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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 1 

AN IMPLEMENTATION OF RECURSIVE QUADRATIC 
PROGRAMMING VARIABLE METRIC METHODS 
FOR LINEARLY CONSTRAINED NONLINEAR 
MINIMAX APPROXIMATION 

LADISLAV LUKSAN 

The paper contains a description of three algorithms for linearly constrained nonlinear minimax 
approximation. These algorithms use a dual method for solving quadratic programming sub-
problem together with variable metric updates for the Hessian matrix of the Lagrangian function. 
Moreover, a new line search procedure is described which is shown to be efficient in connection 
with a basic algorithm. The efficiency of all algorithms is demonstrated on test problems. 

1. INTRODUCTION 

We are concerned with the problem where a point x* e Rn is sought such that 

1 E(x*) = min(max/ ; (x)) 

where T e L" i E M ' 

L„ = {xeRn:a
Tx g bh ieM2} 

In (1.1),/ ;(x), i e Mu are real valued functions defined in the n-dimensional vector 

space Rn with continuous second-order derivatives and M1 u M 2 = {1, ...,m}, 

M,nM2 = 0. 
Let x 6 L„ be a feasible point and let a ; = a ;(x), ie M1 , be the gradients of the 

functions/ ;(x), ieMt, at the point x e Ln. Consider the quadratic programming 

subproblem with a symmetric positive definite matrix G which consists in the determin­

ation of the pair (s*, z*) e K„ + 1 such that 

i (s*, z*) = arg min (±sTGs + z) 
where CM**.*. 

L„ + 1 = {(s,z)eR„+l:ji + ajs S etz, isM1 u M2} 
and where Jt = Ji(x), e ; = 1 for i e Mx and j ; = a]x — bh e ; = 0 for / e M2. Let 

A = [au ..., a m ] be a matrix the columns of which are vectors ah ii e M , u M 2 

and let 

/ = & - Й 
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where / ; = fix), e; = 1 for i e M, and ft = aTx - bh e; = 0 for i e M2. If the 
pair (s*, z*)eR„+1 is a solution of the quadratic programming subproblem (1.2) 
then there exists a Lagrange multiplier vector u* e Rm such that 

s* = - HAu* 
eTu* = 1 

1.3) u* = 0 
v* = 0 

(v*y u* = o 

where # = G1 and u* = z*e - / - ATs* (see [7]). 
The first order (Kuhn-Tucker) necessary conditions for the original problem 

(1.1) have the form 
AM* = 0 
eTu* = 1 

(1.4) u* = 0 
v* = 0 

(y*)T u* = 0 

where v* = z*e - / (see [8]). Comparing (1.4) with (1.3) we can see that (1.4) 
holds if and only if (0, z*) e Rn+1 is a solution of the quadratic programming sub-
problem (1.2). In the other way, if the first order necessary conditions (1.4) are not 
satisfied and if (s*, z*) e R„+1 is a solution of the quadratic programming subproblem 
(1.2) then, necessarily, s* + 0. We show that this vector is a descent feasible direction 
for the problem (l.l) . 

Theorem 1.1. Let x e L„ be a feasibe point. Let (s*, z* )eR„ + 1 be a solution 
of the quadratic programming subproblem (1.2) such that s* + 0. Then s* e R„ is 
a feasible descent direction for the problem (1.1) at x e L„ provided fi(x), ieMu 

have bounded Hessian matrices in a neighbourhood of x e L„. 

Proof. Let 0 < a <. 1 be a sufficiently small steplength and let keM, be the 
index such that F(x + as*) = fk(x + as*) where F(x + as*) = m a x / ( x + as*). 

teM, 

The function fk(x) has a bounded Hessian matrix in a neighbourhood of the point 
x e L„. Therefore, there exists a constant K such that 

E(x + as*) < fk + aaTs* + ^ XJ|s*||2 < / , + a(z* - / , ) + £ K\\s*\\2 < 

< E + a(z* - F) + - X | s * | l 2 
v / 2 II II 

since fk ^ E = max/ ; and a ^ 1 by the assumption, and ars* g z* - fk by (1-3). 
Thus ieMl 

F(x + as*) - E(x) 
(L5) lim < z* - E. 
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Let us denote g* = AM*. Then necessarily g* 4= 0 since s* = —Hg* + 0 and we get 

(s*)Tg* = -(g*fHg* < 0 . 

Therefore 

(1.6) z* - F = (z*e - Ee)T
 M* _g (z*e ~ jf u* = 

= (z*e - j - ATs*)T M* + (ATs*)T u* = (s*)T g* < 0 

since j ; _g E, e; = 1 for i e M. and ft ^ 0, ef = 0 for i e M2 by the assumption, 
and, since eTM* — 1, u* __: 0, and (z*e — / - ATs*)T M* = 0 by (1.3). The inequalities 
(1.5) and (1.6) together prove that s* eR„ is a descent direction. Furthermore x e L„ 
is a feasible point and x + s* + x is also a feasible point by (1.2). Therefore s* e R„ 
is a feasibe direction. • 

The direction vector s* e R„ given' by (1.3) can be determined by means of the dual 
method described in [7]. Having the feasible point x e L„ and the descent feasible 
direction s* e R„ we can determine a new feasible point x + as* e R„ where 0 < a <. 
_g 1. To ensure convergence, we choose the steplength a in such a way that E(x + 
+ as*) should be sufficiently smaller than F(x). This problem is investigated in the 
next section where a new line search procedure is described. 

The above mentioned idea was firstly presented in [5] for L„ = R„ (unconstrained 
case) and it forms a basis for the first algorithm stated in Section 3. However, this 
algorithm may be inefficient in some cases as it will be shown in Section 4. Therefore 
two additional algorithms are given which are based on the ideas described in [1] 
and [3]. All algorithms use variable metric corrections for the matrix that appears 
in the quadratic programming subproblems which have to be solved. 

The last section reviews numerical experiments with all algorithms given in Section 
3. It is shown that the basic algorithm is efficient especially in the connection with 
a new line search procedure. It is comparable, in number of function evaluations, with 
other two algorithms which are more complicated and, therefore, more time-con­
suming. 

2. A SPECIAL LINE SEARCH PROCEDURE 

The steplength determination strongly affects the efficiency of algorithms for line­
arly constrained nonlinear minimax approximation. There are three problems 
which have to be solved, namely the initial steplength estimation, the line search 
termination, and the interpolation to obtain a new steplength in case the previous 
one has not been successful. To solve these problems, we use the same notation as 
in the previous section, except for the fact that the superscript "*" will be omitted. 
Moreover, we define 

/ = { i e M , u M2 : vt = ze; — /_ — a]s = 0} 

and Jj = I n Mu I2 = I n M2. 
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The initial steplength is most frequently determined by means of linearization 
of the functions /,(x), / e Mv Let 

f - • ( F-fi «i = mm -
(2.1) J '•'> Vs fl/ - 5 ffy 

where 
l1 = {ieMl\ll:s

Tal> sTg) 

and where a = Au as in the previous section. Then 

(2.2) a, = min(l , a,) 

is a suitable initial steplength. 

As regards the line search termination, we use the same termination criterion 
as Han, namely the condition 

(2.3) F(x + as) = F(x) + e2asTg 

where 0 < 2e2 < 1- The condition (2.3) guarantees the global convergence of the 
algorithm for nonlinear minimax approximation (see [5]). 

When the current steplength ak does not satisfy the condition (2.3), we have to 
determine a new steplength a4+1. The quadratic interpolation of the line search 
function F(a) = F(x + as) is usually used in this case (see [4]). But function F(a) 
need not be smooth. Therefore the quadratic interpolation of such a function is not 
advantageous. A better way consists in the approximation of each function Jt(a) = 
— fi(x + as), / e M j , by a special parabola <pt(a) = p,a2 + qta + rt. Thus the 
new steplength ak+1 can be determined by solving the problem 

f ak+1 = arg min <p(a) 

where 

<p(a) = max <p,(a) . 
ieM, 

Each parabola (pt(a) = pta
2 + q{a + rh ieM1, is specified by the values <p,-(0) = 

= fi*), <Pp) = sT at(x) and (pt(ak) = /,(x + aks). Then p, = (cPi(ak) - ^,.(0) -
- (p't(Q) ak)jak, qt = <p;(0) and r, = <p,(0) for / e Mt hold. 

The following algorithm summarizes the above considerations. 

Algorithm 2.1. 

Step 1: Compute the initial steplength ax by (2.l)-(2.2). Set k := 1. 

Step 2: Compute the values (pi(ak) = ft(x + aks) for all ieMv Compute the value 
F(x + aks) = max/;(x+ aks). 

ieMr 

Step 3: If the condition (2.3) is satisfied for a = ak then terminate the computation 
(a = ak is a suitable steplength). 



Step 4: Set a, := 0 and a2 := ak. Choose the indices i1eMl and ;2 e Mx such that 

<Ph(«i) = m a x ^ / a . ) , 

•Phfe) = max <Pj(S2) • 
jeM, 

Compute the coefficients ptl, qti, ris and p,,, tji2, ;-,-, of the parabolas cpii(a) 
and (Pi2(a)- If 2p,-,at + <7,-2 < 0 then terminate the computation (a = ak 

is a suitable steplength). 
Step 5: If /, = ;2 and p,-, = 0 then set a : = a, if qt[ > 0 or a : = a2 if c/;, < 0 and 

go to Step7. If i, = ;'2 and p,-, + 0 then set a := —qiij(2pii) and go to Step7. 
If ;'j + ;'2 and pfl = p i2 then set a := —(rii — ri2)J(qit — qtl) and go to 
Step 7. If i{ + i2 and pH =f= p,-2 then continue. 

S/ep 6: Compute the values A := -(<?,-, - qi2)j(pii - ph) and 5 := — (rtj — r,-2) / 
/ (Pi, - Pi,)- I f «i < Al2 + -/((AI2Y + B) < a2 then set a: = A/2 + 
+ V((^/2)2 + B) and go to Step 7. If a t < A/2 - V((A/2)2 + B) < a2 

then set a := A/2 — V((^/2)2 + B) and go to Step 7. If the above conditions 
are not satisfied then set a := ("j + a2)/2 and go to Step 7. 

Step 7: If (a2 - a,) < e0 go to Step 12. 

Step 8: Choose the index / e M t such that 

<Pi(a) = max </?;(a). 
JeM, 

If / = ;\ or / = ;2 then go to Step 9 else go to Step 10. 

Step 9: If ;'i = ;2 or (2piya + qi:)(2pi2a + qi2) < 0 then go to Step 12 else go to 

Step 11. 

Step 10: Compute the coefficients ph qh r, of the parabola cpt(tx). 

Step 11: If 2p;a + qt < 0 then set a, := a and i{ := i else set d2:= a and ;2 := /. 

Go to Step 5. 

Step 12: Set ak+1 := max (a, 10~2a«.). Set k := k + 1 and go to Step 2. 
Algorithm 2.1 uses two tolerances e0 and s2. The values e0 = 10~2 and e2 = 10~2 

were used in the implementation of this algorithm on an IBM 370/135 computer 
in double precision arithmetic. Efficiency of Algorithm 2.1 is shown in Section 4. 

3. DESCRIPTION OF ALGORITHMS 

In this section we are describing three algorithms which are based on the solution 
of quadratic programming subproblems. These subproblems can be solved by means 
of the dual method proposed in [7]. This method uses a positive definite matrix H 
which should approximate the inverze of the Hessian matrix of the Lagrangian 
function as closely as possible. Therefore, it is advantageous to use variable metric 
updates which belong to Broyden's class. The best known are the DFP method, 
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(3.2) 

the BFGS method, and the method of Hoshino which use the recurrence formulae 

(3.1 a) H+ = H + - ddT - ~ Hy(Hyf , 
a T 

(3.1b) H+ = H — Hy(Hy)T + —L_ (a-±± d - Hy] (a-±J- d - By 
a + x a + T \ c 

and 

(3.1c) H+ = H + - ddT — (d + Hy) (d + Hyf 
a a + x 

respectively. Here d = x+ — x, y = g+ — g and a = yTd, x = yTHy. At the same 
time x+ = x + as and 

9 = X a.«i 
ieM.uMj 

9+ = I «,+ « ; 
iE*I|UM2 

where a+ = a,(x + ) for ;' e Mt and a+ = at for i e M2 . 
The matrix H+ is positive definite if and only if the matrix H is positive definite 

and a > 0 holds. The condition <r > 0 cannot be satisfied automatically since the 
steplength a is chosen to reduce the minimax objective function F(x) while a is com­
puted from the difference between the gradients of the Lagrangian function. Therefore, 
the computation of the matrix H+ has to be slightly modified. Two procedures 
have shown efficient during the implementation of the algorithms: 
(a) The matrix H is updated by (3.1) only if 

(3.3) a S e3T 

where 0 < e3 < 1. In the opposite case we set H+ = H. 
(b) The procedure described in [9] is used. In this case we replace, in the formulae 

(3.1), d and a by d = fid + (I - fj.) Hy and a = fia + (\ - p) x, respectively, 
where 

(3.4) g- r r in /V 1"^ 
V x - a 

The first algorithm is based on the idea described in Section 1 (see also [5]). 

Algorithm 3.1. 

Step 1: Determine an initial feasible point x e L„ (it can be determined by the pro­
cedure described in [2]). Compute the values ft := ft(x), ieMx, and the 
gradients at := a;(x), ieMt. Compute the value of the objective function 
F:= maxL (x ) .Se tX:= 0. 

fsMi 

Step 2: (Restart.) Determine an initial symmetric positive definite matrix H of order 
n (usually set H := I, where J is the unit matrix of order «). Go to Step 5. 
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Step 3: Set d := x - xu y := g — gt and compute a := yTd, x := yrHy. If 
MOD = 0 and a = e3T, go to Step 4. If MOD = 0 and a < E3T, go to 
Step 5. If MOD = 1 then set p. := min (1, (1 — £4) T/(T — a)) and compute 
d:= pd + (\ - p.) Hy, a : = pa + (1 - p) x. 

Step 4: (VM update.) Compute the matrix H+ by (3.1a), (3.1b) or (3.1c) according 
to whether MET = 1, MET = 2 or MET = 3. Set H : = H + . 

Step 5: (Basic QP subproblem.) Solve the quadratic programming subproblem (1.2) 
to obtain the pair (s, z) e R„ + 1 and the Lagrange multiplier vector u e Rm. 
If the quadratic programming subproblem (1.2) has no solution then termin­
ate the computation (the algorithm faiJs). 

Step 6: Set gx := Au and px := sTgu where A is the matrix which contains the 
vectors a;, i e Mt u M2 as its columns (see (3.2)). lf\pi\ ^ &\ then terminate 
the computation (the solution of the problem (1.1) has been found with 
required precision). 

Step 7: If p, > 0, go to Step 2. 

Step 8: (Line search.) Set xx:= x and Fx := E. Determine the steplength a to 
satisfy the condition (2.3). Use either the usual quadratic interpolation 
procedure (case A) or Algorithm 2.1 (case B). Set x := xx + as. Compute 
the values/,- : = f((x), ieMu and the gradients a ; : = at(x), i e Mv Compute 
the value of the objective function E := maxj ;(x). 

ieM, 

Step 9: If either ||x - xt\\ ^ TOLX. \\x\\ or |E - F , | S TOLF .\F\ in two im­
mediately consecutive iterations then terminate the computation (slow 
convergence was indicated) else set g := Au where A is the matrix which 
contains the vectors ah i e Mx u M2 as its columns (see (3.2)). 

Step 10: Set K := K + 1. If the restart is required (after a certain number of itera­
tions) then go to Step 2 else go to Step 3. 

Comments: 

1) Algorithm 3.1 can be controlled by the integers MET and MOD. The parameter 
MET serves for the selection of the variable metric update from (3.1) (standard 
value is MET = 2). The parameter MOD determines a modification of the 
variable metric method. If MOD = 0 then the procedure (a) is used (see (3.3)) 
while if MOD = 1 then the procedure (b) is used (see (3.4)). 

2) Algorithm 3.1 uses an additional integer K that is an iteration count. 
3) Algorithm 3.1 uses several tolerances. The values Sj = 10~10, e2 = 10"2, e3 = 10~2 

and s4 = 10"1 were used in the implementation of this algorithm on an IBM 
370/135 computer in double precision arithmetic. 

4) The tolerances TOLX = 10"8 and TOLF = 10"6 were used for unconstrained 
problems while the tolerances TOLX = 10"8 and TOLF = 10"3 0 were used 
for constrained problems. The results presented in the next section correspond 
to these tolerances. 
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5) Algorithm 3.1 can be restarted after a certain number of iterations (NR, say). It is 
not sensitive to the frequency of restart and the standard value NR = \2n works 
well in practice. 

Algorithm 3.1 can be considered as a basic algorithm for solving the problem 
(l . l) . However, there are difficulties for this algorithm if it encounters a "steep 
sided curved groove" in the function E(x), that is to say a nonlinear curve in the 
domain, across which E(x) has a large jump discontinuity of derivative. This can 
cause slow convergence in general since the subproblem (1.2) involves a linearization 
of the discontinuity and only a limited progress can be made along this linearization 
if the function E(x) is to be reduced. An associated difficulty is the "Maratos effect" 
in which for some x (on or close to a curved groove) arbitrarily close to x*, a unit 
step a — 1 fails to reduce E(x). Superlinear convergence of Algorithm 3.1 depends 
on taking the unit step at every iteration, so it is no longer possible to guarantee 
superlinear convergence if every iteration is required to reduce E(x). 

The first way to overcome difficulties associated with the step reduction in Algo­
rithm 3.1 is based on the "watchdog technique" described in [1]. The main idea 
of this technique consists in the use of watchdog attempts to chose steplengths 
that are much longer than those that would be allowed normally using (2.3). The 
following algorithm realize this technique for solving the problem (l.l). 

Algorithm 3.2. 

Step 1: The same as in Algorithm 3.1. 
Step 2: (Restart.) Determine an initial symmetric positive definite matrix H of 

order n (usually set H : = I, where J is the unit matrix of order n). Set 
KL:= K, KU := K + NU and RS := 0. 

Step 3: The same as in Algorithm 3.1. 
Step 4: The same as in Algorithm 3.1. 
Step 5: The same as in Algorithm 3.1. 
Step 6: The same as in Algorithm 3.1. 
Step 7: The same as in Algorithm 3.1. 
Step 8: If K = XL then set x0 := x, E0 := E, s0 := s, u0 := u and g0 := gt. 
Step 9: If RS = 0 then go to Step 10 else go to Step 11. 
Step 10: (Basic step.) Set xt := x and Fy:=F. Determine the steplength a to satisfy 

the condition (2.3). Use either the usual quadratic interpolation procedure 
(case A) or Algorithm 2.1 (case B). Set x := xx + as. Go to Step 12. 

Step 11: (Relaxed step.) Set x. := x and Ft := F. Set a := 1 and x := x t + as. 
Step 12: Compute the values ft := / , (x ) , ieMt, and the gradients at : = a,(x), 

ieMt. Compute the value of the objective function E := maxL(x). If 
K = KL then set E0 := E0 + e2asTg. ieMi 

Step 13:IfF^F0a.ndK^KU then set RS : = 1 else set RS : = 0. 
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Step 14: If F ^ T0 then set KL: = K + 1. 
Step 15: UK <KL+ NL, go to Step 17. 
Step 26: (Back tracking.) Set x := x0, F := F0, s := s0, u := u0 and a t := g0. 

Set KL:= K,KU := K + NU and go to Step 10. 
Step 17: If either ||x - Xi| ^ TOLZ . |x[| or |f - Ft\ g TOLE. |E| in two im­

mediately consecutive iterations then terminate the computation (slow 
convergence was indicated) else set g : = Au where A is the matrix which 
contains the vectors ah i e Mx u M2 as its columns (see (3.2)). 

Step 18: Set K : = K + 1. If the restart is required (after a certain number of itera­
tions) then go to Step 2 else go to Step 3. 

Comments: 

1) All comments written after Algorithm 3.1 refer to Algorithm 3.2 as well. 
2) Algorithm 3.2xan be controlled, in addition, by the integers NL and NU. The 

parameter NL gives maximal number of unsuccessful steps before back-tracking 
(standard value is NL= 2). The parameter ATU restricts the frequency of un­
successful watchdog attemts (standard value is NU = 5). 

3) Algorithm 3.2 uses additional integers KL, KU and RS. Here KL and KU are 
working integers and RS is an integer indicating whether basic step (RS = 0) 
or relaxed step (RS = l) is to be executed. 

Another way to overcome the step reduction in Algorithm 3.1 was described 
in [3]. The main idea of this approach is to use projection steps returning the current 
point to the neighbourhood of a curved groove, which allows us to make basic 
steps much longer than those in the standard case. Moreover a trust region approach 
is used instead of line searches. Therefore (1.2) has to be replaced by 

(s*, z*) = arg min (^sJGs + z) 
where (s,z)Etn+)oBn+, 

(3.5) \ L„+1 = {(s, z) e Rn + 1:Ji + ajs S e,z, ieM^u M2] 
and 

Bn+i ={(s,z)eRn + 1:\Sj\ £ h, 1 S j S n} . 

The constraint \s\ai :£ h defines a trust region with the radius h. If E(x + s*) is not 
sufficiently less than F(x), the basic step has to be replaced by the projection step 
which uses the solution of the following subproblem. 

(s + ,z + ) = arg min (^Gs + z) 
where (,>2)ein+,nB„+1 

(3.6) \ Ln+1 = {(s, z)eRn+1:fi + ajs ^ etz, i e Mt u M2} 
and 

Bn+1 = {(s,z)eRn + 1:\Sj\ g h, 1 £ j £ n) , 

and where / ; = /;(x + s*) - a]s*, i e M. u M2 . The following algorithm summarizes 
the above considerations. It contains more details concerning decision between basic 
and projection steps. 
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Algorithm 3.3. 

Step 1: Determine an initial feasible point x e L„ (it can be determined by the 
procedure described in [2]). Compute the values / := j,(x), t e M 1 ; and 
the gradients a ; := a,(x), ieMv Compute the value of the objective 
function F := maxj;(x). Set // := /;0 and K := 0. 

ieM i 

Step 2: The same as in Algorithm 3.1. 
Step 3: The same as in Algorithm 3.1. 
Step 4: The same as in Algorithm 3.1. 
Step 5: (Basic QP subproblem.) Solve the quadratic programming subproblem (3.5) 

to obtain the pair (s, z) e R„ + 1 and the Lagrange multiplier vector u e Rm. 
If the quadratic programming subproblem (3.5) has no solution then 
terminate the computation (the algorithm fails). 

Step 6: The same as in Algorithm 3.1. 

Step 7: Set QP := 1. If \\s\\x < h then set LS := 0 else set LS := 1. Set xx := x, 
E! := Eand/;1 := / f o r all i e Mv Set w. := u.Setx := x, + s. Compute 
the values fi:=fi(x), isMu and the value of the objective function 
F := max/,(x). Compute the value D := E, — z + p./2 and the ratio 

r:=(ET-F)/D. 
Step 8: If/- > 0-75, go to Step 19. 

Step 9: (Projection QP subproblem.) Solve the quadratic programming subproblem 
(3.6) to obtain the pair (s, z) e Rn+l and the Lagrange multiplier vector 
u e Rm. If the quadratic programming subproblem (3.6) has no solution 
then terminate the computation (the algorithm fails). 

Step 10: Set QP := 2. Set p := sTAu where A is the matrix which contains the 
vectors ah i e Mt u M2 as its columns. Compute the ratio f := (F1 — z + 
+ (p - Pl)l2)JD. 

Step 11: If r < 0-25, go to Step 13. 
Step 12: If 0-9 < r < 11 then set h := 2h. Go to Step 20. 
Step 13: If 0-75 < r < 1-25 then go to Step 14 else go to Step 16. 
Step i4: Set QP := 3. If \\s\\w < h then set LS := 0 else set LS := 1. Set g^ := Au 

where A is the matrix which contains the vectors ah i e Mt u M2 as its 
columns. Set x := x t + s. Compute the va lues / := fix), ieM^, and the 
value of the objective function F := max/,(x). Compute the ratio r : = 
:=(F{-F)JD. 

Step 15: If /• > 0-75, go to Step 19. If 0-25 < /• ^ 0-75, go to Step 20. If /• < 0-25 
go to Step 16. 

Step 16: If LS = 0 then set / ? : = ( ! — z-/2)/2 else set fi := (1 - r)j2. If {$ < 0-1 
then set f$ := 0-1. If /? > 0-5 then set ft := 0-5. Set h := flh. 

Step 17: If/- > 0 , go to Step 20. 
Step 18: Set x : = x,, F : = F, and / : = fn for all i e Mv Go to Step 5. 
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Step 19: If r > 0-9 and LS = 1 then set h := Ah. If 0-75 < r £ 0-9 and LS = 1 
then set h := 2/). 

Step 20: If QP = 2 then set « := w,. Compute the gradients at := a,(x), / 6 M,. 
Step 2L If either ||x - xx\ ^ TOLX. | x | or |E - F , | ^ TOLL. |E| in two im­

mediately consecutive iterations then terminate the computation (slow 
convergence was indicated) else set gr := Au where A is the matrix which 
contains the vectors ah i e M, u M2 as its columns (see (3.2)). 

Step 22: Set K : = K + l. If the restart is required (after a certain number of itera­
tions) then go to Step 2 else go to Step 3. 

Comments: 

1) All comments written after Algorithm 3.1 refer to Algorithm 3.3 as well. 
2) Algorithm 3.3 makes use of the parameter h0 that is the initial trust region radius. 
3) Algorithm 3.3 uses additional integers QP and LS. Here QP gives information 

about the stage of the iteration and LS is an integer indicating whether unli­
mited (LS = 0) or limited (LS = 1) step is to be executed. 

The efficiency of all above algorithms is investigated numerically in the next 
section. 

4. NUMERICAL EXPERIMENTS 

The efficiency of the algorithms described in Section 3 has been tested by means 
of test problems which are given in Appendix. The precision that has been obtained 
is shown in Table 1 together with the minimum values of the objective functions. 

Table 1. 

Optimum function value Precision 

Ul F(x*) = 1-9522245 P" ~ 1 0 ~ 8 

U2 F(x") = -4400000000 p - - ' Ю - 1 0 

uз F(x*) = 0-122371 . 10~~3 p - - ю - 6 

U4 F(x*) = 0-19729062 p<-- Ю - 8 

U5 F(x*) = 680-63006 p - - 1 0 " 8 

Uб F(x*) = 24-306209 p - - i o ~ 8 

U7 F(x*) = 133-72825 p - - 10"8 

Ll F(x*) = -0-3896595161 P'-- ю ~ 1 0 

L2 F(x*) = -0-3303571428 p - - i o - 1 0 

LЗ F(x*) = -0-44891078 p - - ю - 8 

L4 F(x*) = -0-4292806146 p - - ю - 1 0 

L5 F(x*) = 0-1018308888 p - ^ ю - 1 0 

Lб F(x*) = 0-50694799 p - •^ю-8 
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Results of the tests are given in several tables. Each row of each table corresponds 

to one example numbered as in Appendix. Each column of each table corresponds 

to one run of the algorithm. Three numbers NI — N F — NG are given for each 

run and each example where 

NI = number of iterations (value of integer K after termination), 

NF = number of different points at which the valuesj,(x),i e Mu were computed, 

NG = number of different points at which the gradients a ;(x), ieMu were 

computed, 

with exception of the cases when the algorithm fails. Unsuccessful runs are denoted 

by the following way: 

F l — more than 300 iterations were required to obtain the solution of the test 

problem, 

F2 — the algorithm found a point which was not a solution of the test problem. 

Tests of Algorithm 3.1 have been performed with two different line search procedures. 

The letter A indicates the line search procedure in which the usual quadratic inter­

polation has been used while the letter B refers to that where each function L(x), 

/' e Mi, has been approximated by a special parabola (Algorithm 2.1). 

Table 2 contains results of the basic tests of Algorithm 3.1 for different values 

of the controlling parameter MOD. This table corresponds to the choice MET — 2. 

Line search A Line search B 

Л r øö = 0 MOD= 1 MOD = 0 MOD = 1 

U1 8 - 1 0 - 10 8 - 1 0 - 1 0 8 - 1 0 - 1 0 8 - 10 - 10 
U2 1 2 - 1 9 - 14 1 3 - 2 0 - 15 9 - 1 3 - 1 1 10 - 16 - 12 
UЗ 298 - 589 - 300 1 5 - 2 0 - 17 F2 22 - 43 - 24 
U4 1 4 - 1 9 - 16 1 5 - 1 8 - 17 1 4 - 1 7 - 16 1 5 - 18 - 17 
U5 249 - 493 - 251 Fl 1 7 - 3 0 - 19 42 - 93 - 44 
U6 1 5 - 2 0 - 17 1 8 - 2 9 - 20 1 6 - 2 0 - 18 1 5 - 2 0 - 17 
U7 21 - 33 - 23 42 - 82 - 44 1 9 - 3 0 - 21 46 - 88 - 48 

L1 6 - 8 - 8 5 - 7 - 7 6 - 8 - 8 5 - 7 - 7 
L2 4 - 6 - 6 4 - 6 - 6 4 - 6 - 6 4 - 6 - 6 
LЗ 7 - 9 - 9 8 - 1 0 - 1 0 7 - 9 - 9 8 - 1 0 - 10 
L4 75 - 77 - 77 1 0 - 1 2 - 12 75 - 77 - 77 1 0 - 1 2 - 12 
L5 1 0 - 1 4 - 12 1 2 - 19 - 14 1 0 - 1 4 - 12 9 - 13 - 11 
L6 1 4 - 1 6 - 16 1 8 - 2 4 - 20 1 4 - 1 6 - 16 1 4 - 17 - 16 

Table 3 contains results of the basic tests of Algorithm 3.2 for different values 

of the controlling parameters MOD and NU. This table corresponds to the choice 

MET = 2 and NL= 2. 

Table 4 contains results of the basic tests of Algorithm 3.3 for different values 
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NU = 1 NU = 5 

MOD = 0 MOD = 1 MOD= 0 MOD= 1 

Ul 8 - 1 0 - 10 8 - 1 0 - 10 8 - 1 0 - 1 0 8 - 1 0 - 10 
U2 13 - 21 - 16 1 4 - 2 2 - 17 1 2 - 1 9 - 14 1 4 - 2 3 - 17 

uз 8 5 - 1 6 2 - 105 1 6 - 2 3 - 19 8 0 - 1 5 9 - 9 1 1 6 - 2 3 - 19 
U4 1 3 - 1 5 - 15 1 5 - 1 7 - 17 13 - 1 6 - 15 15 - 1 8 - 17 
U5 1 1 0 - 243 - 144 Fl Fl F2 
U6 1 6 - 1 9 - 18 1 7 - 2 0 - 19 15 - 19 - 17 18 - 2 5 - 20 
U7 2 4 - 4 1 - 29 82 - 200 - 107 22 - 36 - 25 4 7 - 1 0 2 - 55 

Ll 6 - 8 - 8 5 - 7 - 7 6 - 8 - 8 5 - 7 - 7 
L2 4 - 6 - 6 4 - 6 - 6 4 - 6 - 6 4 - 6 - 6 
LЗ 7 - 9 - 9 8 - 1 0 - 10 7 - 9 - 9 8 - 11 - 10 
L4 75 - 77 - 77 1 0 - 1 2 - 12 75 - 77 - 77 1 0 - 1 2 - 12 
L5 9 - 1 1 - 11 8 - 1 0 - 10 10,- 13 - 12 1 0 - 1 4 - 12 
L6 1 4 - 1 6 - 16 1 5 - 1 7 - 17 1 4 - 1 6 - 1 6 1 5 - 1 7 - 17 

Table 4. 

MOD = = 0 

h0 = 0-01 A o = 0 - * 0 = 1 - 0 ho = 10-0 

Ul 9 - 1 1 - 1 1 7 - 9 - 9 8 - 1 0 - 1 0 8 - 1 0 - 10 
U2 F2 F2 9 - 1 3 - 1 1 11 - 1 6 - 13 

uз 1 3 - 5 8 - 15 1 2 - 5 0 - 14 14 - 56 - 16 1 2 - 4 6 - 14 

U4 1 2 - 1 6 - 1 4 1 4 - 23 - 16 1 3 - 1 6 — 15 1 3 - 1 6 - 15 
U5 1 4 - 39 - 16 15 - 44 - 17 1 2 - 45 - 14 1 3 - 48 - 15 

U6 1 4 - 2 5 - 16 1 4 - 2 7 - 16 1 4 - 2 2 - 16 1 2 - 1 8 - 14 

U7 1 9 - 4 0 - 21 21 - 45 - 23 18 - 46 - 20 18 - 51 - 20 

Ll 7 - 9 - 9 7 - 9 - 9 6 - 8 - 8 6 - 8 - 8 
L2 5 - 7 - 7 5 - 7 - 7 4 - 6 - 6 4 - 6 - 6 
LЗ 1 4 - 1 6 - 16 8 - 1 0 - 10 7 - 9 - 9 7 - 9 - 9 
L4 75 - 77 - 77 75 - 77 - 77 75 - 77 - 77 7 5 - 7 7 - 77 
L5 1 0 - 1 2 - 12 1 1 - 1 3 - 13 9 - 1 5 - 1 1 1 0 - 1 2 - 12 
L6 33 - 42 - 35 3 4 - 51 - 36 35 - 48 - 37 3 4 - 36 - 36 

of the parameter h0 (initial trust region radius). This table corresponds to the choice 
MET = 2 and MOD = 0. 

Table 5 contains results of the additional tests of algorithm 3.1. This table cor­
responds to the choice MOD = 0 and it demonstrates the influence of the controlling 
parameter MET Table 5 shows that the choice of the variable metric method has 
no expressive influence on the efficiency of Algorithm 3.1. Similar results have been 
obtained for Algorithm 3.2 and Algorithm 3.3. 
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Line search A Line search B 

MET= 1 MET= 2 MET= 3 MET= 1 MET= 2 MET= 3 

NI = 8 NI = 8 Nl = 8 NI = 8 NI = 8 NJ = 8 
UI NF = 10 NF = 10 N F = 10 N F = 10 NF = 10 NF = 10 

N G = 10 N G = 10 NG = 10 NG = 10 N G = 10 N G = 10 

NI = 11 NI = 12 NI = 11 NI = 9 NI = 9 NI = 9 
U2 NF = 17 NF = 19 NF = 17 NF = 13 NF = 13 NF = 13 

N G = 13 N G = 14 N G = 13 N G = 11 N G = 11 N G = 11 

NI = 122 NI = 298 NI = 87 Nï = 63 NI = 19 

uз N F = 197 N F = 589 N F = 167 N F = 85 F2 N F = 34 

N G = 124 NG = 300 N G = 88 N G = 65 N G = 21 

NI = 34 NI = 14 NI = 15 NI = 32 NI = 14 NI = 15 
U4 N F = 46 N F = 19 N F = 17 N F = 38 N F = 17 N F = 17 

N G = 36 N G = 16 N G = 17 N G = 34 N G = 16 NG = 17 

NI = 254 NI = 249 NI = 254 NI = 17 NI = 17 NI = 16 
U5 N F = 506 N F = 493 N F = 505 N F = 28 N F = 30 N F = 27 

N G = 256 NG = 251 N G = 256 N G = 19 N G = 19 N G = 18 

NI = 14 NI = 15 NI = 15 NI = 14 NI = 16 NI = 16 

U6 N F = 19 N F = 20 N F = 22 N F = 18 N F = 20 N F = 18 
N G = 16 N G = 17 N G = 17 N G = 16 N G = 18 N G = 16 

NI = 19 NI = 21 NI = 20 NI = 19 NI = 19 NI = 17 
U7 N F = 32 N F = 33 N F = 36 N F = 27 N F = 30 N F = 27 

N G = 21 N G = 23 N G = 22 N G = 21 NG = 21 NG = 19 

Results of the tests show that Algorithm 3.1 (with usual quadratic interpolation) 

may be ineffective in case the problems U3 and U5 are solved. Algorithm 3.2 and 

Algorithm 3.3 give better results for these problems but they are more complicated 

and hence more time-consuming than Algorithm 3.1. Therefore it is advantageous 

to use Algorithm 3.1 with a new line search procedure (Algorithm 2.1), which gives 

good results for all problems. 

The proposed algorithms were implemented as Fortran subroutines POM X 66, 

POMX 68 and POMX 67 in the Software Package for Optimization and Nonlinear 

Approximation SPONA (see [6]). All results given in this section have been obtained 

using these subroutines. 
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APPENDIX 

Test problems for unconstrained nonlinear minimax approximation 

Problem U l . 
Minimize E(x) = maxj,(x) 

with ^ ; g 3 

j\(xu x2) = x 2 + x 4 

j2(xls x2) = (2 - x ,) 2 + (2 - x 2 ) 2 

j3(xl5x2) = 2exp(x 2 - x,) 

and with the starting point x 0 = [2, 2 ] T 

Problem U2 (Rosen - Suzuki). 

Minimize E(x) = maxj ;(x) 
with l g ' g 4 

j!(x) = x\ + x\ + 2x\ + xl - 5xj - 5x2 - 21x3 + 7x4 

fz(x) = A(x) + 10(x2 + x\ + x\ + xl + xt - x 2 + x 3 - x4 

f3(x) = fi(x) + 10(xi + 2x2 + x 2 + 2x2 - xt - x 4 - 10) 

U(x) = fi(x) + 10(2x2 + x 2 + x 2 + 2xx - x 2 - x 4 - 5) 

and with the starting point x 0 = [0, 0, 0, 0] T . 

Problem U3. 

Minimize E(x) = max |L(x) | 
with 1 < ŕ < 2 1 

A(X) = ^ ^ 3 - « P M 
1 + X3ti + x4f

2 + x5f? 
where 

f. = (i - 1)/10 - 1 
and with the starting point x 0 = [0-5, 0, 0, 0, 0] T . 

Problem U4. 

We consider the optimization of a three-section cascaded transmission-line 10 : 1 
transformer over a 100-percent bandwidth. The objective function is to minimize 
max; |e,(-^)|2 o v e r 11 frequency points in the band 0-5 — 1-5 GHz; the sample points 
are taken as {0-5, 0-6, 0-7, 0-77, 0-9, 1-0, 1-1, 1-23, 1-3, 1-4, 1-5} GHz, where ^(x) 
is the reflection coefficient at the f-th sample point. The design parameters are the 
characteristic impedances Z«, Z 2 , Z 3 and the lengths l u l2, l3. The lengths have been 
normalized with respect to quarter-wave length lq at the centre frequency. The 
starting point is Zt = 0-8, Zx = 1-5, l2 = 1-2, Z 2 = 3-0, Z3 = 0-8 and Z 3 = 6-0. 
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Problem U5 (Wong 1). 

Minimize F(x) = maxj ;(x) 

with l á í < 5 

j,(x) = (x, - 10)2 + 5(x2 - 12)2 + x* + 3(x4 - l l ) 2 + 

+ lOx* + 7x6 + x* - 4x6x7 - 10x6 - 8x7 

f2(x) = f,(x) + 10(2x2 + 3x4
2 + x3 + 4x2 + 5x5 - 127) 

j3(*) = fi(x) + 10(7xj + 3x2 + 10x2 + x4 - x5 - 282) 

f*(x) = fi(x) + 10(23*. + x\ + 6xg - 8x7 - 196) 

fs(x) =fi(x) + 10(4x2 + x2 - 3x,x2 + 2x2 + 5x6 - l lx 7 ) 

and with the starting point x0 = [1,2, 0, 4, 0, 1, 1]T 

Problem U6 (Wong 2). 

Minimize E(x) = maxjj(x) 
with l s ; g 9 

fi(x) = x2 + x2 + x,x2 - 14xj - 16x2 + (x3 - 10)2 + 4(x4 - 5)2 + 

+ (x5 - 3)2 + 2(x6 - l ) 2 + 5x2 + 7(x8 - l l ) 2 + 2(x9 - 10)2 + 

+ (*io - 7)2 + 45 

f2(x) = fi(x) + 10(3(x1 - 2)2 + 4(x2 - 3)2 + 2x2 - 7x4 - 120) 

h(x) = fi(x) + 10(5x2 + 8x2 + (x3 - 6)2 - 2x4 - 40) 

j4(x) = j , ( x ) + 10(0-5(x, - 8)2 + 2(x2 - 4)2 + 3x2 - x6 - 30) 

fs(x) = fi(x) + 10(x2 + 2(x2 - 2)2 - 2x,x2 + 14x5 - 6x6) 

j6(x) = j,(x) + 10(4xi. + 5x2 - 3x7 + 9x8 - 105) 

/7(x) = / i ( x ) + 10(l0x! - 8x2 - 17x7 + 2x8) 

fs(x) =fi(x) + 10(-3xj + 6x2 + 12(x9 - 8)2 - 7x10) 

f9(x)=fi(x) + 10(-8Xi + 2x2 + 5x9 - 2x10 - 12) 

and with the starting point x0 = [2, 3, 5, 5, 1, 2, 7, 3, 6, 10]T. 

Problem U7 (Wong 3). 
Minimize F(x) = maxj ;(x) 

with 1 § , g 1 8 

/ ( x ) = x2 + x2 + Xjx2 - 14xj - 16x2 + (x3 - 10)2 + 

+ 4(x4 - 5)2 + (x5 - 3)2 + 2(x6 - l )2 + 5x2 + 

+ 7(x8 - l l ) 2 + 2(x9 - 10)2 + (x10 - 7)2 + ( x u - 9)2 + 

+ 10(x12 - l )2 + 5(x13 - 7)2 + 4(x14 - 14)2 + 

+ 27(x15 - I)2 + x\6 + (x17 - 2)2 + 13(x18 - 2)2 + 

+ (x,9 - 3)2 + x2
0 + 95 

h(x) =A(x) + 10(3(x1 - 2)2 + 4(x2 - 3)2 + 2x2 - 7x4 - 120) 

f3(x) = ji(x) + 10(5x2 + 8x2 + (x3 - 6)2 - 2x4 - 40) 
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Mx) - . / , 

/*(*) =A 
/ 6 ( * ) = / l 

jv(x) = A 

/•(*) = / , 
Mx) =/ i 
/ io (x)=/ i 
/ n ( * ) = / i 

/ 1 2 ( X ) = / , 

/ 1 3 ( X ) = / , 

/14(X)=.A 
/is(x)-=/1 

/«(-)-/, 
jl7(*)=/l 
/»(*)=/, 

) + 10(0-5(Xl - 8)2 + 2(x2 - 4)2 + 3x2 - x6 - 30) 

x) + 10(x2 + 2(x2 - 2)2 - 2xjX2 + 14x5 - 6x6) 

x) + 10(4x, + 5x2 - 3x7 + 9x8 - 105) 

x) + 10(10x1 - 8x2 - 17x7 + 2x8) 

x) + 10( -3x! + 6x2 + 12(x9 - 8)2 - 7x10) 

x) + 10( -8x t + 2x2 + 5x9 - 2x10 - 12) 

x) + 10(x, + x2 + 4x t l - 21x22) 

x) + 10(x2 + 1 5 * u - 8x12 - 28) 

x) + 10(4XÍ + 9x2 + 5x?3 - 9x14 - 87) 

x) + 10(3x. + 4x2 + 3 ( x u - 6)2 - 14x14 - 10) 

x) + 10(14x2 + 35x15 - 79x16 - 92) 

x) + 10(15x^ + l l x 1 5 - 61x16 - 54) 

x) + 10(5x2 + 2x2 + 9xt7 - x18 - 68) 

x) + 10(x2 - x9 + 19xi9 - 20x2o + 19) 

x) + 10(7x2 + 5x^ + x2
2 - 30x2O) 

and with the starting point x0 = [2, 3, 5, 5,1, 2, 7, 3, 6,10, 2,2, 6,15,1, 2, 1, 2, 1, 3]1 

Test problems for linearly constrained nonlinear minimax approximation 

Problem LI. 

with 

subject to 

Minimize E(x) = maxjj(x) 
1 S i š 3 

Mxu x2) = x? + x\ + xtx2 - l 

Mxux2) = sinx! 

MX1> X2) = - C 0 S X2 

xj + x2 - 0-5 ^ 0 

and with the starting point x0 = [1, 2]T . 

Problem L2. 

Minimize E(x) = max /,(*) 
1 < > < 3 

with jj(x), 1 ^ ' ^ 3 as in Problem LI subject to 

- 3 * i - * 2 - 2-5 *^0 

and with the starting point *0 = [ - 2, — l ] T 
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Problem L3. 

Minimize F(x) = maxj,(x) 
with 1 § i ^ 3 

ji(*i,*2) = - e x p ( x . - x2) 
f2(xux2) = sinh(x1 - l) - 1 
h(xx,x2) = - l n ( x 2 ) - 1 

subject to 

0-05A-! - x2 + 0 - 5 ^ 0 

and with the starting point x0 = [—1,0-01 ] T . 

Problem L4. 

Minimize E(x) = maxj ;(x) 
1 g i g 3 

with/,(x), 1 <- i <. 3 as in Problem L3 subject to 

-0-9xi + x2 - 1 ^ 0 

and with the starting point x0 = [ - 1 , 3]T. 

Problem L5. 

Minimize F(x) = max j,(x) 
with , 1 S i g 1 6 3 

fi(x) = Is + Ts i c o s (2nxJ s i n 9d » - = » = I 6 3 

where J = J 

3 ; = — (8-5 + ra-5), 1 < i < 163 
180v ' 

subject to 

xj ^ 0-4 

- x , + x2 ^ 0-4 

- x 2 + x3 ^ 0-4 

- x 3 + x4 ^ 0-4 

- x 4 + x5 ^ 0-4 

- x 5 + x6 ;> 0-4 

- x 6 + x7 ^ 0-4 

- x 4 + x6 = 1 

x7 = 3-5 

and with the starting point xu = [0-5, 1-0, 1-5, 2-0, 2-5, 3-0, 3-5]T. 

Problem L6. 

Minimize F(x) = max |f(x) 
i < ; < 3 8 
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with 

Л « = - i + x? + S 
j=2 

Xj 

f((x) = - 1 + cfcl + £ xj, 1 < i < 38 
J = I 
y*fc 19 

/3 8(x)= -1 + ^ 0 + £ . - . 
where •/'~1 

/c = ( i + 2 ) / 2 , c; = 1 , i = 2, 4, . . . ,36 

fe = (i + l ) /2 , c; = 2 , i = 3,5, . . . ,37 
subject to 

Xj ^ 0-5 , 1 S j S 10 

and with the starting point x} = 100, 1 ^ j'• ^ 20. 
(Received May 12, 1984.) 
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