n -> oo . 
Then 3(<j5pX, Y) = 0, i.e., Y = cpPX mod 0. That is, Yis a factor of X. 

Proof. On the first step we show 
(e) a(9Q(„)Z, Y)-> 0 . 
We have 

a(^ (,„x (">, Y) < a(«pG(,„x(">, Y(->) + a(Y<»>, Y)->o 
by (b) and (d), hence 
(f) d(<pQMX(n),Y)-+Q. 
Next 
(g) a(^Q(,0z, Y) s d(cpQo,yX, (pG(„,z<">) + a(90(„,z(">, Y). 
In order to evaluate the middle term in (g) we employ the following equivalent 
description of 3 (see [3, Appendix C]). Let U = (U,-; i e Z) and V = (V; i e Z) 
be two stationary processes over the same finite alphabet C. Then 3(U, V) < s 
if and only if on some probability space there exist jointly stationary processes U and 
V, each with the state space C, such that dist (U) = dist (U), dist (V) = dist (V) and 

Prob [U0 + V0] < £ . 

Now fix a finite set D and a code <p~ e FCD. Then (q>0, (pV) is again jointly stationary, 
dist (cpO) = dist (cpU), dist (<p~V) = dist (cpV), and 

Prob [(<pU)0 4= (q>V)o] <, Prob [U0 4= V0] 

(for cp only can "past together" different letters). Hence 
(h) d(<pU, <pV) <. 3(U, V) . 
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Use (h) for n e N, U = X(n\ V - X, y = (pQM: 
(i) Z(<PQ^X(n), <pQMX) S d(X(n), X); neN. 
Combining (i), (a), (f), and (g) results in (e). But 

d(<pPX, Y) g d(cpPX, <pQMX) + d(yQ(,„X, Y) -> 0 

since (e) applies to the second summand, while from (c) it follows that 

d(<pPX, q>QWX) S\P~ Q(n)\x - 0 . p 

Theorem 3. (Isomorphism Theorem). Suppose X e M(A), Ye M(B), and P e 
e StA(B) be such that there exist sequences Y('° e M(B) and Q(n) e StA(B) satisfying 
(a) d(Y(n), Y ) - 0 , 
(b) \Q(n) - P\x - 0 , and 
(c) F(X, Y(n), Q(n)) - 0 as n -+ oo . 
Then F(X, Y P) = 0. 

Proof. Apply Theorem 2 to the constant sequence X(n) = X (neN); we get 
d((~pPX, Y) = 0. From (c) it follows that G(X, Q(n)) - 0. Use (b) and Lemma 2 to 
conclude that G(X, Q(n)) - G(X, P); hence G(Z, P) = 0, too. • 

Remark 2. The proofs of Theorems 2 and 3 are easy because the major point 
of Ornstein's coding technique — the construction of a converging sequence of parti
tions — is already built in our hypotheses ((c) of Theorem 2, (b) of Theorem 3). 
A remark of Ornstein (see [3], remark after Proposition 1.4.8) throws light upon 
which conditions could entail convergence. In fact, if a sequence Q(n) of partitions 
is ever better in the sense of F, then this alone does not lead to the conclusion that 
the g(n) 's approach a generator P. The reason is that this approach may be too slow. 
But if we could prove, say, that £ |6 < n + 1) - Q(n)\x < oo, then we would obtain 
convergence. But the latter condition says essentially that the elements of the sequence 
{Q(n); neN} are not allowed to differ much from each other. 

We separate the idea suggested in the above remark in the form of the following 
lemma. Let 

(11) Qll(P, Q) = \P - e|„ ; neM(A), P,QeStA(B) (cf. (4)), 

(12) de(v, v') = dw(v, v') + \h(v) - h(v')\ ; v', v' e M(B). 

Lemma 5. Let fi e B(A) and v e B(B). Let St c StA(B) be a e„-totally bounded set. 
Suppose for each e > 0 there is a b > 0 such that for any v' e E(B) satisfying de(v, v') < 
< 5 there is a partition Qe St with F(n, v', Q) < e. Then there is a P e StA(B) 
satisfying F(ii, v, P) = 0. 

Proof. Use the assumptions and find sequences v(n) e £(J5) and Q(n) e StA(B) 
such that 
(a) d(v(n), v ) - 0 and 
(b) F(fi, v(n), Q(n)) --> 0 
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((a) is obtained as in the proof of Theorem l). From (a) and (b) we have 

(c) F(n, v, Q(">) g G(/z, 6("') + Shiva?*, v(n)) + 3(v(n), v) = 
= F(n, v("', e("») + 5(v<">, v) -» 0 . 

In particular, 

(d) 3 ( ^ 1 , , v) - 0 

(note that this is the same as (e) in the proof of Theorem 2). We claim that the sequence 
{6(,,)} is e„-Cauchy (cf. 11)), i.e. 

(e) lim|Q«-oj->L, = 0. 

If C is a finite set, let Rc denote the set of all regular points, i.e. of all sequences 
u e Cz such that there exists a measure [x e E(C) so that 

(f) li(V) = \imn-i"jriv(T<u) 
n->oo • i = 0 

for all elementary cylinders V <= Cz, where 1V stands for the indicator function of V. 
If fie E(C), let R(/i) = {u e Rc : (i = nu], where \iu is the unique measure in £(C) 
determined by the right-hand side of (f). If fi e E(C), then we have n(R(fi)) = 1 and 
p(R(v)) = 0 if v e £(C), v + \i (see [8] or [5, 6] for details). 

Since for any n eJV, ^<pQ(!o e E(B) (in fact, it is even bernoulli; cf. [3]), we can 
express the 3-distance between encoded processes as follows: 

K-l 

(g) d(n(pQo\), WQ<™>) = inf lira sup K~1 £ dn(y'k, K')', 
y'eR((iip~ln))modO K ^ c o k = 0 

y " s R ( / i ^ " ( „ , ) ) m o d O 

where dH is the usual Hamming distance on B. Let \i = dist (X). For each n eN, 
dist ((pQ0l)X) = ii<Po~{n), and we may suppose (by changing the underlying probability 
space if necessary) that the pair process (cpQ(n)X, cpQ(m)X) is jointly ergodic. Now 

2 Prob [(WQO^O + (<PQ<„„X)0] = X, P r o b [(VQ^X)O = b', 
ll b',b"sB 11 

b' =t= b" 

(VQ^X\ = b"] = 2|2("> - Q('">|„ 

(the latter equality follows from (2)); i.e. 
(h) \QM - Qim\ = Prob [(^Q(„,Z)0 + (yQ^X)o] . 

it 

Let 
[b>, b"] = { ( / , y") eBz xBz : y'0 = b>, y'0 = b"} . 

Using joint ergodicity of (<pQo,)X, <pQ(m)X) and the pointwise ergodic theorem we get 
K-l 

(i) Prob [(pQMX)o + (VQ^X)0] = i Y. KmK-1'Zlib'.ATBVQ<">x> TB<PQ<»»X) 
It b',b"eB K->oo <t = 0 

6 ' * ( , " 

for /i-almost all x e R(u). We wish to prove that if (g) approaches zero then so does (i). 
However, there arises a difficulty, for (g) involves infimum over sequences from two 
distinct sets, while (i) concerns only sequences x e R(n). Therefore, we must proceed 



in a less straight way. Suppose (i) is not valid. Then we find a y0 > 0 and two different 
letters b'0, b'0 e B so that for /^-almost all x e R(/i), 

K - l 

(j) Jim K"1 £ llb0',b0:}(T&Q(n)x, Tk
BcpQ(m)x) > y0 

K-co /i = 0 

for infinitely many neN and for infinitely many m e N. In (j), a one appears in the 
sumonly if (<pQ(„>x)/c = b'0 and (<pQ(m)x)k = fr0. By the definition of Hamming distance, 
for any n, meN, the inequality 

K - l K - l 

lim-K"1 £ Ipo'.^-jCr-B^Qf.o*' TB<?Q(m,x) g lim s u p X - 1 £ dH((<pQ(n)x\ , (<pQ(„„x)k) 
K-oo fc-0 K-co k = 0 

takes place for /.-almost all x e R(u). Hence, it follows from (j) that 
K - l 

(k) inf lim sup K~1 £ dH((^Q(„,x)t, (^Q(m,x)s) £ y0 
xeR(/i)modO K— oo 4 = 0 

for infinitely many neN and infinitely many meN. Let n e N. If y e R(/t^g"(J,,) then, 
with probability one, y = <pQ(„,x for some x e E(//) (see [5], Lemma 3). Hence, the 
abovementioned difficulty appears in case when y', y" yielding "nearly" the infimum 
in (g) do not arise from the same x e R(fi). In order to overcome this we use (d) 
rewritten in the form 

K - 1 

(1) inf lim sup K"1 £ dH(((pQ(n)x\, yk) -> 0 
xeR(n)modO K— GO /C = 0 
yeR(v)modO 

as n -» oo. Now, a simple consequence of the triangle inequality is the following one: 
K - l K - l 

lim sup K'1 X dn((<pQ(n)x\, (<pQ(^x\) ^ lim sup K"1 £ dH(((pQ(^x\, yk) + 
K-oo k=0 K-o> k = 0 

K - l 

+ lim sup K'1 £ dH(((pQ(m)x\, yk) . 
K-co k = 0 

Now pick x e R(/*), >> 6 E(v), and n0 e JV so that for n ^ n0 

lim sup iC J £ rfH((l»e(»>x)*> );0 < i?o 
K-co 4 = 0 

(this is possible by (1)). If m > n0, too, we get the existence of an x e P(/i) with 
K - l 

lim sup K~Y £ dH((<pQ(„,x)fc, (<?Q(m,x)t) < y0 
K-co k = 0 

for all n, m S: n0, and this contradicts (k). Using (g) and (i) we get the claimed (e). 
Now {Q(n); neN} is a ^-Cauchy sequence, and each Q(n)e££, where if is e„-

totally bounded. Consequently, we can find a subsequence nk and a partition P e 
e ,2°,4(#) 0 n fact> I1 belongs to the ^-closure of 2£) so that 

(m) lim \Q("k) - Pi = 0 . 
Jt-OO 

By Lemma 3(a), E(/<, v, Q("k)) -» E(«, v, P). On the other hand, (c) implies 
E(/i, v, Q(n)) -> 0. Consequently, we get E(/i, v, P) = 0 as desired. • 
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Next let us generalize Theorems 2 and 3. Since the proof of (e) in the proof of Theo
rem 2 does not employ the assumption that \Q(n) — P\x -> 0, the following result is 
implicitly contained in Theorem 2: 

Theorem 4. Suppose the hypotheses of Theorem 2 are satisfied except that (c) is 
weakened to 
(c') {<><">; neN] c 2, where 3£ c 2£A(B) is 0,,-totally bounded; n = dist (X). 
Then there is a partition P e 3CA(B) such that d(cpPX, Y) = 0. 

It is intuitively clear that if two processes X e M(A) and Ye M(B) allow for 
approximations by processes X(n) e M(A) and Y(n) e M(B) such that X(n) and Y(n) 

become ever "more isomorphic" when n grows (and the corresponding codes do 
not differ too much; see Remark 2), then X and Ythemselves should be isomorphic. 
However, Theorem 3 gives us only a weaker result in that X was kept fixed and 
merely Y was approximated by a sequence Y(n). Lemma 5 allows us to remove this 
asymmetry. 

Indeed, add to (a) and (b) of Theorem 3 the condition 

(13) d(X(n\X)-^0 

and modify (c) of Theorem 3 to 

(14) F(X("\ Y(n\ g(n)) -» 0 . 

Then (13) and (14) entail 

d((pQMX, Y(">) < d(cpQ(n)X, cpQ(n)X
(n)) + d(<pQ<n)X

(n\ Y(n)) <. 

< d(X, X(n)) + F(X(n\ Y(n\ Q(n)) '-> 0 . 
Since 

d(qiQ(n)X, Y) < d(q>QMX, Y(n)) + d(Y("\ Y) , 
we get again 

(15) lim 3((pQwX, Y) = 0 . 

We see that (15) was obtained without the assumption that \Q(n) — P\x ~* 0 for 
some P e ££A(B). Hence, by Lemma 5 we get the following generalization of Theorem 
3: 

Theorem 5. Let X e M(A) and YE M(B) be such that there exist sequences XM e 
e M(A), Y(n) e M(B), and Q(n) e %A(B) such that 
(a) d(X(n\X)^0, 
(b) d(Y(n\ Y| -» 0 , 
(c) F(X(n\ Y("\ e(n)) -» 0, and 
(d) {Q(n); neN} c % cz 2£ A(B), where 2 is a ^-totally bounded set, fi = dist (X). 
Then there exists a P e ^ ( B ) with F(X, Y, P) = 0. 

Remark 3. The only condition concerning entropies in Theorem 5 is that h(X(n)) -» 
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-» h(X) and h(7(")) -» h(Y) (this follows from (/-continuity of entropy) and, of course, 

h(X) = h(Y). In particular, we may pick h(X(n))i 0, /i(Y(n)) JO, i.e., /i(Z) = /i(Y) = 

= 0. In other words, Theorem 5 is valid equally well also for zero-entropy processes. 

It is an easy exercise to prove that, under the conditions of Theorem 5, the appro

aches to zero of h(X(n)) and h(Y(n)) must be at the same rate. The formula 

(16) lim H(X'0-
 l)JH(Y^~]) = lim /i(X("))//)(Y(")) 

then shows that the speed of convergence in ra~x H(X"0~
l) | 0 is a new isomorphism 

invariant for zero-entropy processes. However, a detailed investigation on the 

isomorphism problem for zero-entropy processes exceeds the frame of the present 

paper. 
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