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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 1 

ON THE EQUIVALENCE CONDITIONS 
OF TWO-STAGE AND DIRECT IDENTIFICATION 
METHODS 

ANNA STANKIEWICZ 

The paper deals with the parametric problem of multiple-input multiple-output (MIMO) 
system identification under deterministic conditions. 

Two different identification procedures: two-stage [12] and a direct one are discussed and the 
equivalence conditions of these algorithms — in the sense of the obtained identification result — 
are investigated with a special emphasis given to the linear class of models. For this class the 
respective a priori and a posteriori equivalence conditions are formulated and the usefulness 
of the former for the experiment design purposes is examined. 

The considerations are devoted to static as well as to dynamic systems for different kinds 
of experiment. 

1. INTRODUCTION 

In practice most of the systems being the subject of control are multiple-input, 
multiple-output (MIMO) systems. To formulate suitable control algorithms for 
such a systems it is necessary to establish their mathematical models. 

Problems related to the MIMO systems identification lead, generally, to computa­
tionally complex identification algorithms, the realization of which is connected 
with great difficulties even when modern computational techniques are used. More­
over, the computational complexity of the identification algorithms grows, in general, 
faster than the dimension of problems. For this reason the search for such methods 
which would allow us to reduce the computational efforts connected with MIMO 
systems identification is justified. So far the possibilities of simplification of MIMO 
systems identification have been studied by several authors. 

The first papers in this field were based on the concept of the system order reduction 
using the perturbation techniques and sensitivity analysis (e.g. [1]) and on the 
concept of its approximation by a system of a lower order (e.g. [2 — 8]). Another, 
widely developing direction in the literature is that connected with decomposition 
of the identification problem leading to hierarchical identification algorithms for 
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MIMO systems. Such algorithms are obtained from the decomposition of the system 
to be identified into the set of subsystems of a lower order and the coordination 
of the partial identification algorithms formulated for these subsystems. Typical 
examples in this respect are the papers [9—10]. 

In order to reduce the computational difficulties related to the MIMO system 
identification some multi-stage identification method is proposed in [11, 12] for 
the case of static systems which is next considered in two-stage version in [13]. 
In the literature the term two-stage multi-stage identification is understood in diffe­
rent ways ([14-22]) . 

Generally, the identification algorithms discussed in [14 — 22] and referred to as 
the two-stage ones can be divided into two subclasses. In the first subclass ([14—19]) 
on the 1st stage some quantities (e.g. the weighting sequence or the step response) 
are obtained, which on the 2nd stage are used as data for identification of the unknown 
parameters in the system description. In the second subclass ([20 — 22]) on the 1st 
stage a rough model is determined which then is improved in one step on the 2nd 
stage. 

The main idea of the two-stage identification method proposed in [11, 12] and 
discussed in this paper can be briefly described as follows. In the first stage a model 
parameter x is determined using the results of the measurements of some part of 
inputs M(1) and output y for remaining inputs w(2) being fixed. In the second stage the 
model of the relationship between x and w(2) (constant in the first stage) is deter­
mined. With such an approach a fictious object with input a<2) and output x is con­
sidered. The model of the whole system is obtained as a composition of the models 
resulting in consecutive stages. The precise description of the method is given in Sec­
tion 2. 

Since according to the concept of [11, 12], the results of identification in the 1st 
stage constitute the data for the identification in the second stage, the two-stage 
approach proposed in [11, 12] should be classified among the first subclass (the para­
meter x of the model from the 1st stage is datum for identification in the 2nd stage). 

The above idea of MIMO system identification includes the usual experimentation 
restriction raising for such systems and consisting in the fact that in case of high 
number of system inputs only some part of them can be in practice manipulated 
by the experiment at the same time. Other justifications of this method can be found 
in [13]. 

The system model identification in two stages is expected to give some computa­
tional advantages, especially for a great number of system inputs (the first promising 
attempt in the direction of the computational complexity estimation has been made 
in [18]), but — in general — it is connected with the deterioration of the model 
quality, if compared with the model obtained in one stage, i.e. by the Direct Identifica­
tion (DI) method. The experimental investigations of the method are actually in 
course. In this paper the attention is concentrated on some theoretical aspects of the 
method, exclusively. In particular, we shall formulate general conditions of the equi-
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valence of two-stage and direct identification methods, i.e. the conditions assuring 
the identity of the models obtained by these two methods. In such a case the more 
convenient for MIMO systems two-stage approach can be realized without the deterio­
ration of the model quality. 

The considerations will be focused on the case when the system identification 
consists in choosing the best model (in the sense of some quality index) from the given 
parametric class of models, i.e. it is reduced to the determination of the parameter 
of the best model. The considerations are confined to the deterministic case of the 
input-output systems and refer to static as well as to dynamic systems and different 
kinds of experiments (continuous or discrete-time). 

2. TWO-STAGE IDENTIFICATION (2SI) METHOD 

Consider the MIMO system with the inputs M1, ..., us (s >. 2) and the outputs 
y1,..., y'. The collection of the inputs will be denoted by a vector u ^ [u 1 , . . . , u s]T , 
Similarly, y = [y1, ..., y ] T . We shall assume that the results of the measurements 
of the input u and output y of the system are elements of linear normed spaces 
(U, || • ||D) and (Y I • \\Y), respectively. They are in general the spaces of vector-valued 
functions of the real variable V. continuous in a continuous-time experiment and 
discrete in a discrete-time experiment. 

The two-stage approach being the subject of our considerations is the following 
([11,12]). 

1st stage (IS) 

For the fixed decomposition U(1) x U(2) = U of the space U and for the fixed 
value u|2) of the vector u(2) e U(2)(u(2) -= u(2)) the best model from the parametric 
class of models 

yM = Fi(u^,x), xeX 

(generated by the given mapping Ft\ U(1) x X -> Y and the linear normed space 
(X, I • \x)) is obtained, by using the results of the measurements (u\jy, ytJ), j ~ 1 , . . . 
..., n., of the pair (u(1), y)> from determination of a parameter xi eX minimizing 
the value of the assumed identification quality criterion: 

[•]"'= i denotes the column vector in the space R", p > 0. Such a procedure is repeated 
for the successively fixed values of the vector u(2) = u(2), i = 1, ..., n2. 

2nd stage (IS) 

Using the pairs (u\2), xt), i = 1, . . . , n2, resulting from the first stage, the best model 
from the parametric class of models: 

;cM = F2(u
i2), a), a e i 
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(generated by the given mapping F2: U(2) x s4 -* X and the set s4 of admissible 
parameters of the model) is obtained for the chosen identification quality criterion 

(2) e2(a) = ||[||xi-E2(Mp),a)||j;i1fl^ 
i.e. the parameter ae s/ minimizing the value of the functional Q2 is determined. 

The model of the whole identification system (Fig. 1) is composed in the following 
way: 

Vu = Ft(uW, F2(u<2\ a)) = F(u, a) . 

u(<) 
Fi (u^x) F i (u^x) 

f 

X u<2> 
F2Cu*>,a) X F2Cu*>,a) 

Fig. 1. Model of the system for two-stage identification concept. 

From the above description it is evident that the two-stage approach is connected 
with a suitable organization of the experiment, in which for each successive fixed 
value of the subvector w(2> the value of the subvectors w(1) is changed n1 times (two-
stage structure of the experiment [11, 13]). 

In the next section the general estimation of the quality of the model obtained 
by the two-stage approach is given and the equivalence conditions of 2SI and DI 
methods are investigated with special attention paid to the most frequent case 
of linear, with respect to the parameters, classes of models. 

3. THE EQUIVALENCE CONDITIONS OF 2SI AND DI METHODS 

Assume the following class of models: 

(3) >'M = E!(«(I), F2(u^\ a)) , a est, 

defined by the mappings Fx\ U(1) x X -* Y and F2. U(2) x s4 -» X, where U(2) x 
x U(2> = U. We shall assume that the spaces U, Y X and the set of the parameters s4 
are linear normed spaces. 

Let us notice that each model 

(4) yM = F{u, a), a est 

can be represented in the form (3) for an arbitrary partition uT = [u(1>T, M(2>T] 
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of the vector u eU. In particular it suffices to take Ft = F and assume that F2 

is an identity mapping. 

DI problem consists in choosing the best, in the sense of the taken quality criterion 
Q, model from the assumed class of models (3), using the results of the input and 
output measurements, i.e. in determining the model parameter a* e j</ minimizing 
the value of Q. If, in particular, the data used for the identification purposes are 
obtained in the two-stage experiment, then in general the quality index takes the form 

(5) Q(a) = \\{\\yij - F,(u\p, F2(u?\ a))\\rYMytU\\^ , 

where {^}"=1 = [£[, Q,..., £j]T . The definite form of quality criterion (5) depends 
on the choice of the norm || • | K . V V In particular, if this norm satisfies the following 
condition 

(6) ll{[^];^}^il^,, = fi|[^]"=iii^ 
( = i 

then 

(7) Q(a) = I \i\yu - F^\ F2(uf\ a))\\Y]U\^ . 
i = l 

Generally the model established in the result of two-stage identification differs from 
that obtained in a direct fashion ([12]), i.e. Q(a) > Q(a*). 

Now we shall examine the quality of an identification problem introduced by two-
stage approach. Further considerations will be restricted to the case when for each 

M(i) e [/(i) the mapping F1 is Lipschitz with respect to x, i.e. 

flf^1', Xl) - F&M x2)\\Y ^ a(«(1))|| x, - x2\\x, u^ 6 It" , 

where a(u(1)) > 0. Such an assumption is not too restrictive, since it is typical 
of many modelling problems. 

Consider the "distance" between the model determined by 2SI method and that 
obtained by DI method in the sense of the index: 

Q(S, a*) = Q(S) - Q(a*) . 

By virtue of (7) we obtain: 

«<*. «*) = I (lltlb.v - -M-1?. F^> «'»iflik + 
i = l 

- \\[\\yu - F^p,F2(u\2\a*))\\YfJl1\\^} . 

For Lipschitz F1 it may be easily shown that: 

o(a,a*) = | |[ |F.(«W» «,) - F.(«g>,Fa(«Ja>,«*))| r];i1 | fc1 + 
i= 1 

. + l l | [ « K ) ) f l ^ - F 2 ( M < 2 ) , 5 ) | x ] » L 1 | | g „ i . 
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Consider the expression: 

5± f 1[«(«(}>) I*; - F2(«i2), aOIJjLxlt.. -
i = i 

-ziw-rat.iifc.,.|*«--?»w2).-oi5. 
i = i 

By virtue of the equivalence of the norms in R"2 

^ C | | [ | | x , . - E 2 ( u P ) , a ) l | x ] ^ 1 | | ^ , 

where | • ||K„2 is an arbitrary norm in R"2 and c a certain positive constant independent 
of a and w(2). Hence 

(8) e(a, a*) $£ MF^V, *f) - Fl(u\j>, F2(u?>, a * ) ) ^ ^ + 

+ 4[pi -F2(u\2\a)\\J-i.j^. 

From the above estimation it follows, in particular, that the difference between the 
model of the system obtained in two-stages and that obtained by DI method (in the 
sense of the value of the quality criterion Q) is the smaller, the better is the quality 
of identification in the second stage. In particular, if Q2(a) = 0 and hence taking 
account of (1) and (7) Fx(u\)>, xt) = Fx(u\]>, F2(u\2>, a*)) hold, we see that the right 
hand side of the estimation (8) vanishes; therefore the quality of the model obtained 
by 2SI method is the same as that obtained by DI method. 

Let us consider the equivalence conditions of 2SI and DI methods. Denote 

u(1) = {{u^Yjl i}"l! — vector of measurements of the input w(1), 

u(2) = {w(
;
2)}"ii - vector of measurements of the input «(2), 

y = {{yij\"j=i]Y=i ~ vector of measurements of the output y, 

x = {xi}1il - vector of values of the parameter x, 

(9) Qi(x) = X Qi(xd ~ aggregated identification quality criterion 
; = i 

in the first stage in 2SI method, 

(10) yM = Ft(u^,x) = U ^ K V . ) } J ' - i } ^ . ( " ( 1 ' , x )e U(1) x X, 

xM = E2(S
(2), a) = {F2(u\2>, a)}1l, , (u(2), a) e fJ(2) x s4 , 

where 0(1) ="XU(1),U(2) = XU ( 2 ) , X = XX , Y="xY, 
i = l i = l i = l i = l 

and let 

\y\^\{\\yM^yU\^ 
Nx--|[N-];iiU-

In the notations assumed the identification quality criterion Q(a) ((5)) for the DI 
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method takes the form: 

(11) Q(a)=\\y-F1(U^,F2(u^,a))\\-

and for the 2SI method the quality criteria Qi(x) (9) and Q2(a) (2) on 1st and 2nd 
stages, respectively, can be rewritten as follows: 

e1(x) = | jy-F1(M- ( i \x) | |? 
(12) 

Q2(a) = | |l - E2(M-(2\ 

Further we shall assume that there exist the solutions of the DI problem and in both 
stages of 2SI problem and that they are unique. We introduce the following 

Definition 1. For the given matrix of measurements [M ( 1 \ M ( 2 \ y~, classes of models 
(FUX),(F2, s#) and identification quality criteria (11) and (12), the methods 2SI 
and DI are equivalent, if the resulting models are identical, i.e. a* = a. 

Assume, that X, Yand s4 are real Hilbert spaces. It is the case if X, F(see Section 2) 
are Hilbert spaces and the norms j| * ||R«, ar>d ||'| |R"I"2 in (~0 an(^ {•*), respectively, 
are Euclidean norms (such norms fulfill (6) with p = 2). Taking p = 2 the criteria 
(11) and (12) can be rewritten in the following equivalent form: 

(13) Q(a) = O - W , F2(t7(2\ a)), y - F.(«<» F2(fP>, a))} 

(14) Qt(x) - Q - F1(«<1>, 5c), y - E1(f/
(1\ x)> 

(15) Q2(a) . <S - F2(u<2>, a), I - F2(M
(2\ fl)> . 

Denote 
R: = E!^1',^) <= F , 

R2 ^ . ( i C . ^ f V D c F , 

S = F2(u ( 2\ j/)<=X. 

The direct identification problem reduces to the problem of finding the best approxim­
ation y* e R2 to the element y of the space Yin the set R2. Similarly, in two-stage 
approach the best approximation y e Rt to the element y e Y in the set R1 is deter­
mined in the 1st stage and next in the 2nd stage the best approximation xeS 
to the element x e X, such that 

(16) f> = F1(t7<1\ ~x) 

is obtained in the set S. 
If, in particular, the sets Ru R2 and S are closed subspaces, then the elements 

y*, y and x are unique and are orthogonal projections of y, y and x onto sub-
spaces R2, R1 and S, respectively, i.e. 

(17) y* = P*J 

(18) ~y =PRiy 

(19) ~x = Ps~ , 
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where PR2, PRi and P s denote the orthogonal projection operators onto R2, Rx and S. 
In such a case - taking into account that the operation E1(t7

(1).-) = P1,0(i)(-) has 
an inverse at the point y provided that the solution of the 2SI problem is unique -
we get from (16) and (18): 

(20) x = KU{y})~Fll»<{PR>y})-

Hence, and from (19), we have 

(21) } = Fx(u«\ s) = Fusil)(PsX) = Fua0)(psF;^({pRty})). 

Notice that 

P^F,(u(l\F2(u
C2\s)) 

and 

y* = i?
1(0(1), F2(iP\ a*)) 

for the parameters a and a* determined by 2SI and DI methods, respectively. The 
above - by the assumed uniqueness of the solutions of the 2SI and DI problems -
yields the following equivalence condition 

y = y* 
or equivalently 

(22) FiMPsKm»({P*j})) = PRJ 

in terms of the results of input and output measurements. In order to examine the 
equivalence of DI and 2SI methods in the general form, i.e. using the condition (22) 
the forms of the operators Ps, PRi and PRl should be established for every case con­
sidered. Since, these operators depend of the form of Fx and F2, i.e. on the chosen 
classes of models and on the vectors of measurements u(1), fi(2) obtained on the 
experiment, the general solution of this problem is not possible and each case should 
be considered individually. Further considerations regarding the equivalence of 2SI 
and DI methods will be confined to the case, when the models F1(u

u\ x) and E2(u
(2), a) 

are linear and continuous with respect to the parameters x and a, respectively. 
Then the mappings Fx and F2 are linear and continuous with respect to x and a, 
i.e. 

(23) Fl(u<-1\x) = Atx 

(24) F2(U^\ a) = A2fl , 

where the operators Ax = A1(u
(1)) and A2 = A2(i1

(2)) depend on the measurement 
results of the subvectors u(1) and u(2), respectively, and Ax e L(X, Y), A2 e L(jtf, X). 
In the following the dependence of u(1) and M(2) measurements will remain in Ax 

and A2, respectively. 
We shall assume that the mappings Ax and A2 are invertible (in the subspaces 

Rx and S), respectively. Under the taken assumptions Rx c ! , J ! 2 c Y and S c X 
are closed subspaces ([23]) and the solutions of both identification problems are 
unique. In order to find, on the basis of the general condition (22), the equivalence 
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conditions for the case considered, it is necessary to establish the form of the ortho­
gonal projectors PRi, PRi and Ps. 

From the orthogonal projection theorem ([23]) it follows - under the assumption 
of invertibility of A t — that for every y e Y: 

y = PRJ + (P - PRly), 

holds, where PRiy e Rx and (y - PR:y) e ker (A*). Hence 

A*y~ A*PRj = 0. 
Simultaneously 

(25) PRiy = Axx 

for some xe X, thus 

A*y-AUiX. 

Since, under the taken assumptions, the adjoint operators A* and A* are surjective, 
then by virtue of the well-known theorem of von Neumann ([24]) symmetric, self-
adjoint operators A*AX and A*A2 are invertible in spaces X and $4, respectively. 
Hence, for the case considered x = (AUi)1 A*y, its substitution into (25) yields: 

P^y-A^AU.Y'A^y 
and finally 

(26) PRi=A1(A*A1)~
1A*. 

Similarly it can be shown that 

(27) PS = A2(A*A2)-
!A*. 

It is easy to check that the operator A!A2 is invertible in the subspace R2, thus 

(28) PR2 = AxAz(AUUiA2)-
l A*2A* . 

Denoting the inverse image of the element y under the mapping A, by Ai~!{.F} 
the equality (22) in the case considered can be rewritten in form 

AxCAaCA!^)-1 AJAr'KK^)-1 A*y}) = 

= A1A2(AiArA1A2r
iA*A*j, 

or equivalently, after simple transformations: 

(29) A\A*y - AUUMAU,)-! AtKAx)-1 A*y . 

The above condition — being the equivalence condition (22) for the linear classes 
of models — may be called the a posteriori condition, since the equivalence of the 
two methods cannot be checked earlier than after the experiment is performed, i.e. 
after the inputs and outputs of the system are measured. It is rather difficult to use 
the condition in a direct fashion because of its complicated form. It may be expected 
that this condition will be simpler if, while examining the equivalence of both methods, 



not only the measurement results but also e.g. the results of two-stage identification 
are used. Suitable criterion will be presented in the sequel. 

As far as identification practice is concerned it is more advisable to use so-called 
a priori conditions, i.e. such ones which enable the verification of the equivalence 
of direct and two-stage approaches before the experiment is realized (i.e. the system 
inputs and outputs are measured). Assuming arbitrareness of the vector y, from (29) 
we obtain the following necessary and sufficient a priori equivalence condition 
of 2SI and DI methods: 

(30) A*AtA1A2(A*A2)~
1 AIKAO"1 A2(A$A2y > = / 

/ being the identity mapping in s/. 
Since the operators Ax and A2 depend on M(1) and w(2), respectively, then on the 

basis of the above condition it is possible to design a suitable two-stage experiment 
ensuring the equivalence of both the methods for any identification system (see 
examples given in Section 4). 

Using the condition (30) we shall examine when the equivalence of 2SI and DI 
methods holds 

1. under arbitrary mapping Av 

2. under arbitrary mapping A2, 

i.e. we shall consider Arfree and A2-free a priori equivalence conditions in 
the class of linear continuous mappings At and A2 invertible in Rx and S, res­
pectively. 

For the first case the following equivalence condition holds 

Condition 1. (Arfree.) If A2 is surjective, then 2SI and DI methods are equi­
valent for any Av 

The above condition follows from the fact that for the surjective A, we have 

( A ^ r ^ A r A r 1 . 
In turn it is easy to check that 

Condition 2. (A2-free.) If At is such that 

(3i) AUi-*yi, ? > o , 

then 2SI and DI methods are equivalent for any A2. 

The above condition can be reformulated using the following lemma 

Lemma. Let X, Y be the real Hilbert spaces. If A e L(X, Y), then 

A*A = c2I, c * 0 
if and only if 

(32) ||Ax« - HAH ||*|| , xeX. 
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Proof. If A*A = c2I, then (Ax, Ax) = c2(x, x). At the same time (Ax, Ax) ^ 
^ ||A||2 (*, x), whence ||A|| = |e|, which completes the proof of necessity. 

The condition (32), or equivalently, 

(Ax, Ax) = | A j | 2 ( x , x ) , xeX , 

denoting B = A*A — ||A||2 E c a n De rewritten in the following form 

(33) (Bx, x) = 0 , x E X . 

Since B is a Hermitian operator for an arbitrary pair xlt x2eX 

(Bxu x2) = i[(B(x, + x2), x. + x2) - (B(x, - x2), x, - x2)] 

holds on the basis of the polarization formula. In view of (33) we have 

(fix1,x2) = 0 , xteX, x2eX, 

hence B = 0. Thus for |c| = ||A|| we have A*A = c2I and the sufficiency is proved. Q 

By virtue of the above lemma the condition (31) may be presented in the form 

(34) HAixfl = flAjfl |jx|| , xeX . 

Since the adjoint operator A* does not appear in (34) such a representation of the 
condition (31) seems to be more convenient. 

For the memoryless (static) systems the necessity of the requirements for A.-free 
and A2-free equivalence of the 2SI and DI methods stated in the Conditions 1 and 
2 (after slight modification) can be also proved. 

We formulate the following theorems 

Theorem 1. If the identification system is memoryless and the models in consecutive 
stages are assumed in the form ;~M = E1(t7

(1), x) = Axx, xM = E2(u
(2), a) = A2a 

(see (23), (24)), the matrices Ai and A2 being dependent on Ti(-X) and i7(2), respectively, 
then 2SI and DI methods are equivalent for any At iff A2, after reordering of the 
rows can be reduced to the form 
(35) 

-GY 
where N is nonsingular matrix formed by nonzero rows of the matrix A2. 

Proof. Notice, taking account of (10), that the matrix At has the block-diagonal 
form (see also Example 1) 

At = block diag(A l l 5 A22,..., A„2„2). 

Sufficiency. Assume that the matrix A2 can be reduced to the form (35). The respect­
ive reordering of the rows of the matrix AY yields 

A. = block diag (R, Q). 
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Since 

(JQ&y^N'W1)*; 
taking account of the form of Ax it is easy to verified that the condition (30) holds 
for every R and Q. 
Necessity. Taking account of invertibility of A2 without any loss of generality we can 
consider only the matrices A2 of the form 

<*> 43 • 
where N is nonsingular. Such a form can be generally obtained by the appropriate 
reordering of the rows of A2. The structure of the matrix Ax corresponding to the 
assumed partition of A2 is the following 

A! = block diag (R, Q). 

Let (30) hold for every Aj. In particular forA ! such that RTR = / and QTQ = yl, 
y > 0, it takes the form 

(37) (NTN + yBTB) D~\NTN + \\y(BTB)) D~l = I, 

where D = (NTN + BTB). Denote the left hand side of (37) by L(y). Obviously 
dL(y)/dy = 0, y > 0, whence 

BTBD~1NTN = ily2(NTN) D-1BTB 

for arbitrary y > 0. Hence 
NTND~1BTB = 0 

and because of the nonsingularity of N we obtain BTB = 0, i.e. B = 0. Q 

Theorem 2. If the identification system is memoryless and the models in both 
stages are assumed in the form yM = F1(u

(-1), x) = Axx, xM = F2(u
<2>, a) = A2a 

(A1; A2 depend on M(1), U ( 2 ) , respectively), then 2SI and DI methods are equivalent 
for any A2 iff Ax is such that 

(38) ATAX = yl, y > 0 . 

Proof. Sufficiency follows immediately from the Condition 2. 
Necessity. Assume that the equation (30) hold for arbitrary invertible A2, thus 
in particular for A2 of the block form 

- C O ' 
with nonsingular N. The corresponding structuralization of At is the following 

A! = block diag (R, Q) . 

Assuming that N = wl, w + 0, and taking into account two possible relations 
between the number of rows and columns of submatrix B in matrix A2 we shall 
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consider the two following cases 

(i) if the matrix B satisfies the condition 

(39) BBT = I (BT - isometric matrix) 

(ii) if the matrix B satisfies the condition 

(40) BTB = I (B - isometric matrix) 

Case (i). Reformulating (30) we have 

• ^ 2 1 1 ~= -^-2 1 1 2 \ 2 2 / **~lL ' 

Taking advantage of the forms of At and A2 and using (39) we obtain 

(41) [wRTR ! B1 QTQ] = 

= (w2RTR + BTQTQB) (w2I + BTBy1 [wl j BT] . 

Since for isometric Br 

(w2I + BTB)~ ' = (1/z) / - l/(z(z + 1)) (BTB) , z = w2, 

from (41) we obtain 
RTRBTB = BTQTQB 

and hence 

(42) BRTRBT = QTQ 

for arbitrary B such that BBT = /. 
In particular for the matrix Bt of the form 

BT = [P,,,P,.2, ..., P , J , 

with {Ph,Ph, . . . , P . J <= { P l 5 P 2 , . . . , P,,}, P„ i = 1, ..., n, being the eigenvectors 
of the matrix RTR, where n and m = n are dimensions of the matrices P T P and QTQ, 
respectively, the equation (42) takes the form 

(43) BiRTRBr = QTQ = Ai, 

with A,- = diag(A ( i,..., Xlm), Xtj being the eigenvalues of RTR corresponding to 
eigenvectors P,y The equation (43) holds for an arbitrary subset {P,,, ..., P ; } 
of the set [P1, ..., P,,}, therefore Xt = A2 = .. . = X„ = y, QTg = yJ and including 
the positive definiteness of RTR we have RTR = yl, y > 0. 

Case (ii). For £ satisfying (40) and N = wl (w + 0) the equation (30) takes the form 

l/(z + l)2 [zPTP + BTQTQB] [z(PTPyl + BT(QTQ)-lB] = I, 

z = w2. Denoting the left hand side of the above by L(z) and using the fact that 
dL(z)/dz = 0 we obtain 

(44) PTPBT(QTQ)~1 B + BT(QTQ) B(PTP)~1 =21. 

Since 

(45) fiT(eTQ) BBT(QTQ)~ * B = / , 
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the equation (44) can be rewritten as follows 

PTPBT(QTQy1B + (PTPBT(QTQ)'1By1 = 27 . 

Hence PTPBT(QTQy1 B = I and taking account of (45) we obtain 

BTQTQB = PTP 

for arbitrary B fulfilling (40). The above (similarly as in case (i)) leads to the conclu­
sion that 

pTp = yl , QTQ = yl . y > 0 . Q 

By the above A1-free and A2-free results (the Conditions 1 and 2 and Theorems 
1 and 2) the choice of the two-stage experiment design ensuring the equivalence 
of Dl and 2SI methods can be substantially simplified, if compared with the case 
when the condition (30) is used. 

This simplification consists in the fact the choice of appropriate experiment design 
is reduced to the choice of either the design points u\2) in the second stage or the 
design points u\iy in the first stage of the two-stage experiment. The choice of the 
design points in the remaining stage is then arbitrary (provided that the uniqueness 
of the choice of the best model is guaranteed). 

In the case when the result of two-stage identification (the parameter a) is already 
known then, using the condition (29) it is possible to formulate a simple criterion 
enabling the examination of the equivalence of both identification methods — 
regardless whether or not the best model according to the direct method was computed 

To this end let us notice that (26) yields 

(46) x = (A*Ai)~
1A*y 

and, on the basis of (27), 

(47) a = (A*2A2y
1 A*2x. 

Hence and from the condition (29) the following a posteriori equivalence criterion 
of the two methods can be obtained 

(48) A*A*y = A*2A*AxA2a . 

If for the measurements results obtained in the experiment and the parameter a 
computed in two stages the condition (48) holds, then 2SI and DI methods are 
equivalent. In the opposite case the equivalence does not hold. Notice that (46) and 
(47) determine jointly the identification algorithm for the two-stage approach. 

Because of the fundamental role of the assumption of uniqueness of the solutions 
for the DI and 2SI methods in the presented paper, the examinations of the relations 
between uniqueness of the solutions of the two methods is significant. This problem 
for linear classes of models (with preassumed properties) is stated in the following 
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Theorem 3. 

A. If for the given MIMO system and given input series [i7(1)T, w(2)T]T the solution 
of the 2SI problem is unique, then the solution of the DI problem is also unique. 

B. If for the given MIMO system and given input series [u(1)T, i7(2)T]T the solution 
of the DI problem is unique, and for 2SI problem: 

(i) the solution of the optimization problem in the IS is unique, or 
(if) S = X (see Section 3), 

then the solution of the 2SI problem is also unique. 

Proof. The proof will be based on two elementary properties ([24]): 

1. A linear operator A e L{X, Y) (X, Y - Hilbert spaces) is a surjective iff there 
exists a constant m > 0 such that 

\\A*y\ £ m | | j | , ye Y. 

2. A linear operator A e L(X, Y) (X, Y — Hilbert spaces) has the continuous inverse 
(defined on the range of A) iff there exists a constant m > 0 such that 

HAxJI ^ m||x|| , xeX , 

and on the von Neumann invertibility theorem ([24]). 

In order to prove the part A of the theorem let us observe that in case when the 
solution of 2SI problem is unique we have (by property 2). 

|A 1 A2 a | | = m i m 2 | | a | , aes4 , 

whence, by virtue of the von Neumann theorem, the operator A*A*A1A2 is in-
vertible, i.e.— taking account of (28) — the solution of the DI problem is unique. 
To prove the part B let us note that — by the von Neumann invertibility theorem — 
the uniqueness of the solution of DI problem implies 

(49) i^Mat.11 ^ m\\a\\ , a e s4 . 

Hence by property 1 A*A* is a surjective operator, so A* is surjective too, whence — 
by the properties 1 and 2 and the von Neumann invertibility theorem — A*A2 is 
invertible in the parameter space si. The last together with (i) completes the proof 
of uniqueness for two-stage approach. 

If, in turn, S = X (ii)) then for every xe X there exists a e sf such that x = A2a, 
and by virtue of (49) it is easy to show that 

INI 
Whence by property 2 and von Neumann invertibility theorem the operator A*At 

is invertible which, together with the invertibility of A*A2 proved before, completes 
the proof of uniqueness two-stage approach for the case (ii). • 
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In the next section we shall give some examples of the derived equivalence conditions 
of 2SI and DI methods and discuss their implementation to the problem of experi­
ment design. 

4. EXAMPLES 

The equivalence conditions for two-stage and direct choice of the best model will 
be illustrated for some static and some dynamic systems. For the sake of simplicity 
the examples are restricted to the case of two-inputs, one-output systems. 

Example 1. For the static system with scalar inputs M(1) and M<2) and scalar output 
y we assume a typical model of the form ([12]): 

yM = au(1)M(2) . 

D e n o t e
 Fl(u

(1\x) = x u ( 1 ) , 

F2(M<2), a) = au(2) . 

Denoting additionally: 

x = [*!,...,x„J, M<2) = [M ( 2 ) , . . . ,M ( 2 ) ] 

y = b u , .••,y\n1>y2u---,yn1n1~\ 

*<V • • • u___!o . . . o : o 
.. o . . . o |M_V!_...M_„>; o 

_o 7..Q o~ . . . . .7.7 . . .^ ~ ~i i__ 
the linear operator Al from the formula (23) is the matrix operator of the form 

y = U(1)x 

and the operator A2 (formula (24)) has the form: 

x = u(2)a . 

In the case considered - for square identification quality criterions g_, Q2 and 
Q — the a priori equivalence condition (30) takes the form: 

(50) ii(2)Trj(1)TfJ(1)
i7

(2)(S(2)Tu(2))-1 M<->T(r7<1)Tt7(1))_1 t7(2)(I7
(2)TM(2))"1 = 1 . 

Since U ( 2 ) TM ( 2 ) = _T M-2)2 = w is a scalar value and 
i = l 

(51) UiTfji = d i a g ( i u ( i ) 2 , . . . , i ; » i : n 
7 = 1 J = l 

the condition (50) can be rewritten in the following form: 

(52) [ i u\2)\ "f M ( I O] [ g M<2)7( I «c>2)] = [ E «ry. 
i = l j = \ i=\ ; = 1 i = l 

So, in order to obtain the two-stage experiment design ensuring the equivalence 
of 2SI and DI methods the inputs u(1), M_2) should be chosen in such a way that 
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w > 0,Y_,u\))2 > 0, i = 1,..., n 2 , (the condition of the uniqueness of the choice 

of the best model) and (52) holds. Notice that such an experiment design does 

exist and, in general, is not determined uniquely. 

We shall now examine the form of the experiment designs for which A2-free 

and At-free equivalence conditions (Theorems 2 and 1) hold. Notice, that the 

condition (38) (A2-free) takes now the form: 

-70)T-/<« = y I > y > 0 > 

where / denotes the unit matrix of the rank n2. Taking account of (51) it can be 

presented as follows: 

(53) 0 lu^2 = y, i=\,...,n2, 
; = i 

If the above condition is satisfied (the first stage experiment design is proper) the 
equivalence of 2SI and DI methods is guaranteed regardless of the design chosen 
for the second stage. Notice that the condition (53) is, in particular, satisfied if: 

u ( i ) _ . .(I ) _ M d ) / _ i „ 
Ulj - U2j ~ ••• Un2j , ./ — 1, . - . , Hi , 

i.e. if for the consecutively fixed values uf2) the corresponding input series «ji\ ... 

..., u\l\ are identical. Such a case was studied in [12]. 

For the case considered Arfree necessary and sufficient equivalence condition 

(Theorem 1) has the form 

3! i 0 u{2) 4= 0 and u(2) = 0 for i + i0 , i=\,...,n2. 

Example 2. For the dynamic system with scalar inputs uU), u(2) and scalar output y 
we assume the model of the form 

(54) yM(t) = C K(s) u(1)(t - T) U<2>(T - s) ds dx , te [0, T] , 

where T is a finite time horizon for the continuous-time experiment. Denote 

Fx(uw, x) (t) = Jo »(1'(t - s) x(s) ds a n d F2(u(2>, K) (t) = J 0 K(s) u*Xt - s) ds. For 
this model we shall examine the form of the A2-free equivalence condition (31). 

Let additionally 
x(t) = [x1(t),...,xn2(t)] 

Xt) = buW.---.>'i-.1(0.>'2i(t),...,J'n2„1(t)]T 

&Щ 

0 . . . ... 0 

o 

0 . . . 

. . . 0 o 

0 . . . "Oťľ 
- <Ш-
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For the case considered the operator A2 from the formula (24) is 

(.4.x) (t) = | U(1,(r - T) y(r) d t , . s [0, T] . 

It is an integral Fredholm operator with the difference matrix kernel (7(1)(-), The 
adjoint operator A* is defined by 

Since 

(A*y) (t) = £ ГJ(1)т(т - rj ӯ(т) dт , / є [0, T] . 

(AfAiic) (t) = /v\(i, w) x(w) dw , f e [0, T] , 

where .V,(f, w) = j j L 7 ' 1 ^ - t) <7 ( 1 )(T - w) dx, the condition (31) takes the form 

(55) , f ^u\y(T-t)U\y(z-w)dr = y5(t-w), 
J o y = i 

i = 1,..., n2, $(') is the Dirac impulse signal. 
If the condition (55) holds for experiment design taken in the 1st stage, then — by 

virtue of the Condition 1 - the models of the form (54) determined by 2SI and DI 
methods are identical independently of the choice of the input series in the 2nd stage. 
In particular, the condition (55) is fulfilled for the series of the form: 

u(

iy(t) = cijd(t), i = l,...,n2, j= l , . . . , n . , 

where £ cfj = c, c > 0, i = 1, ...,n2. 
J = I 

From the above examples it follows that the general condition (30) can be conside­
red as a basis enabling us to derive constructive instructions concerning the choice 
of suitable design of the experiment and to obtain the useful equivalence conditions 
of the both methods in particular cases. 

5. FINAL REMARKS 

The equivalence conditions of two-stage and direct approaches to the problem 
of the choice of the best model from the given parametric class have been studied. 

The general equivalence conditions of 2SI and DI methods have been given for 
linear classes of models. In particular, sufficient (necessary and sufficient for a memo-
ryless case) equivalence conditions of A.-free and A2-free kinds (Section 3), i.e. 
the conditions ensuring the equivalence of both methods regardless of the choice 
of the form of the model (linear with respect to the parameters) in the 1st and 2nd 
stages, respectively, have been established. 

The presented equivalence conditions refer generally to the static as well as to the 
dynamic systems for continuous and discrete-time experiments and enable us to 
formulate some instructions regarding the choice of such an experiment design 
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for which the best, for the direct approach, model can be obtained by more conve­
nient two-stage method. 

The extension of the two-stage experiment design problems and further investiga­
tions of the two-stage identification method seem to be important. 
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