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KYBERNETIKA — VOLUME /2 (1976), NUMBER 6

On One Method of Analysis of Linear Systems
with Random Stationary Coefficients

VLADIMIR KRACIK

The present paper deals with linear continuous systems with random stationary input whose
coefficients are loaded with errors that are weakly stationary limited processes with arbitrary
spectral densities. The paper gives an iterative method of an approximative calculation of the
characteristics of the output process. Specially a “linear algebraic™ algorithmus for computing
output mean square value is given. The solution is made by the method of iteration on frequency
domain [1, 2].

Let (4, &, P) be a probability space where A is a set of clementary cvents (that
will be denoted ), & is a g-algebra of subsets of 4, P is a probability measure defined
on 7.

Let the linear system & be described by the equation
(1) 3(0.9) = Ay(s,9) + Cx(1.9)

where A, C are constant n x n matrices, ¥, x are n x 1 vectors, x(t, rz) is a weakly
stationary process with Mx(r,«) = 0, K(r) = M[x(t, «) x*(t + 7, &) = E §();
here M denotes the operation of the expectation, E is the unit matrix, §(t) is the Dirac
function. We shall call & ihe nominal system.

Let us further consider a “random” system &, described by the equation (2) and
by the following presumptions.

() y(t, @) = (A + B(t, 0)) y(t. o) + € x(1, @)
where

(2a) the elements b1, a) of B(t, o) are mutually uncorrelated weakly stationary
processes independent of x(t,«) and P(|B(t, )| < 8) =1; || is Euclid norm;

(2b) B(1, o) = fe'” dZ(y, o) is the spectral decomposition of the matrix process
B(1, «); ;
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(2c) dZ(y, %) = (dzij(}’, 0‘)) s

1, 1
M(dz (3, «) dzi(y, 0)) = b sy(iy) dy = P s:(q) dg

2
(g = iy) for (ij) = (rs); M(dz/(y, @) dz)¥(y, a)) = O for (ij) + (rs);

(2d) M(dZ(y,, «) dZ*(yz, @)) = O for p, =+ v5;

(2¢) M(dZ(y, ®)) = 0, i.e. M(B(t,2)) = 0;

(2f) Let & be stable (i.e. all eigenvalues of A lie in the left halfplane); let D(z, u, «)
be the solution of (2) with x(t,a) = 0, ®(u, u, «) = E, W(t, 7,0) = &(t, t — 7, ).
Let L, ,(—00, o0; K) be the set of W,(1, 7, &) for which

L. P(f§ |Wy(t, t, 0)] dr < K) =1 (i.e. &, is stable in the sense bounded input —
bounded output [3]),

2. P(|f§ Wi(t, T, 0) Wi(t, 7, 0) de| < K) = 1; let W(t, 7, 0) € Ly 5(~ o0, 00; K).

The random weighting function W(z, , «) of the system &, fulfils the adjoint
equation

i W(t,7,0) = W(t, 7, 0) [A + B(t — 7, 2], W(1,0,0) = E.
For the random transfer function
Y(t, p ) = J' Wi, o) e de
we get ’
Y(t, p. =) (bE — A) :F W(1, t, o) B(t — 7, a)c " de + E,
o
from (2b) follows

Y(t, p, @) (PE — A) = fY(t, p + iy, @) e dZ(y, a) + E,

‘ (3) Y(t, p, @) (PE ~ A) = J‘ DY(Y(t, p, x) €' dZ(y, «) + E,

where the operator D is described by the relation )
D(Y(t, p, o)) = Y(t, p + i, ).

Let us transcribe the equation (3)

Y 7, %) = (o — A)* + [ D(Y(, p, ) e aZ(r, o) (bE ~ 4)°",

v



or
(4) Y(t, p,a) = Y,(t, p, o) + ¥(t, p, ) H,
where Y,(t, p,«) = Y,(p) = (pE — A)™' = nominal transfer function, the opera-

tor H is given by
: Zf DY(+) ¢ dZ(y, 4) (pE — A)"".

Let further (@ x 4, # X o/, u X P) represent measure space where Q is the
real axis, # is the system of Borel sets on Q, u is Lebesgue measure on #. Let us
denote the elements of Q by @, p = iw. Let #L, ,(—c0, co; K) be the set of

F(f(t, . a)), fe Ly (=0, w03 K), F(f(t, 7, ) = [ "t 10y e e =
= F(t,iw, a) = F(t, p, a). ’

Let us introduce the “scalar product” and the norm (sce app.) by
(01 = 1 [ "Fle e ) (e v 2) e =
0

1
=(FF) == f Fi(t gy o) F3(t, pr 2) d(u x ).
27 Joxa

Hf” = ”F" = \/(”(F, F)H) (evidently a matrix analogy of the Plancherel theorem
holds)

The operator H maps the set 9L1'2(— o, o0} o0) into itself. Let us estimare its
norm (see app. lemma C). For every Fe #FL, ,(— 0, %0; ) we get

|FH? = 2inJ' '[JF(t,p+iy,oc)ei"'d2(y,a)(pE~A)‘1,
1JaxaJyJv .

C(PE — Ay dZ¥(v, o) e PRt p + iv, 2) d(i x P)" <

m?

IIA

*
]—J‘ F(t, p + iy, a) " dZ(y, o) (J F(t, p + iy, a) " dZ(y, az)) .
2mi Joxaly M

7

=

.d(u x P) J‘AJ.T f(t, 7, @) B(t — 7, 0) B¥(t — 7, o) f*(t, 1, ) dP dr ‘}

|=m2

< m?8?

J. fl f(t, T, &) F*(t, 7, o) dv-dP “: =
AJd —o0 i

- m2s? if F(t, p, 2) F¥(t, p, o) d(u x P) ” = m?F|?;
OxA

2mi

423



424

here m* = max |(pE — A)™! (pE — A)™'*|, hence

pelm

”HH Smd=p.

Considering (2f) the solution Y(t, p, «) of (4) exists with P = 1; if B < 1 then (4)
may be formally solved by iteration (see Banach fixed point theorcm):
Ym+1(77 D, a) = Yx(t, p, oc) + Ym(t: p, 0‘) H, Yo('a P, 0‘) =0

Lim Y,(t, p,«) = Y(t, p, a) ;

m= o

it follows
(5) Y(t, p. o) =Y,(p) + Yi(p)H + Y, (p) H? + ...

If E (1, p,o) =Y, (1, p,2) — Y(t, p, o) then
e = 2 ] =

Let us further examine the correlation function Kt t,) = M[y(t,) y*(t,)] of
the output process of the system &,.

We have (considering (2a))
M[Y(tl) Y*(tz) Y(t’ p, a) = Y1, P)] =

= L Y(tl, p) CC*Y*({Z, p) ePti—12) dp
21 ) 1

and thus (Y(t, p, «) being evidently a random variable for fixed , p)
K1y, 1) = MIy(t,), y*(t2)] =

=M ,1: Y(t,, p, o) CC*Y¥(1y, p, a) ™"~ dp | =
211 J 1

= (Y(1;) Ce?", Y(1,) Ce?™).
Specially K(t, 1) = (Y(1) C, ¥(1) €) = |¥(£) C|* = o3(r) (here Y(t) represents the
function given by (p, «) = ¥(t, p, a)).

Yi(p) or Y,(t, p,a) = Y,(p) + Yi(p) H may be practically used as an approxima-
tion for ¥(z, p, o). Let us denote the corresponding correlation functions by ,Ki(t,, #,),
2K (4, 1;) resp. Similarly we writc ,6,(f), ,6,(t). Then referring to (2¢) (t, — t, = 1)

Kt 15) = K (1) = (Vo(ty) Ce™, Y,(1,) Ce™?) =
= (¥,Ce™, ¥, Ce™) & (Y, He™C, ¥, HeC) = K (1) + R(z),



where
R(7) = (Y,He""C, ¥,He?*C) =
-1 dfp x P)f Jvl(p + iy) e dZ(y, a) e”"'(pE — A)"L C.
YJy

27 Joxa

. C*(pE _ A)—l* e-ptz dz*(‘,’ a) e—iwz Yf(p + iv) =

1 1 - _
= c”‘dl’f_[ (p+a)E—A)"G(p,q)((p+ q)E — A) **dq,
27 J 210 )t

where
(6) G(P= q) = ggslk(q) ”u(P)
;Sﬂa(‘]) ”kk(P) 0

0 ;Snk(q) Ukk(l))_

U] (vi(p)) = (PE — A)™" CCH(pE — A)71*.
The error of the estimate of the correlation function forj = 1,2 is
les(tns 2)]| = K10, 12) = Kyt 1)
= (Y1) €€, Y(t;) 7°C) — (¥(t,) €™'C, ¥(12) ™ C)| =
= (Y1) e™C, ¥(1) 2C) — ([¥,(t.) — Ef{1,)] e*C, [¥,{1) — Eft)] e*°C)| =
= (Y1) €€, Ef(t2) €72€) + (Ej(1,) €™'C, Y(1;) ”*C) —
= (Ef1) e™C, E(1,)e™C)| £ 2 oys{ €] + n3{C|?,

(jo,(1), n,(t) are evidently independent of ¢ for j = 1, 2).

Specially
|
%~ ﬂch“ 20,2 %y * ”f”cd :
Let us summarize the results in the following theorem.
Theorem. Let & be a sysiem described by the equation (1) (nominal system and &,

be a system described by (2) and by (2a) to (2f). Then for the correlation function
of the output random process y(r, z) of the system &, the following relation holds:

K(t;, 12) = Kfr) + &ty 1) (v =1, — 15, j =1,2)
where

K(7) = 1 K(x) + R(5),
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R(r) = *J‘ e’ dp —f ((p+9)E—A)'G(p,q)((r + 9) E — A)"'*dq,
27 ) 1 21 J 1

where | K(t)} = (1/2ni) [,, (pE — A)™* CC*(pE — A)™'* e’ dp is the output cor-
relation function of the nominal system, G(p, q) is given by (6), (7); further

leg(ts. )| < 2 ol + n3| €|

- By
1 10y15 M2 1= BV(HRl(O) )’
B=ms, m*= max |(pE — A)~* (pE — A)~'#|,

2.
>

ny =

5 = [;K,0)], R, resp. ,0,, are R resp. ,0, for C = E.

Specially the following relation holds

Lo, = a0 < milc] -
For an element ;K ,4(1,, 1,) of ;K(t,, t,) the inequality
[iKyiltes t2) = Ky ulte 1)) < [&(ti 2)]  holds .
Note 1. When A = A* then m” = max |(Ew® + A%)7!| = 1/d, where 4, is
®

absolutely minimal eigenvalue of A. Generally the inequality

w? 4 SPAA
m? < max % (;{ _1'>H (see [4], p. 223)

may be used. Here 4(4) is the characteristic polynomial of A. If | (iw)|? is decomposed
then the members of the type

*
w? + M)
n d 1
Y ; and oo 2
(w—a)* + b (@~ a) + b

can be easily maximized.

1K,(t) may generally be written as e*"Q (r 2 0) where Q is unique selfadjoined
solution of QA* + AQ = ~CC* (see section Computationaly remarks). When
A=A* C=EthenQ = —1A™L ‘

Note 2. Even if ,K(t,, t,) depends only on © = t, — t, resp. ,K(t, ) does not
depend on ¢, if the presumptions (2a) to (2f) are fulfilled the output process y(t, @)
need not be weakly stationary.



Note 3. Theoretically the j-order approximation for j > 2 may be used. In this
approximation there occur, however, j-order characteristics of the process B(t, o).
. K1, t;) for j > 2 is no more generally dependent only on .

Note 4. The presumption of the processes b;;(t, @) not being correlated is not
substantial. If it is not fulfilled, the formula for ,K (#,, t,) contains moreover members
with cross spectral densiries.

Note 5. If b, (t, «) are high frequency noises and if Y,(p) is “great” only for small p
then it is easily seen that R(r) is small. In such case the estimate of the correlation
function by means of the correlation function of the nominal output is loaded with
a small error.

Note 6. It may be assumed that under certain special presumptions the estimate
of the error may be substantially improved. These problems are objects of further
investigations.

COMPUTATIONAL REMARKS
It is seen (with respect to the form of G(p, ¢)) that R(r) may be written as
R(r) = ;R"k(r) ,
R¥(z) =

e RO L IO L R I G TS D RO

" 2ni )
(R™(7) is the component of R(r) corresponding to the noise by(t, «)) where
(8) E® =(e;), en=1, e;=0 for (i,j) % (r,s);

vu(p) resp. su{q) may be written (in the case of single roots) in the form of linear
combination of members of the form

1 1

P rn) () (—a+B)

B,y lie in the right half plane. Then for one component of inner integral of R™(r)
we get
| CroE-A e Ay g -
21} 1m 1+ B+

427
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- ﬁf,m[((zv +q)E— A X+ X(—p - q) E - A)7'].

1
S — —dgq =
(4 +B(-a+8)
- - 1
=[(0—(A—BE)™' X + X(—p — (A* - B*E))""] -——,
2Ref

X is unique (selfadjoint) solution of the equation AX + XA* = —E" (see below).

Finally R*¥(r) may be computed by means of residua, where A — BE may be formal-
ly considered as a pole in the left half plane. y is, however, a eigenvalue of A. It may
happen that y is also eigenvalue of (A — BE). In this case, even if multiple eigenvalues
occur, we get the integrals of the type

LJ f(p) (pE - B)fl dp

2 J o (p + 7%
where —y* is an eigenvalue of B (in the left half plane). It holds
J=4(B).
where
9(4) =
1 -
50) = D7) + 6 1) () b s G ) )
N (* + ).

For practice R(0) is important; for one component of R¥(0) we get a simple
formula:

L+ L*,

- where

1

= — — A X.
4ReﬁRey((ﬁ+y)E )

©®

When we have to compute R(0) only, it is possible to avoid the solving of charac-
teristic equaiion of A. In this section we give a “linear algebraic™ algorithmus for
computing R(0). We begin with a note taking the solution of the following matrix
equation:

(10 AX + XB* = C (A, B, X, C are matrices n X n).



Let us denote

(11) “~A=[A 0

(E is the unit matrix n X n).

We define the operator ¥~ and the constant vector v

(12) (€)= ¢y, v=| 1 ]

“l

’ }n

Cn1 . I

.. 0 !

Ci2 -1
. 0
. 1
Cn2 0
Cin .
. 0

Coun _|

0
1

It is seen that

(13) ¥(C) =~Cv.

1), B =[b,E bE, ...
A |2 byE. bysE, ...

E

nn

Further there evidently holds ~(A + B) =~A + ~B, ~(AB) =~A"B, “[f(A)]] =
= f("A), where f(4) is a polynomial; A ¥~ *(r) = ¥"~Y(~Ar), r is a n-column vector.
It may easily be verified that ¥(AX) ="A¥(X) ="A"Xv; ¥(XB*) =

= "B ¥(X) = "~BXv, thus we get from (10)

V(AX + XB¥) = 7°(C), (“A+ "B)¥(X)=7(C)="Cv,

X =7"("A + "B)1~Cv].

¥

429



430 Now we return to R*(0) which may be written in another form
R(0) =
= 2 ap L { (0 + @B - Ay EXpE — Ayt CCH(—pE — A% BN
i J g 200 Jiw
1

((-p - ) E ~ A" @ P (<a+ B qu;

here
1

Sik(q) = (‘q n ,B *)(—" q‘“+' ﬁ),

for the inner integral we get

5| [(p+a)E~ A7 D) + D) (~p - @) E ~ A% ']
Im
L — S dg =
(¢ +8Y(—a+5)
1 _ . -
= [+ HE =AY D() + D) (—p -+ ) E = 4]
2Rep
where D(p) satisfies the equation
—AD(p) —D(p) A* = EX(pE — A)"' CCH(—pE — A¥)"LE¥
thus
D(p) = ¥ [G "E¥(pE — ~A)"' C C¥(—pE — “A¥*)"! "Efy] =
— 1/~1[G—1~Eik((pE _ NA)’ Q + NQ(—pE — ~A*)‘1)~E“v] ;
G=—("A+"A), Q=7"HG"C"CH)
(Q satisfies the equation —AQ — QA* = CC¥) then
P(p) = ((» + B)E — A)™* D(p) =
=¥ ' ((p + HE —"A) ' G "EXpE — “A)"1 Q" EXy +
+((p+ HE - Ay GTITEQ(—pE — AW ES].
The integral of the first member (i.e. the summ of residua in the left half planc) is
evidently zero; let us decompose the second member:

(o + F)E — At G- BV Q(—pE — A7) "By =
=[((p + BYE —~A)"* U + U(~pE — ~A¥)"1]~Ekiv



where 431
—("A - BE)U — U~ A* =G "E*Q=N:

N, U are, however, the matrices n? x n”. Let us decompose N and U into blocs:

N=(N,, N, ...\, U=1U,, U, ...
Nnn . ' unn
then we get
—(A — ﬂE) U; - U A* = N;
U; = V’l[—("A — BE + AA)‘I‘”NUV]
and thus
i 1 ; :
R¥0) = — (v 1 U~ E*iy + ¥ "YU~ ENy *)_
0) = 530 VEY + D UEY)

But it is easily scen that U E¥v = i-th column of k-th bloc column of U i.e.
((k = 1) n + i)th column of U and

VU ENY) = G (B (V(Nw), 7 (Naw), . ¥ (NL))

where G™!(f) = —("A — BE + "A)™1, G;'(B) is the i-th bloc row of G™!(f),
(7 (Ny), ¥ (N2, ..., #(N,) is the matrix formed by the column vectors ¥ (N,,),
¥ (Nu), ... ¥V (Ny).

We summarize this results in the following
Corollary. For computing R*(0) (i.e. component of R(0) due to noise by(t, )

with spectral density 1/[(g + B*)(~q + B)]) the following algorithmus is given

(see (10), ..., (13)):
G(0) = —("A + "A); G(p) =G(0) + BE,
Q = ¥ (G (0)"C CH),
N =G '(0)"E*Q =[N,,N,,, ...

N

nn

G (p) = [G7/(B), G1:(B). ... (decomposition into blocs) ,

G (B)
G;'(B) = (G7'(B). G5'(B), .- Gi') = i-th bloc row,
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LE =GB (7(Ny), ¥ (Nyy), - ¥(Nw)).

ik, 1 ik iy
R¥0) =m(’_1 + (L))

EXAMPLE

2+ (3 + b(t,0)z = u(t,a), where

i+ 2u = x(t,a), x(t,«) isa white noise .

Thus we get a system

t=(=3+bt,a))z +u,
0= —2u + x(t,a) or
- [i] = (A + B(1,2) H + Cx(t,a), where

A:[-g _;] C=[g(1)], B(t,oc):[b(t,ooc)g].

Let Kyft) = o%e ™"l cos wyr, 6 = 30; thus

1 1
silg) = 02(— ———— 4 w—ww)
! (@+1+a0)(~a+1-q) (¢+1—a0)(—a+1+q)
go =iwg, f=1-¢qo.
The solution of AQ + QA* = —CC* s

111 3
Qh—éfo[3 ]S:I, so that (t > 0)

. 1 -1 5 017 .\t ]t 3
wo=ee=(lo T fo] )l ]

The element v, , of the matrix (pE — A)™* CC*(—pE — A*)"! is
i _ 1( 1 B L
P+3@+2)(-p+3)(-pr+2) S\P+2)(-p+2) (P+3)(-p+3)

The solution of the equation AX + XA* = —E' is

X =T[4 0] =4,
00

’

>.



With respect to s,,(g) we get (t > 0)

1) 52 eil ef* ! - 1
R(z) = 622 R 21|:i§£,.. ((p+2)(—p+2) (p+3)(—p+3)).
.iﬁ[(pﬁ — (A~ BE))"!' X + X(—pE — (A* — B*E))"']dp =

2
T Ref{c " }[(—2E — A + BE)" X + X (2E — A* + pE)~1] +
5Ref b

4 e(A—ﬂE)r(A _ BE + ZE)“I ( —A +BE + ZE)_' X —
— e L[(=3E — A+ BE)"' X + X (3E — A* + B*E)"'] —
— &APOYA — BE + 3E)"' (—A + BE + 3E)"' X} ;
but f(A) X = } f(—3) E**, thus

2 -2t
PRV ol S RS B N
6.5 Re 8 4 \-24+3+8

2+ 3+ p
+ 738 _ 1 1

(--3—ﬁ+2)(3+ﬁ+2)"e;31< : 1 )_

e __ V1 k} =
(-3=-B+3)3+p+3)
2 -2t 2 -3 1 7 N
(1) =gnZfe” e A
. 00 4 \4+ 02 36+ 0 6 \1 + 0l 49+ 0}
. 1/ -2 6 1/ -1 7
+e Teos wet |~ | ——— + ——— ) — - >+ 1+
4\4 + w5 36 + wg 6\l +wp 49 + wg
e 1/ 1 1 1/ 1 !
+ e Twy s Wt | — 5~ ) == 5 = 5
A\d+ 02 36+w2) 6\ + 0 49+l
When we want to compute R(0) only we get according to (9), (14)

L:é(;}z((ﬁu)s_A)-lx—i((ﬂH)E—A)‘lx:

—gnllft 1t )
65\4.26—-q, 4.37 -4,

so that we get with respect to the given s5,,(q)

RU(0) = RO) = 20%(L + L) =

=E110.2 l 1 2_1_.__1 72>‘
1036 + w2 9049 + of

433



434 Now we use the “linear algebraic” algorithmus for computing R'!(0) given by
the Corollary ((i, k) = (1, 1)):

Gp) =—|-3 - 1o o,
0 01
0 0 10
.0 1L . 01
G'p) =] 1 1 : 1 2 s
6+8 (6+HE+H +HE+H) 6+HE+HE+H)
1 f 1
0, —— i 0 s [
LA SRR
0, 0 o 1
5+ 8 G+BHE+5)
0, 0 : 0 , !
n 4 +p) ~
v = ﬁli,
0
0
1

1 |10 07
(N 7)) = 5| g 0|
30 0

»00_



et 1 1 2

NS NG CAANGH GHRHGAETH
1 1

|

0, , 0 ,

] 5+ 8 G+BHME+p
L_IOOV_EH_}_< 0 30\
“e02| 00 60°\ 6+B  (5+B)(6+p)

30 0
00
g L3020
60%\5 + 6+p4)’
R1(0) = 207 (L1+L7)=E“f;2(l L7 Ly
2Re 1036 + w5 9049 + w?

Let us compute the error: let ¢ = 0, 1; wy =1,

1

min min A,(p) ’
i P

m? = max [(pE ~ )" (o — 47| =

where 1,(p) are (positive) eigenvalues of (pE — A)(—pE — A*); for our example
m = 0-542769; | €| = 1;

B = 30.0542769 = 0-162831; 1—[3[; = 0-194502;

9, = V(1K) = V(IR]) = 0-510160;
20, = J(]1K,0) + R*(0)]) = 0-510160;
YIETOE) = & [lé 1;] :

J(Qu]) = 0:526079.

Q

I

ﬂ.}' 1

R}'(0) will be computed as R*(0) with Q, instead of Q. We get
J(RI(©O)]) = 0-009447;

1 = 0102324, 1, = 0-001838;

ety 2)] = 0-114873;

e2(es- £2)]| < 0-001879.

I

1

Let us summarize: N

435



436 1. Estimate by nominal system (t > 0; 0 =0,1; @, = 1) K(t) = K(r) +
+ &,(t;, 1,), where

1 /73 157 e 2 —[2 12] e~
1K) =%B([3 15] [o 0] )

le(te £5)] < 0-114873
lio, — 0,] £ 0102324 (here ,0, = /(| K(0)]).

For component z(t, &) we have

Kf7) = 6_10 (372 —2e7*) + ¢, ¢ < 0114873,

2. Estimate by iteration step

K@) = 2K () + ea(ti )5 2K(1) = (K(0) + R1(D)  (see (15)
le2(ts. 12)]] = 0-001879 ;

specially
11 3 0-000011 0
K,(0) = < [3 15] + [ 0 0] +et 1),
leat, )] = 0001879,
.o, — o] < 0:001838,
K(0) = é) +0-000011 + &; e < 0:001879.
APPENDIX

Lemma A. Let (X, Z, y) be a measure space and T be a measurable function which
maps X into the set of complex valued quadrat n x n matrices. Let

H

il = | 760 ooy

;T2 = ]‘ j (709" T i)

|| resp. ||| is a norm.
Evidently it is sufficient to prove this statement for the case of T being a simple

k
function: T =Y A, yz(x) where yz(x) is the characteristic function of the set E,.

«Al \/ (u(E 1))~

The matrix .

A V((E))_



maps n-dimensional space into the nk-dimensional space and its norm is

)=1mi.

S AtA(E)) = (u j T(x)* T(x) di(x)

Similarly, when we consider the matrix
| AT V(H(E)
Af \/(M(Ek)),
we get the norm ||T|.
Lemma B. Let
ORI RCICRRTEE

then

I v < 7] [u] .
Evidently, ler T(x) = :2A,- xedx), U(x) = ;Bi xe(X);
(T U) = [A \/(l‘ 1)) k\/ I‘(Ek) BT \/(u(E,)Y

| B V(u(E)_

Lemma C.

“ L T(x) U(x) (U())* (T(x))* d #(x)t

< |7 sup UG

Proof. Let us consider the simple functions given in the lemma B. Let us denote

ATy = u,. It is known that for a selfadjoined matrix § the relation
“SN‘ = max lv*Sv|
lvil=1
holds; thus we get

[ 79 v oy (e anco) =

ISABBIAT u(E)| =

437



k k
438 = max |Yu;BBfu, u(E;)| < max (Yuiu, u(E,) |B:BY]) £
fiylt=1 2

ffylt=1":
k

< max (Yufu, p(E;)) max |BBY|| =

lyll=11 i
k
= s y (TS )y s B8] = [T} sup U017

lyll=1 i i x

(Received July 16, 1973.)
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