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K Y B E R N E T I K A — VOLUME 16 (1980), N U M B E R 6 

Bounds on Discrete Dynamic Programming 
Recursions I 
Models with Non-Negative Matrices 

KAREL SLADKÝ 

We consider (at discrete time points n — 0,1,...) a system whose utility vector at time n, 
denoted x(n), obeys the dynamic programming recursion x(n + \) = max Q(f) x(n), where 
Q(f) is a non-negative (in general reducible) matrix and symbol max is considered with respect 
to the decision vector/taken from a finite set F. We establish some bounds on the growth of the 
utility vector (that refine some previous results of Mandl (1970) and Rothblum (1977)) and 
suggest a policy iteration algorithm for maximizing the growth of the utility vector in the class 
of stationary policies. 

1. INTRODUCTION 

We shall consider at discrete time points n = 0,1, ... a system with finite state 
space I — {1,2, ...,N} whose utility vector at time n, denoted x(n) (column iV-vector), 
obeys the following dynamic programming recursion 

(1.1) x(n + 1) = max Q(f) x(n) = Q ( / « ) x(n). 
/6F 

Here x(0) > 0 is given, Q(f) is an iVxJV non-negative (in general reducible matrix) 
matrix depending on a decision vector / (i.e. N-vector whose i-th component f(i) 
specifies the decision in state i), and F is a finite set of all decision vectors at each 
time point. 

Following the usual terminology of dynamic programming, i-th component of the' 
utility vector x(n) will be called utility in state i at time n. So [<2(/)]; (i-th row of Q(/)) 
depends only on f(i) and we suppose that the set F possesses a "product property", 
i.e. if/1; f2eF then there exists a l so / e F such that [<2(/J]. . = l"6(/)].., [6 ( / 2 ) ]« = 
= [<2(/)],2 for each pair it, i2el. Consequently, the vectorial maximum in (IT) 
does always exist, and on denoting by F(i) the set of all possible decisions in state i 

N 

(so f(i) G F(i) for any / e F) then F = X F(i). 
i = l 



Remember that matrices, resp. (column) vectors, are denoted by capital, resp. 527 

small, letters. For matrix C [C] ; denotes i-th row of C, [C];j- is reserved for the 

ij-th element of C. We write C > 0, resp. C > 0, if each element of C is non-negative, 

resp. positive, and C > B, resp. C >̂ B, iff C - B > 0, resp. C — B |> 0. Symbol 

CT denotes the transpose of C. The same notations are also used for vectors. Symbol /, 

resp. e, is reserved for a unit matrix, resp. unit vector, of an appropriate dimension. 

Sometimes we shall need lexicographical ordering of matrices. We say that C is 

lexicographically greater than B (and write C >- B) iff the first non-zero element 

of each row of C — B is positive and C 4= B. Similarly, C ~>z B if either C >- B 

or C = B. 

A sequence of decision vectors, say n = (...,/ ( n ), . . . / ( 0 ) ) , is called a (Markovian) 

policy and if/(n) = / for each n then such a policy is called stationary. Observe that 

/ ( , l ) denotes the decision vector used at time n; for what follows it will be advanta

geous to used the above "opposite" time denotation. 

Dynamic programming recursion (1.1) has several interesting interpretations: 

(I) Functional equations for total expected return of classical Markov decision 

chains (cf. e.g. [2], [4], [6], [8], [15]). 

Let us consider a classical Markov decision chain with N — 1 states and let P(f), 

resp. r(f) ^ 0, be the transition probability matrix, resp. vector of one-stage rewards, 

if decision vector/ e F is selected. On setting 

e(/) = p ( / M / ) | [*(o)]» = i 

then by (1.1) [x(n)]N = 1 (dummy variable) and for x(n) = v(n) (subvector of x(n) 

containing the first N — 1 components of x(n)) we get (here v(0) Si 0 denotes the 

vector of "terminal rewards") 

„(„ + 1) = r(/(»>) + P(/W) ,-(/("-!>) + ... + P(/(">) ... P(/ ( 1 ) ) r(/ ( 0 ) ) + 

+ P(/(»>) ... P(/ ( 0 ) ) v(Q) = r(/(">) + P(/ ( n ) ) v(n) 

(so for i < N [f(n)]j = [x(n)] f is the maximum total expected return in state i 

to be obtained in the n next transitions). 

Similarly, if 

G(/) = P(f) 
0 

K/) 
i 

0 " 

eт 

0 0 J 

(here 0's always denote zero submatrices of appropriate dimensions) with P(f), r(f) 

being of dimension N — I and J being an upper triangular matrix of dimension 

/ - 1 whose each entry on or above the diagonal equals 1 (consequently also eT 

has dimension I - l) on setting for any n - I < j = N [x(0)] ; = 1 then by a simple 



calculation we get for each j > N — I [x(n)]7- = 1 . ). Moreover, for x(n) 

(subvector of x(n) containing the first N — I components of x(n)) we have 

x(n + l) = ( n ^ - 1 ) r ( / < » ) ) + R(/^)x(n). 

So in this case x(n) represents maximum of the appropriate cumulative total expected 
rewards if n transitions of the considered Markov decision chains are to be left. 

(II) Functional equation for "risk-sensitive" (multiplicative) Markov decision 
chains (cf. [7]). 

Let us again consider a Markov decision chain with N states and let P(f), resp. 
R(/), be the transition probability matrix, resp. the matrix of one-stage rewards, 
under decision/ (so [R(/)]0-denotes the reward accrued to a transition from state i 
into state j). Now let us suppose that the sequence of successively earned rewards 
is evaluated according to some multiplicative utility function; i.e., let to a sequence 
of a successively earned outcomes c1; ..., c„ be assigned a utility function 

e x p ( - 7 Yi ct) (here given real number y is called "risk aversion" coefficient). Clearly, 
1 = 1 

in the stochastic case this problem cannot be transformed into the problem with 
additive utility by taking logarithms. 

On denoting x(n) the vector of maximum expected utilities in the n next transitions 
(so [x(n)]j denotes maximum expected utility in state i to be obtained in the n next 
transitions), an easy calculation reveals that x(n) obeys dynamic programming 
recursion (1.1) where the elements of Q(f) are given by 

[e(/)]u = [IJ(f)]uexp(-r[R(/)]l7) 

and x(0) denotes the vector of "terminal rewards" (here we suppose x(0) > 0). 

(HI) Supervised linear economic models (cf. [3], Chap. 16). 

Let us consider at discrete time points an economic system with N industries 
and let [ Q ( / ) ] y corresponds to the influence of the 7-th industry on the i-th industry 
if decision/is selected. Similarly, let [x(n)]( describe the "state" of the i-th industry 
at time n and let x(n + l) = Q(f) x(n) (here we tacitly assume that x(n + l) depends 
also o n / ) . Obviously, a sequence of decisions maximizing the "growth" of the whole 
economy (i.e. the growth of {x(n)}) must obey dynamic programming recursion (l . l) . 

(IV) Controlled branching processes (cf. [3], Chap. 16). 

We consider at discrete time points a population consisting of N types of individuals 
and let [x(n)] ; be the expected number of individuals of type i at time n. If 
[Q(f)]ij denotes the expected number of individuals of type i that arise under 
decision / from an individual of type j at the next considered time instant, the 



policy (i.e. sequence of decisions) maximizing the growth of the whole population 
as well as the maximum expected number of each type of the individuals is again 
given by the dynamic programming recursion (l . l) . 

(V) Controlled growth of personnel in an organization. 

Let us consider an organization the personnel of which is divided into At — 1 
ranks. We set [x(n)]N = 1 (dummy variable) and for i = 1, 2, ..., At — 1 we denote 
by [x(n)] ; maximum expected number of personnel belonging at time n to rank i. 
Let PT(f) be a transpose of an (At—1) x (At — l) substochastic matrix P(f) such 
that [P( /)] ,7 is the probability that under decision/ a person belonging to rank i 

J V - l 

will promote or demote to rank./ at the next considered time instant (so 1 — _•_ [_P(f)~\ij 
j = i 

is the probability that a person belonging to rank i will be dismissed). Clearly, on 
introducing (N— l)-column vector s(f) whose i-th component is the number of 
newly hired persons of rank i if decision / is selected, 

x(n + 1) = max Q(f) x(n) with Q(f) = 
feF rntM/)T 

2. PRELIMINARIES 

Let o(f) be the spectral radius of (a non-negative matrix) Q(f). According to the 
well-known Perron - Frobenius theorem o(f) equals to the largest positive eigen
value of Q(f) and we can choose the corresponding eigenvector u(f) > 0. 
Recall that if Q(f) is irreducible then even u(f) >̂ 0 and o(f) is simple. Moreover, 
if Q(f) is reducible, i.e., if by suitable permuting of rows and corresponding columns 
of Q(f) it is possible to write (remember that in our matrix notation blanks will 
always denote zero submatrices of appropriate dimensions) 

~e<n)(/) e (i2)(/).»e (i„(/)" 
(2A) c( / )= W/O-ow/) 

' QUf). 
where each Qatlf) itself is an irreducible matrix with spectral radius cr(i)(/), necessary 
and sufficient conditions for u(f) > 0 can be easily formulated by means of accessi
bility properties between irreducible classes of Q(f). Similarly as in Markov chain 
theory we say that Qw(f) i s accessible to Qm)(f) iff there exists a sequence of in
tegers k0 = i < kt < ... < kp = I such that Q(kj_llkj)(f) > 0 for all j = 1, ..., p 
and g ( ; ; )( /) is called a basic, resp. non-basic, class of Q(f) iff o(i)(f) = a(f), resp. 

*.(/) < *(/)• 
It can be shown (cf. [5], Theorem 7 of Chap. 13): u(f) > 0 if and only if 

(i) oU)(f) < o(f) => Q(iJ)(f) * 0 at least for one ; * i; and 

(ii) o(i)(f) = o(f) => Q(ij)(f) = 0 for any ; * i. 



So (cf. (2.1)) «( /) > 0 => a(r)(f) = a(f) and on relabelling the irreducible classes 
of Q(f) we may assume that for some r' = 1, 2,..., r 

<*(,•)(/) < o(f) o i <r' , a(i)(f) = a(f) o i ^ r' . 

Obviously, using the notion of accessibility instead of (i), (ii) it can be equivalently 
stated: 

u(f) > 0 if and only if each non-basic, resp. basic, class of Q(f) is accessible to some 
basic class, resp. is not accessible to any other irreducible class, of Q(f). 

In virtue of this fact diagonal submatrices of Q(f) in (2.1) need not be the "largest" 
submatrices of Q(f) having strictly positive eigenvectors corresponding to their 
spectral radii. However in the proof of Lemma 2.1 an algorithmic procedure will be 
given for suitable ordering the irreducible classes of Q(f) to obtain an upper triangular 
matrix whose diagonal (possibly reducible) classes are the "largest" submatrices 
°f Q(f) having strictly positive eigenvectors. Remember that an irreducible class, 
say Qu])(f), belonging to some Qn(f) (submatrix of Q(/)), will be called basic, 
resp. non-basic, class of Qu(f) iff oU)(f) = 0i(f), resp. aU)(f) < at(f) (at(f) denotes 
spectral radius of Qa(f))- It holds: 

Lemma 2.1. By possibly permuting rows and corresponding columns of (2.1) 

we can write 

(2.1.1) Q(f) = 
ÔuCj) Gi2 ( / ) . . .Öi s ( / ) 

Qгг(f)-..Qгlf) 

' Qss(f) 

where for i = 1, 2, ..., (s depends o n / ) 

(2.1.2) Qu(f)ui(f) = ai(f)ui(f) 

with a(f), resp. ut(f) > 0, being the spectral radius, resp. corresponding right 

eigenvector, of Qu(f) (in general reducible) and 

(2.1.3) al(f)^a2(f)^...^as(f) 

with <T i+1(/) = at(f) implying that each irreducible class of Qu(f) is accessible 

to some basic of 6i+i,i+i(/)-

Proof. Let (cf. (2.1)) K = {l, 2, ..., r} and let ieK(1) c X i f f a(i)(f) = <7(/). 

Now let ieK[1} <= K(1) iff Q(ii)(f) is not accessible to any other basic class of Q(f) 

(obviously K[1} 4= 0) and let us define recursively {K(1) c K(1), m = 1, ..., p} such 

that for m > 1 ieK{1) iff Q(ii)(f) is accessible to some Qw(f) with / e i ^ and 
m - l 

is not accessible to any Qm(f) with I e K{1) \ \J K^. Let us further introduce 



{K£\ m = p, ..., 1} such that i e Kp
iy iff Q(u)(f) (possibly non-basic) is accessible 531 

to some Q(ll)(f) with leKp
l) and for m < p ieK~m

l) iff i £ U K(1) and Q(ii)(f) 
n = m + l 

is accessible to some Qm(f) with l e X j , " (obviously Km
iy => K^). 

From the above construction it is clear that the irreducible classes labelled by 
integers belonging to each Km

y (m = 1, ••-, p) form the "largest" submatrices 
of Q(f) having strictly positive eigenvectors corresponding to ax(f) = a(f); if 
i e K(

m
l) then Q(ii)(f) cannot be accessible to any Q(ll)(f) with / e K^ and m < n 

and if i e K^ with m > 1 then Q(ii)(f) must be accessible to some Q(ii)(f) with 
ZeKj,1*!. On possibly permuting the rows and corresponding columns of (2A) 

p _ 
belonging to U K~m

1} it i s possible to construct (cf. (2.1.1)) Q n ( j ) , ..., Qpp(f) (with 
m = l 

CTi(j) = • • • = (Tp(j) = ff(f)) such that each Qh(j) (i = 1, . . . , p) contains the "rows" 
labelled by integers from R[l). Recalling the accessibility properties of irreducible 
classes belonging to QH(f) obviously Q,7(j) = 0 for any j < i _ p. 

Now cancel in (2.1) the rows (and columns) of Q(f) belonging to diagonal classes 
p _ 

labelled by integers from U K(
m

l) to obtain submatrix (2)Q(j) of Q(f) (whose rows 
m = l 

and columns contain only diagonal classes labelled by integers from (2)K = K \ 
p 
U Km

1}), find its spectral radius (that must be less than ff(f)) and repeat the whole 

above procedure to obtain analogously defined K(2), Km' and K^'s. Repeating 
further (if necessary) the above construction we find Rm

l)'s (where K — U K(£ and 
_ _ ',m 

K(
m n Xm

() = 0 if j + I or m + n). By possibly permuting rows and corresponding 
columns Q(j) can be written in an upper block-triangular form satisfying (2.1.1), 
(2.1.2) and (2.1.3). • 

So in virtue of Lemma 2.1 for any je F we can construct (by possibly permuting 
rows and corresponding columns of Q(f)) diagonal classes Q,;(j) as the "largest" 
submatrices of Q(f) having strictly positive eigenvectors corresponding to fft(f) 
and fulfilling also the remaining properties of Lemma 2.1. Similarly, let the state 

space / = U Ii(j) (with J ;(j) n Ik(f) = 0 for i +, k) such that jelt(f) iff [Q(f)~]jj 
i= l 

belongs to Q.-^f) and let l{(f) c 7;(j) denotes all j's belonging to some basic class 
of Qii(j). 

Now let us introduce index of class <2;;(j), denoted v;(j), in such a way that v£f) = 

= 1 and for i = 1, ..., s - 1 

Vi(f) = r iff flrj(f) = ffi+i(f) = --- - f f .+ i - iCO 

where either 

Ti + r-l(f) > ffi + r(f) 0I" t + r ' l = S -

Obviously, if <r.(f) > cr2(j) > ... > <?s(f) t h e n a11 vi(f) " -• ° b s e r v e t h a t i n L e m r a a 



532 2.1 (2.L3) together with the subsequent condition on ai + 1(f) = at(f) can be replaced 
by 

(2.1.3') (a,(f) ; v.(/)) >- (a2(f); v2(/)) >...> (as(f); v5(/)) 

(here symbol > denotes lexicographically greater). It can be shown (cf. [12]) that 
v i ( / ) equals to the index of Q(f) (i.e. vx(f) is the smallest integer n such that the null 
spaces of (Q(f) - a(f)lf and (Q(f) - a(f)l)"+1 coincide). However, this fact 
only motivates our terminology; it will not be used anywhere in the sequel. 

Moreover, to each state of Q(f), say j , we introduce spectral radius a(f, j), resp. 
index v(f,j), by setting a(f,j) = at(f), resp. v(f, j) = v ;(/), where; e / ; ( / ) . Obviously, 
a(f, j) equals to the maximum spectral radius of any irreducible class that is accessible 
from j and v(f, j) is the maximum number of such irreducible classes that can be 
subsequently reached. 

Throughout the paper we make the following general assumption. 

Assumption GA. For any fe F at(f) > 0 for each i = 1, ..., s = s(f). (Obviously, 
by (2.L2) it suffices only to assume as(f) > 0). 

In the following lemma some useful facts about non-negative matrices are summa
rized. 

Lemma 2.2. It holds: 

(1) a(f) is a continuous function of the elements of Q(f) (of course, this need not 
be true for the corresponding eigenvector »(/))• 

(2) If Q(f1) > Q(f2) then a(fx) > a(f2) with a strict inequality if Q(fx) is ir
reducible. 

(3) On setting Qu(f) = K / ) ) " 1 Qu(f) then 

7 1 - 1 

lim n _ 1 £ (Qn(f))m = Q*(f) > 0 always exists 
n-oo m = 0 

(with [<2*(/XU > 0 for each pair j,kelt(f) belonging to the same basic class 
of Qu(f)) and ot(f) Q*(f) = Qu(f) Q*H(f). Moreover, if Qu(f) is aperiodic (i.e. 
modulus of each eigenvector of Qu(f) different from av(f) is less than at(f)) then 
there exists lim (Qu(f))" = QH(f). In case that Qu(f) is periodic, on setting x equal 

to thel.c.m. of the periods of all basic irreducible classes of Q,;(/), then for / = 0, 1, .. 
..., x — 1 there exists 

lim (QH(f))nX+l = WQUf) where "% «>&,(/) = x Qft(f). 
71-00 1 = 0 

(4) For n -> oo (Qu(f))
n is bounded iff a ( /) — 1 (in case that at(f) < 1 then even 

lim (QH(f)f = 0). 

(5) There exists unique v{ satisfying (at(f)I — Qu(f)) v; = ht for given ht such 



that [vt"]j = [hi],- = 0 for all jelt(f). Moreover, if h, > 0, resp. ht < 0, then 533 
vt > 0, resp. vt < 0. 

Proof. Continuity of a(f) is immediate as the solutions of the respective charac
teristic equation depend continuously on the elements of Q(f) (cf. [11], Appendix K). 
The proof of part (2) can be found in [5] (cf. Theorem 6 of Chap. 13). To establish 
parts (3), (4) observe that by (2.1.2) Qn(f) is positively similar to some stochastic 
matrix (here the similarity matrix T; is diagonal with T- «,(/) = e) and so the above 
properties of £?;.(/) follow immediately from the well-known limiting properties 
of stochastic matrices. Using the same way of reasoning we can easily verify part (4). 
The proof of part (5) follows immediately on using well-known fact that for each 
non-basic class of Qu(f), say Qm(f), (a (f) I - Q{m(f))~l> 0 always exists 
together with the accessibility properties between irreducible classes of matrix Qu(f). 

• 
3. POLICY ITERATION METHOD FOR MAXIMIZING GROWTH 

OF THE UTILITY VECTOR 

Throughout this section we shall consider only the class of stationary policies. 
For given/ e F we set for n = 0,1,... with x(0; / ) = x(0) > 0 

(3A) x(n + l;f)=Q(f)x(n;f) 

and we shall examine the growth of {x(n;f), n = 0 ,1 , . . . } . Furthermore, we suggest 
a policy iteration algorithm for finding decision vector / e F maximizing the growth 
of x(n;f) and show that for some suitable fixed ordering of diagonal classes of Q(f) 
(such that (2.1.1), (2.1.2), (2.1.3') hold f o r / = / ) also Q(f) will be a block-triangular 
matrix for any feF. 

Firstly, using the block-triangular structure of Q(f) (cf. (2.1.1)) by means of 
Perron - Frobenius theorem we derive some bounds on {x(n; / ) } . Of course, classical 
results of matrix theory (cf. e.g. Chap. 5 of [5]) enable to express x(n;f) as a func
tion of eigenvalues of Q(f) but, on the other hand, the approach used in the proof 
of the following lemma can be easily adapted even for x(n) obeying dynamic pro
gramming recursion (1.1) as it is indicated in Theorem 4.L 

Lemma 3.1. Let xt(n;f) be a subvector of x(n; f) whose components are labelled 
from / . ( / ) . Then for suitably chosen vector ut(f) (where u ;( /) ^ 0 satisfy (2.1.2)) 
and all n = 1,2, ... 

(3.1.1) X{(n;f) _ (at(f)Y (" +
v^

fl ~ ! ) ut(f). 

Proof. First observe by (2.1.1), (2.1.2) that for suitably chosen « ' ( / ) = [u',(f)]Ui > 
> 0 such that «'(/) ^ x(0) we can find an upper triangular matrix K(f) ^ Q(f) 



534 with Ku(f) = Qit(f) (for any i = 1, ..., s), Ku(f) = 0 (for any pair j < i) and 
Ku(f) > Qij(f) (for any ;' > i) such thai for any ;' > i 

(3.1.2) QtJ(f) u'j(f) S Ku(f) u'j(f) = aj(f) « ; ( / ) . 

The construction of Ku(f)'s together with the choice of suitable uj(/)'s can be per
formed successively for i = s — 1, j = s; then for i = s — 2, j = s, s - 1; then 
for i = s — 3, j = s, s — 1, s — 2 etc. by selecting u't(f) > xt(0) such that for 
j = i + I, ...,s aj(f)u'i(f) > Qij(f)u'j(f) and then "enlarging" the elements 
of 6 . / / ) s u c h that (3.1.2) will hold. So we get for all i = 1, ..., s (cf. (2.1.2), (3.1.2)) 

xt(Uf) = *.(/) «.(/) + t Ku(f) u'j(f) = u\(f) ± aj(f) , 
j=i+i j=i 

and by induction with respect to n we can verify that 

(3.1.3) Xi(n;f) < u\(f) £ (*&))«« (ci+l(f))— . . . (as(f))"' 
mi+ ...+ms = n 

(here the sum on the RHS of (3.L3) is to be understood over all integers mk > 0 
a 

satisfying £ mk = n). 
k = i 

Observe that the induction step for (3.L3) follows easily as by (2.LI), (2.L2), 

(3-1.2) 

xi(n + Uf) = iQij(f)xJ(n;f)S 
j=i 

= £G.X/K-(/)[ I (^x/)r-w/)r] = 
j = i mj + ... + ms = n 

= «:</) i>//)[ z w / r -w / ) r ] = 
j = > mj+.. . + ms = n 

= «;(/) z K/)r'...(ff//)r-. 
mi+. . . + ms = « + l 

Now if V;(j) = r (i.e. if ff;(/) = . . . = t7 I + r_X/) > ffi+r(f)) t l i e n on setting 
#((/) = ffi+r(/)/ff,(/) < 1 in virtue of (2.L3) we get 

(з.i.з') Z M/Г) • • • ШГ = ШУ Z W)Г,+' 
mi+... + ms = n mi + ... + ms = n 

<m, + r+... + ms) 

As Y, 1 = 1 . ) (this identity can be easily verified e.g. by induction 
mi + ... + ms = n \ S — I J 

with respect to s; for s = i it holds trivially and the induction step is immediate by 

x i- i( i i )-±t*tit 170-(" 1T-7" 
mi+... + ms=s 1 = 0 m,+ ... + »i,-i 1 = 0 \ s L ' / \ s l J 



we get 

(3.1.4) x (Hf)Гi+r+-+ms) = îí Z ! ] • 
пЧ + - . + % = л k = 0 mi + . . . + m , + r - i = n - k 

k + S — i — r\ •t i w)) fc]=t(w(n j^r-^f 
m, + r + . . . + m. = k fc = 0 \ r — 1 y \ 

^•:r1

l)mHk ::-:-/)• 
But for Sj(/) e (0, 1) the sum on the RHS of (3.1.4) is obviously nondecreasing with 
respect to n and there exists 

(3.1.4') Km t (Hf)f (k + ' T * I r ) - ".(/) < oo . 
„ - » k=o \ s — i — r j 

Denoting «,(/) = a ;(/) u';(/) by (3.1.3), (3.L3'), (3.1.4), (3.L4') we immediately get 

(3.1.1). ^ Q 
Now we shall try to find a decision vector, say/e F, maximizing the above bounds 

on {xj(n;f)} for large n uniformly with respect to fe F. To this order we suggest 
a policy iteration algorithm for finding decision vector jeF such that for all / e F , 
jel(a(li);v(f,j))^(a(f,j);v(f,j)). 

Algorithm 1. (Policy Iteration Method for Maximizing Growth of the Utility 
Vector). 

Construct a (finite) sequence of decision vectors / 0 , / „ . . . , /„ , ...fr = f with / 0 

arbitrary a n d / „ + 1 derived from/„ in the lollowing way: 

(i) Find a decision vector/e F such that for each7 el 

(3-2) /(/) =/„(;) 

iff [Q(h)]jk= 0 for any heF and each fee/ with (a(f„, fe); v(/„, fc)) >-
>(a(fn,j); v(fn J ) ) and set 

(3.2') /(i) = Hi) 

for ft 6 F such that [Q(h)]jk 4= 0 for some k e I satisfying (a(f„, fc); v(/„, fc)) ^ 
^ M L , 0; v(/*> 0) >- (<KL> ])l H/«>!')) for any g e F and each / e / with \_Q(g)]}l * 0 
(observe that [S(lj)]; depends only on h(j)). 

(ii) Let the rows and corresponding columns of Q(f) be permuted so that (2.1.1), 
(2.1.2), (2.1.30 h o l d - Construct / „ + 1 e F in such a way that for each i = 1,..., s 

(3.3) ?.(/„+1;/) = max y,(fc;/) 
/i=F 

with 

(3.3') W/n+1;/)L = o=>L+ 1oo=/(;) 



536 where 

(3.4) ľ,(/г; j)Чß»(ь)-ß«(/)K(/)£0 

(here Qu(h) as well as Qit(f) contain exactly the elements labelled from It(f), so 
y.(j;j) — 0 and, consequently, yt(h;f) ^ 0 can always be found). Observe that 
[yi(h;f„)~\j depends only on h(j) and set for / = 1, ..., s = s(jn+1) [ M ( / „ + 1 ) ] ; = 
= [w(j„)]j for one j of each basic class of any Q(i(j„ + 1) (where the elements of 
e„(j„+1) belong to /.(/„+<)). 

Then it holds 

Theorem 3.2. In a finite number of policy improvement steps according to Algo
rithm 1 we obtain decision vector j r = fe F that cannot be further improved. Then 
it holds for any j e F and all j el 

(3.2A) (°(fj)iv(f,j))^(a(f,j);v(f,j)). 

Moreover, by possibly permuting rows and corresponding columns of Q(f), 

(3.2.2) Ô(/) = 
ßиtf) Qгг(f)-Qu(f) 

ß 2 2 ( / ) - ß 2 S ( / ) 

' ßSS(/) 
where (recall that jeltf) => a(fj) = a{(f), v(f,j) = vt(f)) 

(3.2.3) (a,(f) ; vx(f)) > (a2(f) ; v2(f)) >...> (as(f) ; vs(f)) 

and for i = 1, 2, ..., s = s(j) and any j e F 

(3.2.4) eit.(j) ut(f) < e,,(j) ut(f) = alf) ut(f) with u{f) p 0 

(the decomposition of Q(f) for any jeE is considered according to (3.2.2); so the 

entries of Qii(j) are labelled by integers from It(f)) and for any k < i 

(3.2.5) Qik(f) = 0 

(observe that for an arbitrary element of Qik(f), say [Qik(f)]j{, we have j e It(f), 

leh(f))-

Before the proof of Theorem 3.2 we present two lemmas being the main ingre
dients to the policy iteration procedure of Algorithm 1. 

Lemma 3.3. Let f,geF satisfy (3.3), (3.3') and (3.4) (with g s j„+1). Then for 

each j el 

(3.3.1) (a(g,j) ; v(g,j)) £ (a(f,j) ; v(f,j)) . 



Proof. Let us fix certain class Qu(f) (cf. (2.1.1), (2.1.2)), set Q'(f) s QH(f) and 537 
let I' = /;(/). Similarly, let Q'(g) be a submatrix of Q(g) containing exactly all 
elements labelled by integers from V. By possibly permuting rows and corresponding 
columns of Q'(g) we may suppose (cf. (2.1.1), (2.L2), (2.L3')) that 

'Q'M Q'M-QM' 
QM-QM (3.3.2) QЬ) = 

QШ 
where for each Q'kk(g) (k = I, ..., p) 

(3.3.3) a'k(g) u'k(g) = Q'kk(g) u'k(g), u'k(g) > 0 

and for any 1 < k < I ^ p 

(3.3.4) (ak(g); v'k(g)) > (a\(g) ; v\(g)) . 

Remember that here the values of spectral radius a'k(g), resp. index v'k(g), are consid
ered with respect to matrix Q'(g) and by a'(g, j), resp. v'(g,j), we denote the values 
of a'k(g), resp. v'k(g), corresponding to j el'. 

Now observe (cf. Lemma 2.1 and part (2) of Lemma 2.2) that for any j e V a'p(g) <, 
<; a'(g,j) <; a(g,j) and, by the definition of Q'(f), a(f,j) = at(f) for each j el'. 

To verify (3.3.1) first we establish that for each j el' (and, consequently, also for 
each j el as Qu(f) = Q'(f) is chosen arbitrarily in Q(f)) a(g, j) > a(f, j) by showing 
that 

(3.3.5) < G 7 ) ^ , ( f ) . 

To this order observe that by (3.3.2), (3.3.3) and (2.L2) 

(3.3.6) a'p(g) (u'p(g) - u'p(f)) + (a'p(g) - <-,(/)) u'p(f) = 

= Q'M (M ~ K(f)) + Q'pp(g) u'p(f) - £ Q'pk(f) u'k(f) = 
k = l 

-QM(K(d)-u'p(f)) + y'p(g;f) 

(here u'k(f), resp. y'k(g; h), is a subvector of u ;(/) , resp. yt(g;f), containing the compo
nents corresponding to Q'kk(g) and, similarly, Q'pk(f) contains the elements correspond
ing to Q'M). By (3.3.6) (as y'p(g;f) ^ 0 and we can choose u'p(g) > u'p(f) p 0) 
we conclude that at(f) > 0 => a'p(g) > 0; so (cf. Assumption GA) a'p(g) > 0 and 

Q'M = ^n~^(a;(g)riQ'M)m 

n-co m = 0 

is well defined. 
On premultiplying (3.3.6) by Q'*(g) (cf. Lemma 2.2, part (3)) we immediately 

obtain 

(3.3.7) (Ш ~ <*,(/)) QШ «;(/) = Q'Ш yfaf) • 



S38 As u'p(f) >̂ 0, Q'*(g) > 0 and y'p(g;f) > 0 (3.3.5) must be true and, consequently, 
for any jel 

(3.3.8) o(g,j)>za(f,j). 

To finish the proof it only suffices to establish that for all j 

(3.3.9) a(g, j) = a(f, j) => v(g, j) ^ v(f, j). 

To this order without loosing generality we may suppose that j e ! , ( / ) = I' and that 
(3.3.9) will hold for any jelk(f) with k > i (if possible). Furthermore, observe 
that if a(g,j) = a(fj) for some jel' then (cf. (3.3.2), (3.3.5)) 

(3-3.5') a'p(g) = <-,(/) 

and (cf. definition of o(g,j) and part (2) of Lemma 2.2) at least one basic class 
of Q'pp(g) is not contained in some other irreducible class of Q(g) as well as it is not 
accessible to any other irreducible class of Q(g) whose spectral radius is greater 
then Oi(f). 

Now let l'p = {jel' :j belongs to some basic class of Q'pp(g)}. If (3.3.5') holds 
then by part (3) of Lemma 2.2 from (3.3.7) we conclude that [y'p(gj)~\j = 0 for any 
j e l'p and, consequently, by (3.3') 

(3.3.10) 9(j)=f(j) for any j e I'p . 

So if (3.3.9) holds for each j elk(f) with k > i by (3.3.10) we conclude that (3.3.9) 
must hold for any j e I'p and taking into account the structure of Q'(g) (cf. (3.3.4)) 
(3.3.9) must hold for a l l ; e J ;(/). • 

Lemma 3.4. Let for decision vectors / , g e F (f 4= g) and any j e I either 

(3-4.1) 9(j)=f(j) 

or 

(3.4.2) [Q(g)]jk > 0 

for certain k with 

(3-4.2') (a(f,k);v(f,k))>(o(f,j);v(f,j)). 

Then for any jel 

(3-4.3) (*(9j);v(gj))>:(o(f,j);v(f,j)) 

with a strict inequality at least for one j e I. 



Proof. First let the rows and corresponding columns of Q(f) be permuted so that 539 
(2.1.1), (2.1.2) and (2.1.3') hold and let us suppose that for some fixed i = 1 , . . . , s 

(3.4.4) g(j)*f(j) for (possibly several) jelt(f), and 
g(j)=f(j) for any jel \ / , ( / ) . 

Obviously for all j e / , ( j) with / > i (a(g,j); v(g,j)) = (a(fj); v(fj)) and by the 
definition of a(f, j), structure of class Q,-,-(/) and (3.4.2), (3.4.2') also for any j elt(f) 
with I g i 

(3.4.5) o(g,j)>za(fj). 

To establish (3.4.3) it suffices to show that for any j e / , ( / ) with / <; i 

(3-4.6) a(g, j) = a(f, j) -> v(a, /) ^ v(/, j ) 

and in virtue of (3.4.4), (3.4.5) and the definition of v(fj) it suffices to verify (3.4.6) 
only for j elt(f). To this order let for 

(3-4.7) v(g, j 0 ) = min {v(g, j) : a(g, j) = a(f, j)} 
jelt(f) 

hold 

(3.4.7') v(gj0)<vi(f). 

Recalling the construction of g e F by (3.4.7), (3.4.7') and definition of v(g,j) there 
exists Z < i and fc0 elt(f), j t elt(f) (where under g eF j 0 , resp. k0, is accessible 
to k0, resp. j j ) such that 

(3.4.8) a(g, j0) = a(g, k0) = a^J^) 

and 

(3-4.8') v(g,j0)>v(g,k0)>v(g,j1) 

that contradicts (3.4.7'); so (3.4.6) must hold. (3.4.5) together with (3.4.6) imply 
under condition (3.4.4) relation (3.4.3). Moreover, if (3.4.2), (3.4.2') are satisfied for 
some j e / , ( / ) , k e / , ( / ) , say j = j ' , k = k', then by (3.4.3) written for j = k' and 
the definition of a(f,j), v(f,j) we immediately get 

(3-4.9) (a(g, / ) ; v(g, / ) ) > (a(f, / ) ; v(f, j')). 

To finish the proof let us construct a (finite) sequence of decision vectors 
{g„, n = 1, ..., s = s(f)} with g± = j whose elements for n > 1 are defined by 

(3-4.10) 9j(j) = 0(f) ^ all j £/„(/) 

(3-4.10') Qn(j) = 9n-i(j) for any jelsln(f) 

(so fls s a) and apply successively the above reasoning. • 



540 Now we can present 

Proof of Theorem 3.2. Applying the results of Lemmas 3.3 and 3.4 to the policy 
iteration procedure of Algorithm 1 we construct a sequence of decision vectors 
{/„> n = 0,1,. . .} such that for any j e / 

(3.2.6) Hf„+lj); v(/„+1,j)) £ WA. j ) ; v(f„,j)). 

So to establish that the elements of {/„} cannot recur it suffices to show that if 
fn+i + f« and for all j el 

(3.2.7) K L + 1 , j ) ; v(fn+1,j)) = « / „ , j ) ; v(/„,/)) 

then for all i = 1,. . . , s = s(/„) 

(3-2.8) /,-(/„) = / ;(J„+1) 

(3.2.8') f(f+1)<=/;(/„) 

together with (cf. (2.L2)) 

(3-2.9) w;(/„+1) = «,(/„) and u(fn+1) > u(f„) 

where for any j e It(fn+1) 

(3-2.9') [".(fB+i)l - [".(/".JL 

(recall that if (3.2.8'), (3.2.9') hold then M ; ( / „ + 1 ) is unique). 

Now (3.2.8) follows immediately by (3.2.7) and definition of/ ,( /) ; to verify (3.2.8') 
observe that by (3.2.8) 

(3.2.10) at(f) ut(f) - Qn(f) ut(f) 

will hold for / =f„,fn + 1 with cr,(/„ + 1) = o-;(/„)- Using similar way of reasoning as 
in the proof of Lemma 3.3 by (3.2.10) written fo r / = fn,fn + 1 we get 

(3.2.11) <r;(f+1)(«;(f, + 1 ) - " i ( f ) ) = 

= e«(fB + l )K fB + 1) - Wn)) + 7i(fn+ufn) 

where (observe that under condition (3.2.7) no improvement according to part (i) 
of Algorithm 1 can be performed) 

(3.2.11') y;(f„+1;f„) = (Q ; ;(f+1) - Qu(fn)) «,(fn) = o 

with a strict inequality at least for one i. On premultiplying (3.2.11') by Q*(f, + 1) 
(cf. part (3) of Lemma 2.2) we get 

(3.2.12) Qr;(f+1)y;(f+1;/„) = 0=>[y,(f+1;/nL- = 0 for any jeWn*x)-



Consequently by (3.3') and (3.2.12) for each ; e f(j„ + 1) j„ + 1(j) = f„(j) that esta
blishes (3.2.8') and (3.2.9'). Now on applying part (5) of Lemma 2.2 to (3.2.11) 
by (3.2.9') also (3.2.9) must hold. 

So the elements of a sequence {j„} cannot recur and as there exists a finite number 
of decision vectors the sequence of successively improved decision vectors {j„, n = 
= 0, 1, ...} must be finite (with fr=? being its last element). 

As for ? = fr no further improvement according to part (i) of Algorithm 1 is 
possible if (by suitable permuting rows and corresponding columns of Q(?)) Q(?) 
is an upper block-triangular matrix and the same must also be true for any Q(f)-
So (3.2.2), (3.2.3) and (3.2.5) must hold and if Q'(f) denotes some irreducible class 
of Q(j) all the elements of Q'(f) must be labelled by integers from some (fixed) 
/((/). As for / no improvement according to part (ii) of Algorithm 1 is possible, 
also (3.2.4) holds. 

To finish the proof we only need to establish (3.2.1). To this order observe that 
for any Q(f) and each i = 1, . . . , s ~ s(?) there exists £>';i(j) = g i ;( j) + HH(f) 
(where Hlt(f) ^ 0) such that by (3.2.4) Q'tt(f) ut(?) = at(?) ut(?) with ut(?) P 0. 
Then by Perron - Frobenius theorem and part (2) of Lemma 2.2 (x/j) ^ at(?) 
and if (?i(f) = "•;(/) then each basic class of Qtt(f) cannot be accessible to any other 
irreducible class of Q;;(j). These facts together with the definition of a(f,j), v(f,j) 
immediately imply (3.2.1). • 

We shall finish this section by a simple but useful remark extending slightly similar 
results for stochastic matrices in [15] (cf. Lemma 2.3 in [15]). These facts are pre
sented only for completeness; they will not be used anywhere in the sequel. 

Recall that !;(/) denotes all j e It(?) belonging to some basic class of Qa(?) and 
let for any j e F 

h(?lf) = {j e I i ( / ) : j belongs to some basic class of Q;;(j)} 

(here QH(f) contains exactly the elements labelled by integers from /,-(/)). Similarly, 
let 

W; j) = {ie/;(/;j):a;(j) = ff;(/)} 
and 

I7(/) = 0 e I i ( / ) : 3 j e I ? with ai(f) = ai(?) and jelt(?;f)} 

(obviously ; ? ( / ; / ) cz /?(/) + 0 and et(f) = at(J) => !,•(/;/) = / ? ( / ; / ) ) . 

Remark 3.5. There need not exist a n y / e F such that /?(/) = ! ? ( / ; / ) . 
For example, let I = {I, 2, 3}, F = {ji,j2} with 

ß(Л) - 0 0 1 
0 0 1 
0 1 0 

, ß(j2) = 0 0 1 
0 0 1 
1 0 0 



542 so (Cf. Theorem 3.2) s = 1, / = fu f2 with a(f) = <r(/,) = 1, V l ( / ) = 1 and /?(/) = /, 
but J°(/,/0 4=/?(/), i°(/;/2) */°(/). 

Flowever by the definition of / ° ( / ) there exists / j , / ^ . . . , / p (p finite) such that 
j el°(f)=> j eI1(f;fkj) for (possibly several) /c7- = 1, . . . , p. Now let us construct 
matrix QH such that (cf. (3.2.4)) 

,~ , 1 v r n -, / = [fifi(/)]y for any / e I.(/) ^ /°(j) 
(^-J-1) L^iUJ p 

S = L « > [ e « ( / m ) L for any / e /? ( / ) 
m = l 

where for real numbers a;m ^ 0 (m = 1, ..., p) 

(3.5.1') txJm 4= 0 o ; e / ° ( / ; / , „ ) , and 

(3.5.1") 1 ^ = 1-
m = l 

Moreover, let for any / e /°( j ; j ) 

I7;(j;j) = {kel0i(f;f) : / , k belong to the same basic class of (?,-,•(/)} 

and observe that by (3.2.4) and Perron - Frobenius theorem (we abbreviate at(f), 
resp. Ui(f), by ah resp. «,-) 

(3.5.2) ; 6 / ? ( / ; / ) <* [QH(f) «,]4 = <-,[«,]*, \_QH(f)\kl = 0 

for V fee J ° ( / ; / ) ; V / e/,-(/) \ / ? • ( / ; j ) . 

Now by (3.5.1), (3.5.1'), (3.5.1"), (3.5.2) we get for a n y / e F 

(3.5.2') Q;iUi = <Ti«i 

where each j e 7°(/) belongs to some irreducible class of QH that is not accessible 
to any other irreducible class of QH (so by (3.5.2) this class must be basic of QH). 

As QH is obtained by a suitable convex combination of QH(fm) with fme F (cf. 
(3.5.1), (3.5.1")) we can equivalently say that there exists "randomized decision 
vector", say frd, (selecting eachjm e F with given probability), such that for QH(frd) 

(3.5.2') QH(f) ut < QH(frd) ut = aiUi 

and moreover 7°(/) = /°( / ; frd). 

4. BOUNDS ON DYNAMIC PROGRAMMING RECURSIONS 

In this section we establish some bounds on the utility vector x(n) calculated 
from dynamic programming recursion (l . l ) . These results will also provide some 
bounds on non-homogeneous matrix products. Our approach heavily depends on 



the existence of a decision vector /maximizing (lexicographically) the pair (a(f,j); 5 4 3 

v(f,j)) for any j el. Recall that by Theorem 3.2 such a decision vector, say / , can 
be found by policy iterations (Algorithm 1). Moreover, in virtue of Theorem 3.2 
(by possibly permuting rows and corresponding columns) Q(f) is "upper block-
triangular" (cf. (3.2.2)) and on using the same partition also for e a c h / e F 

(4-1) ß( j ) = 
ß n ( j ) ß 1 2 ( j ) . . . ß l s ( j ) ' 

Q22(f)-Q2s(f) 

' ßss(j) 

where s = s(/), each Q;;(j) contains the elements labelled by integers from Ifj) 
and Qik(f) = 0 for any k < i. 

Remember that the partition of Q(f) given by (41) will be currently used through
out this section. Similarly for any matrix, say C, symbol Cmn denotes a submatrix 
of C such that for its arbitrary entry, say [Cra„]jk, we have j e Im(f), k e /„(/) . The 
same convention will be also used for vectors. c ; ( / ) denotes the spectral radius 
of Qu(f). 

To simplify the notations we set u = «(/), <x; = ofj), v; = v;(j) and so (3.2.3) 
reads 

(4.2) Qu(f) H. < Qu(f) ui = aiUi 

(here n ; is a subvector of u > 0 whose elements belong to /;(/))• Similarly, throughout 
this section x;(n) will denote a subvector of x(n) (calculated from dynamic programm
ing recursion (IT)) whose components belong to / . ( / ) . 

Using an analogy with Lemma 3.1 the above facts will enable to produce some 
bounds on {*(«)}. It holds: 

Theorem 4.1. For given x(0) > 0 there exists u >̂ 0 (where for i = 1, ..., s = s(/) 
w; satisfy (4.2)) such that 

(4-1.1) Xin)<^^-iy. 
Pro of. Let us set for i = 1, ..., s KH = Qu(f) and Ku = 0 for any ; < i. Further

more, on using the decomposition according to (4.1), let us construct for any pair 
;' > i an auxiliary matrix Mu such that Mu >. max Qtj(f) (here symbol max is to be 

fsF 

considered componentwise). 

Using the same reasoning as in the proof of Lemma 3.1, on the base of Af,/s 
we can choose for any pair j > i vectors u\ > 0 (such that u\ > x;(0)) satisfying 
(4.2) and matrices K ; / s in such a way that for any / e F Ku > M;j- S: Qij(f) and 

(4-1.2) Qu(f) u'j ig Kfju'j = erf . 



544 The proof can be accomplished by mimicking the steps of the proof of Lemma 
3.1 if we replace (3.1.2) by (4.1.2) (observe that (3.1.3) is replaced by 

(4.1.3) кjn)£u', X 0 7 ' в î ïV-o Г ' O 
mt+... + ms = n 

D 

In case that s(f) = 1 the bounds on x(n) established in Theorem 4.1 have a more 
simple form. As for s(f) = 1 by (4.2) there exists u > 0 such that for any/6 F 

(4.2') Q(f) u й Q(ђ u = au 

Theorem 4.1 yields the following corollary (recall that (4.2') trivially holds if Q(f) 
can be found irreducible). 

Corollary 4.2. Let (4.2') hold for any fe F and let x(0) ^ u. Then for all n = 
= 0,1,.... 

(4.2.1) x(n) й a"u . 

Now let us try to establish some bounds on FT Q(fm) where {jm, m = 0, 1, ...} 
m = 0 

is an arbitrary sequence of decision vectors. To this order let us assume x(0) $> 0, 
iterate (1.1) to get 

(4.3) x(n)^ilQ(fm)x(0) 
m = 0 

and observe that then 

n-i [x(n)\ 

n 

Then Theorem 4.1 implies some bounds on r j Q(jm) that slightly extend similar 
m = 0 

results in [14]. These facts can be summarized as 

Corollary 4.3. Let 

W) -
'Qu(f) Qi,i+i(f) -QiS(f) 

Qi+i,i+i(f)-Qi+iÁf) 

QM) 
Then for an arbitrary sequence of decision vectors, say {/m, m = 0, 1,...} , 

(4.3.D »rf ;r/)n;e(/.) 



must be uniformly bounded in n and, in particular, (cf. also [14]) 

(4.3.1') -rn-^UQif,) 
m = 0 

is uniformly bounded in n. 

We shall finish this section by a useful remark to Corollary 4.3 concerning non-

homogeneous products of non-negative matrices. 

Remark 4.4. Let {Q(k), k = 1,...,p] be a (finite) set of NxN non-negative 
matrices and let for n = 1, 2 , . . . . 

M(n) = Q(kl) Q(k2)... Q(K) where integers kj e <1; p) . 

Define decision vectors fk (k = 1,...,p) such that Q(fk) = Q(k) and let F be the 
minimal set of decision vectors containing all fk (k = 1, ..., p) and possessing the 
"product property" mentioned in the Introduction. Then the sequence {a~"n~v+1 . 
. M(n), n = 1, 2, ...} is uniformly bounded in n (here a = a^f), v = vt(f) satisfy 
conditions of Theorem 3.2 with respect to matrices Q(f),feF). 

5. CONCLUSION AND DISCUSSION 

The present paper deals with some properties of the utility vector x(n) calculated 
from dynamic programming recursion (1.1). We have suggested a policy iteration 
method (cf. Algorithm 1) for finding a decision vector fe F maximizing the growth 
of the utility vector in the class of stationary policies. Theorem 3.2 shows that the 
block-triangular matrix Q(f) plays a dominant role for the set of matrices {Q(f), 
feF} and extends some of the respective results known only for irreducible matrices 
(cf. [1], [3], [7], [9]). On the base of Theorem 3.2 it is not too difficult to find some 
bounds on the growth of the utility vector x(n) (cf. Theorem 4.1 and Corollary 4.2). 
This extends corresponding results of [9], [10] and [14]. The obtained bounds 
on x(n) enable also to produce some bounds on non-homogeneous products of 
non-negative matrices as it is shown in Corollary 4.3 and Remark 4.4. 

The pioneer work in this direction and most of the interpretations of this dynamic 
programming problem (mentioned in the Introduction) is due to Bellman (cf. [1], [3]) 
but Bellman himself restricted his analysis to the "easy" case with Q(f) ̂ > 0 for 
each feF. 

As it was shown in this paper (cf. Example I of Section 1) our model also includes 
classical Markov decision chains and the problem concerning the bounds on the 
vector of maximum total expected rewards v(n) (calculated from the respective 
dynamic programming recursion) was intensively studied and solved in the dynamic 
programming literature (cf. [2], [4], [6], [8], [15]). Observe that in this case condi
tions of Theorem 3.2 are trivially fulfilled and Theorem 4.1 "only states" that for 



546 transient dynamic programming v(n) is uniformly bounded in n (of course, the same 
must be also true for discounted dynamic programming) and that in the undiscounted 
dynamic programming model v(n) can grow at most linearly with n. However, 
in the second part of this paper (cf. [18]) we shall refine the obtained bounds on x(n). 
In particular, these refined results applied on classical Markov decision chains 
immediately imply the well-known bounds on v(n) that were originally obtained 
in [4] and [8]. 

In the overwhelming dynamic programming literature considerably less attention 
was devoted to the general form of dynamic programming recursion (l . l ) . Besides 
the work of Bellman let us mention [9] (convergence radius of ( l . l ) if all Q(j)'s 
are irreducible; the obtained results correspond to those of Corollary 4.2), [10] 
(convergence radius of (1.1) for Q(f) reducible; using the denotation of Theorem 4.1 
in fact it was shown there that for any a < a{ lim a~" xt(n) = 0), [7] (formulation 

of the functional equation for "risk-sensitive" Markov decision chains, cf. Example II 
in the Introduction, and a policy iteration method for maximizing a(f) if all Q(j)'s 
are irreducible — the same policy iteration method was already mentioned in [9]) 
and [16], [17] (asymptotic properties of ( l . l ) under some specific assumptions). 

Some properties of dynamic programming recursion (l . l ) are closely connected 
with so called multiplicative Markov decision chains; i.e., Markov decision chains 
where the transition probability matrices are replaced by general non-negative 
matrices. We have already mentioned transient dynamic programming introduced 
in [20]. Moreover, on extending the methods used in [20] primarily for classical 
Markov decision chains, Rothblum (cf. [13], [14]) obtained interesting results 
(especially with respect to various sensitive optimality criteria) for the general case 
of multiplicative Markov decision chains. In particular, boundedness of (4.3.1') 
was originally established by the methods different of ours in Section 3 of [14]. 

The material of this paper is a slightly revised form of the first three chapters 
of [19] and the paper itself presents some natural extensions of the corresponding 
results in [17]. In [17] dynamic programming recursion ( l . l ) is investigated under 
the condition that for a n y j e F ~\(f) > '2(f) > ••• > °s(j)> each Qu(f) contains 
only one basic class and comparing with Section 3 of the presented paper no algo
rithm for finding Q(f) is given. 

Recently, using the methods different of ours, Zijms (cf. [21]) also showed the 
existence of a block-triangular matrix Q(f) satisfying (3.2.3), (3.2.4) and in [22] 
presented a (differentj proof of our Theorem 4.1. 

(Received April 11, 1980.) 
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