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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 2 

An Outerplanar Test of Linguistic Projectivity 
LADISLAV NEBESKÝ 

In the present paper, a mathematical model (called here an L-tree) of the dependency structure 
of the sentence is considered. From the linguistic point of view the most important i-trees are 
the projective ones. For any i-tree L we define a graph G such that G uniquely determines L 
(Theorem 1) and that L is projective if and only if G is outerplanar (Theorem 2). The outerplanar 
test of projectivity of Z,-trees given by Theorem 2 is relative to the planar test of projectivity 
of i-trees given in [5]. 

In [5] we defined an L-tree as an quadruple L = (V0, E0, r, <L) such that (V0, E0) 
is a tree, r is one of the vertices of V0 and <L is a complete ordering of V0. We said 
that an L-tree L is projective if for every vertices u, v and w such that uw is an edge 
of E0 and that either u <Lv < L w o r w <Lv <Lu it holds, that if u lies on the path 
from r to w, then u also lies on the path from r to v (notice that in the present paper 
we use a rather different graphical terminology and notation than in [5], 

The concept of L-trees is an apparatus useful for modelling the sentence structure 
in dependency syntax; the most important L-trees are the projective ones. For 
position of the concept of projectivity in algebraic linguistics, see Marcus [3], 
Chapter VI (our concept of L-trees corresponds to Marcus' concept of simple strings, 
but Marcus studied projectivity more generally, not only for simple strings). For 
another mathematical discussion of projectivity of L-trees, see, for example, [4], 
Chapter IV. For linguistic questions of projectivity or non-projectivity of sentence 
structures, see, for example, Novak [7] and Uhlifova [8]. 

In the present paper, for any L-tree Lwe shall construct a certain graph G and 
prove that Lis projective if and only if G is outerplanar. Outerplanar graphs represent 
a simple class of planar graphs. A graph G is outerplanar if it can be embedded 
in the plane such that all the vertices of G lie on the exterior region. Chartrand and 
Harary [2] proved that a graph is outerplanar if and only if it contains no subgraph 
homeomorphic from the complete graph X 4 or the complete bipartite graph -K2,3-, 
A graph H is homeomorphic from a graphH 0 if H is isomorphic either to H0 or to 
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a graph which can be obtained from H0 by a suitable insertion of vertices of degree 2 
into the edges of H0 (the concept „homeomorphic from" is different from the concept 
„homeomorphic with"; see [1] and [2]). 

Now, we shall define the main concept of the present paper: 

Definition. Let L = (V0, E0, r, <,L) be an L-tree such that V0 = {vu ..., vn), n Sj 1, 
and vt <L ... <L v„. We say that a graph G = (V, E) is a graphical expansion of L 
if there is a set W = {w0, ..., w„ + 1) disjoint with V0 and such that V = V0 u Wand 

E = E0 u {rw„ + 1) u {w0v1, v1w1,..., w„-rv„, v„w„, wnw„ + 1) . 

Obviously, any two graphical expansion of an L-tree L are isomorphic. A close 
connection between L-trees and their graphical expansions is given in the following 
theorem: 

Theorem 1. Let G be a graphical expansion of an L-tree L. Then G is a graphical 
expansion of the only L-tree. 

Proof. We can assume that L and G are the same as in the definition. For every 
u e V it holds that u e V0 if and only if u has degree at least 3 in G. Similarly, for 
every uv e E it holds that uve E0 if and only if both u and v are in V0. There is exactly 
one vertex of degree 1 in G; it is w0. Further, we have w0v1 e E. For any i, 1 < i < n, 
there is exactly one vertex w e Wand exactly one vertex v e V0 such that v 4= vt and 
vtw, wveE; obviously w = wt and v = vi + 1. There are exactly two vertices w', 
w" e W — {w0, ..., w„_ J ; obviously, w'w" e E. If v„w', v„w" e E, then r = v„. Other­
wise, there is j , 1 < j < n, such that either Vjw', v„w" e E, or Vjw", v„w' e E; then 
r = Vj. This means that G uniquely determines L. Hence the theorem. 

An outerplanar test of projectivity of L-trees is given in the following theorem: 

Theorem 2. Let L be an L-tree and G be a graphical expansion of L. A necessary 
and sufficient condition for L to be projective is that G be outerplanar. 

Proof. We assume that L and G are the same as in the definition. 

Necessity: Let L be projective. If 1 gl j <. n, then by dt we denote the distance 
between r and vt in (V0, E0). For every vertex v in Vwe denote the points Pv and Qv 

in the cartesian plane as follows: 

PVi =(i- \, -d), for 1 < i < n; 

PW0 =(-lj2,-d1); 

PWj = (j-(1/2), -max (dj,dj+1)), for 1 < j <_ n - 1 ; 

PWn «- (n - (1/2), - d B ) ; 



if P„ = (x, >'), then Q„ = (x, — n ) , for every j e f . 

If P and P' are points then by PP' we denote the straight-line segment which con­
nects P and P'. Denote S0 = {P„PV | ut> 6 E0}, S = {PUPV | WD G E}, T0 = {PUQU \ u e 
e V0} and T = {PUQU \ u e V}. As L is projective then no two straight-line segments 
in S0 u T0 cross; cf. [3], pp. 237-240. The set S gives an embedding of G in the 
plane. It is easy to see that no two straight-line segments in S u T cross. This means 
that G is outerplanar. 

Sufficiency: Let L be not projective. Then, there are M, V and w in V0 such that 
(i) uw is in E0, (ii) u lies on the path from r to w, (iii) u does not lie on the path from r 
to v, and (iv) either u <L v <L w or w <L v <L u. It is obvious that u =# r 4= w. 
Without loss of generality we assume that u <Lv <Lw. 

Let either r < L u or w < L r. Then there is an edge st in E0 such that either 
t <Lu <Ls <Lw or u <Ls <Lw <Lt. Without loss of generality we assume 
that u <Ls <Lw <L t. There are i, j such that 1 < i < j — 1 < n and s = vt, 
t = vj. It is evident that G contains a subgraph which includes the vertices u, w (_], 
s, w;, w, w ;_ l 5 f and which is homeomorphic from K23. 

Let u <Lr <Lw. There is k such that 1 < /c < « and r = r,.. It is evident that G 
contains a subgraph which includes the vertices it, wk-u r, wk, w, w„, w„+1 and which 
is homeomorphic from K23. Thus G is not outerplanar which completes the proof. 

The test of projectivity of L-trees given by Theorem 2 is relative to the planar test 
of projectivity of L-trees given in [5] (cf. also [6]). 

Notice that there is an L-tree with a non-planar graphical expansion; for example 
an L-tree (V0,E0,r, <L) with V= {vu ..., v6}, E0 = {v3v6,v6v1,v1v4,v4v2,v2v5}, 
r = vu vt <L... <Lv6. 

(Received June 15, 1972.) 

REFERENCES  

[1] M. Behzad and G. Chartrand: Introduction to the Theory of Graphs. Allyn and Bacon, 
Inc., Boston 1971. 

[2] G. Chartrand and F. Harary: Planar permutation graphs. Annales de ITnstitut Henri Poincare 
3 (1967), Section B, 433-438. 

[3] S. Marcus: Algebraic Linguistics; Analytical Models. Academic Press, New York 1967. 
[4] L. Nebesky: Algebraic Properties of Trees. Karlova universita, Praha 1969. 
[5] L. Nebesky: A planar test of linguistic projectivity. Kybernetika 8 (1972), 351 — 354. 
[6] L. Nebesky: Projectivity in linguistics and planarity in graph theory. Prague Studies in 

Mathematical Linguistics 5 (submitted). 
[7] P. Novak: Postscript, [4], 8 3 - 9 5 . 
[8] L. Uhlifova: On the non-projective constructions in Czech. Prague Studies in Mathematical 

Linguistics 3, Academia, Praha 1972, pp. 171 — 181. 

RNDr. Ladislav Nebesky, CSc, filosofickd fakulta Karlovy university (Faculty of Philosophy, 
Charles University), nam. Krasnoarmejcu 2, 116 38 Praha 1. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-04T22:59:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




