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K Y B E R N E T I K A — V O L U M E 18 (1982), N U M B E R 4 

SOME NEW RESULTS IN STATE SPACE DECOUPLING 
OF MULTIVARIABLE SYSTEMS II 

Extensions to Decoupling of Systems with D # 0 and 
Output Feedback Decoupling 

DIMITR P. FILEV* 

The results of Part I: "A Link Between Geometric Approach and Matrix Methods" are ex­
tended to apply to causal (D 4= 0) multivariate systems. Conditions for output feedback group 
decoupling, useful for engineering calculations, are derived and treated in conjunction with the 
structure of the poles of decoupled system. 

1. DECOUPLING OF MULTIVARIABLE SYSTEMS WITH D + 0 

The case D =j= 0 was treated in the sense of geometric approach by Morse [6]. 
This paper is purely abstract, without a note about the possibility of implementing 
the theoretic results in a convenient algorithmic form. Our geometric formulation 
of decoupling problem for systems with D #= 0 seems to be simpler and throws 
light on an immediate matrix interpretation of derived results. 

To zero system output, clearly state feedback has to zero the relevant output 
controllability subspace. In the case D = 0 the problem of zeroing the output is 
simpler, as output contrallable subspace f0 is a projection of the (state) controllable 
subspace 0to. Really, if 3i0 c KerC (resp. M0 er Y*) then the controllable subspace 
0io is mapped to a zero output subspace. Let a state feedback (F, G) zero output 
controllability subspace. Then the controllability subspace 

-* = I 0 4 + BFY~1 <BG> 

has to be contained in Ker (C + DF) (resp. in Y*). Because of D 4= 0, in order 
for ~f~ to be zeroed, the controllability subspace ffl has to be restricted by the condition 
<G> cz Ker D. Then the problem of zeroing the output may be formulated in the 
following way. 

* This work was performed while the author was at the Department of Automatic Control — 
Faculty of Electrical Engineering of the Czech Technical University and at the Institute of In­
formation Theory and Automation of the Czechoslovak Academy of Sciences. 
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Find a state feedback (F, G) that constructs controllability subspace 0t, 

01 = X ( A + BFy-1 <BG> 
jen 

contained in the maximal unobservable subspace Y* and satisfies the restricting 
condition 

(32) <G> c K e r O . 

The decoupling problem is more complex than that of zeroing the output. Utilizing 
subsystems S*, i e I, decoupling may be formulated as simultaneously zeroing the 
outputs of all subsystems Sf, i e I in the sense of the foregoing formulation with 
a restriction on the ranks of output controllability matrices to be invariant under 
the state feedback. 

Summarizing, if there exists a state feedback (F, G) which decouples the system 
S by (l), not necessarily completely output controllable, then controllability subspaces 
01 i, generated by new inputs vt, i e I: 

(33) 01 i = VfA + BF)^1 ((B) n «.) = £ ( A + BF)^1 (BGi) , iel 
jen jen 

have to satisfy the following requirements: 

(34) Mi a r * , 

(35) <G;> c Ker D* , iel, G = [G. . . . . j G,] 

and 

(36) (C ; + DtF) M; + <DG(> = C ^ A ' - 1 < B » + <Z);> , i e / . 
jen 

Note that conditions (34), (35) ensure zeroing of the output of the i-th subsystem Sf, 
iel, hence imply noninteraction. Condition (36) appears to be an extension of 
output controllability condition (6). Clearly for the controllability subspaces 0?h 

ie I to be simultaneously constructed by state feedback, their compatibility 

(37) fl F(«,) 4= 0 

is required. 

As there are no necessary and sufficient conditions for compatibility of arbitrary 
controllability subspaces, the concept of maximal controllability subspaces will be 
used in order to find sufficient compatibility conditions. 

Let 01* be the maximal controllability subspace contained in the maximal un­
observable subspace Y*, i e I. Because of (A, B)-invariance and maximality of sub-
spaces 01*, i e 1, they may be defined, using Theorem 1.1, to be: 

(38) 0t* = £ (A + BF^y-1 « 5 > n Y*) = £ (A + BF^'1 <BG;> , 
jen jen 

FeF(Y*). 
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According to Construction 3 we have: 

(39) 01* = £ (A + BF^-1 <BG;> , 
jsn 

<G/> = Ker (L*fiiB), iel, 

where Fai is a map constructing the maximal unobservable subspace Y*. By Theorem 
3A subspaces 0t*, i e I will be compatible if and only if subspaces Y*, i e /arecomp­
atible, hence (20) is necessary and sufficient condition for the maximal controllability 
subspaces 0t* contained in subspaces )"*, iel to be compatible. Clearly, by (38), 
controllability subspaces 01*, iel satisfy condition (34). For (35) to hold validity 
of the condition 

(40) <G;> c Ker D* , iel 

is required. For controllability subspaces 01*, i e I restricted by (40) we get: 

(41) a * =}Z{A + BFaiy-1(BGiy, 

where 
<G;> c Ker (L*fiB), iel. 

Finally, using (19) we have 

(42) <G,-> = KerV^ ' - l , iel. 

U/..BJ 
Recall that matrices Fai in (39) —(41) construct the subspaces Y*, i e I. 

Summarizing, if (20) is true, a class of compatible controllability subspaces 

(43) 01* = £ ( A + BFay"1{BG^, <G;> = Ker 5 * , iel, 

where Fx is according to (21), satisfies noninteration conditions (34), (35). Matrix Fx 

constructs simultaneously all maximal unobservable subspace Y*, iel. It is easy 
to prove that if 01* is the maximal controllability subspace contained in Y*, then 
subspace 3k* (41) is maximal among all controllability subspaces satisfying both 
conditions (34) and (35), and these subspaces are similar to .<%*, / e / in the case 
D = 0. Then the condition 

(44) n r ; 4= 0 
j'eZ 

appears to be a necessary condition for decoupling. 

Similarly to the case D = 0, condition (20) appears to be necessary and sufficient 
only for subspaces 01*, iel to be compatible. If (20) fails, there may exist smaller 
controllability subspaces, compatible, large enough to preserve (after restriction 
(35)) the rank of output controllability matrix. Notice that from (41), (42) the class 
of compatible controllability subspaces satisfying noninteraction condition is con-
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structed formally in the same way as the class of maximal controllability subspaces 
Sk*, i e / when D = 0. As to the output controllability condition (36), it is evident 
that it may be rewritten into a matrix form: 

(45) rank [(C, + D.E,,) (BG, \... \ (A + 5E,;)""1 BG) \ Dfi,] = 

= rank [C,B \...\ CfiA"'1 : Df] , iel. 

Because of clear similarity to the case D = 0, the foregoing geometric formulation 
will be stated as an algorithm for state feedback decouping of systems with D #= 0, 
not necessarily completely output controllable, with no further comments. 

Algorithm 2. 

1. Determine subsystems S*, i e I according to a desired configuration of output 
blocks. 

2. Apply Construction 2 to every subsystem Sf, and derive matrices C*-, D*;, 
iel 

3. Compute matrices Fai of state feedback by (18), reducing maximally the ob­
servability of subsystems S*, i e 1. 

4. Construct controllability subspaces <2$f, i e I, according to (41), (42). 

5. Test necessary condition (45). If it fails, decoupling is not possible and the 
algorithm terminates. 

6. Test compatibility condition (20). If it fails, state feedback decoupling in the 
sense of subspaces M*, iel is not possible. Otherwise compute matrices Fa, G 
of state feedback which decouple the system: 

(46) E.= - D r C * , 

(47) G = [G : . . . : G,] , Gt = Ker D*t, iel 

Example 1.2. Given system S by (1) with matrices: 

A = 

C = 

" 0 1 0 0 0 " 
0 0 0 0 0 
1 0 1 0 0 
0 0 0 0 0 
0 0 0 0 0 

1 0 0 1" 
B = 0 1 0 1 

0 1 0 1 
0 0 0 1 

J ) 1 1 0_ 

Ì 1 0 1 o" "o 0 o o" 
1 0 1 1 0 D = 0 1 0 0 
1 0 1 0 0 0 0 0 1 
0 1 0 0 0 0 0 1 0 

whose outputs are partitioned into 3 groups, such that mt = 1, m2 = 2, m3 = 1. 
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According to Construction 2 for subsystems S*, S*, S*, we have: 

C* _ ü>ľ = 
0 1 0 0 
0 0 0 1 
0 0 1 0 

1 0 1 1 0 
1 0 1 0 0 
0 1 0 0 0 

Гl 1 0 ЗІ м Г O Ю O l l 
Ð"2 - [o o i oj c°2 - [o 1 o o oj 

-£,:-
1 1 0 3 "0 1 0 0 1 
0 1 0 0 e„ = 1 0 1 1 0 
0 0 0 1 1 0 1 0 0 

Condition (20) is satisfied, hence a state feedback with the matrix 

F„ -

- 4 - 1 4 1 - 1 
- 1 0 - 1 - 1 0 

0 - 1 0 0 0 
- 1 0 - 1 0 0 

constructs all maximal unobservable subspaces Y*, i e 3. For matrices G„ i e I and G, 
we get according to (42) 

G l - [ 1 0 0 0 ] G i = [ " J _ J o J ] G3 = [0010] 

G = 

1 - 3 1 
0 0 - 1 
0 0 0 
0 1 0 

Since G is nonsingular, the necessary condition (45) has not to be tested. The transfer 
function of the decoupled system is: 

S»(p) = 
P3 - ІPA 

V- - 2p3 + p -- 1 0 0 0 
0 0 2p 4 - p3 0 
0 p3 - 2p4 0 0 
0 0 0 p3 - 2p 4 

2. STABILITY OF THE DECOUPLED SYSTEM 

The stability of decoupled system was completely solved by Wonham and Morse 
[8] and in the same way, also for systems with D =# 0, by Silverman and Payne [7]. 
For that reason only final results with some new comments, connected with the further 
expressions, will be presented in this section. 
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According to Wonham and Morse [8], the poles of decoupled system are freely 
assignable by state feedback if the state space may be represented as a direct sum 
of maximal controllability subspaces <%*, i e / (controllability of S is assumed), i.e.: 

(48) X ® ®* = 9C . 
iei 

Clearly, if (48) is true, compatibility is guaranteed too, because of 0t*x = 0, hence, 
(A, i?)-invariance. This sufficient condition for decoupling (see also Remark 1.1) 
is concluded in the following theorem (Silverman and Payne [7]): 

Theorem 1.2. If necessary condition (8) is fulfilled and the (n x dim 0t*) matrices 
R* formed from the bases of the maximal controllability subspaces 01*, i e I satisfy 
the conditions: 

(49) rank [R* . . . . \ Rf] , £ rank R* = n , 
iei 

then state feedback (2) with matrices: 

(50) 

(51) 

F = 

- [DІЇC^R* : . . . D*l

+C*lR*'] + G 

G = [ G 1 ; . . . ; G / ] 

0 Ft 

G = Ke7l5* , iel 

where (f; x dim M*) matrices Fh i e I are arbitrary, decouples the system and freely 
assigns all the poles of the decoupled system. 

Applying state feedback (F, G) by (50), (51) and transforming the state by linear 
transformation 

(52) 

where 

x = R*x 

R* = [R*i ':...': Rt] 

we get the matrices Ac, Bc of the system closed by state feedback (F, G) 

(53) Ac = 

~Ãl 0 

+ 
0 Ãt 

B.F, 

0 ЯiE, 

в, = 

Bг 

0 в, 
The pairs A;, Bt are controllable, hence arbitrary pole assignment is provided for 
every subsystem. 

If Y, dim 'M* < n, subspaces 01*, i e I are not disjoint and all poles of decoupled 
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system are not freely assignable by state feedback. In order to test for fixed poles, 
state transformation: 

(54) x = [R* : Ker R*'] x 

where matrices R* and Ker R* are formed resp. by all linearly independent columns 
of R* and by all basis vectors of complement R*1, has to be performed. The fixed poles 
will be canceled as a result of connected subspaces 01*, i e / and observability of the 
decoupled system will be reduced. Clearly controllable systems with stable invariant 
zeros have all fixed poles stable, too. Despite of block diagonality of transfer function 
matrix, decoupled system will not consist of independent subsystems and internal 
(state) interaction will occur. 

Remark 1.2. A sufficient condition for subspaces M*, i = \ to be disjoint is the 
independence of the relevant maximal unobservable subspaces Sfr*, i e /, hence 
perfect observability. Therefore, the maximal controllability subspaces Y*, i e / 
of system S with full row rank matrix C will be always disjoint. Conversely, when 
Y*, i e 1 are not disjoint, but &'f, i e I are, the stabilization may be interpreted as 
"sending back" the controllable modes of the unobservable part to make them 
transmission zeros of decoupled system. 

The foregoing remark will be illustrated by an example. 

Example 2.2. Given system by (l) with matrices: 

A = 

with partition of outputs such that mt = m 2 = 1. To solve the decoupling problem 
we apply Algorithm 1, finding the matrices of state feedback: 

0 1 0" "0 0" 1 0" 
2 3 0 , в = 1 0 , c = 1 0 
1 1 1 0 1 0 1 

'-[!i!W,í]-
The maximal controllability subspaces 

_0' 
0 
1 

are disjoint. Transfer function matrix of the closed loop system Sc is: 

SC(P) = 

"0 1" 
1 - 1 
0 0 

"1 
0 

P 

0 
1 

. P. 
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The cancelation of mode ( —1) in transfer function matrix is due to the fact that, 
according to Algorithm 1, matrix Fx of state feedback constructs both maximal unob-
servable supspaces Y*, Y* as 

0"1 
Y* = 

0 
- 1 

0 

These subspaces are not disjoint (they have common mode ( — 1)). The given system 
has an invariant zero in ( — 1) that is also an output decoupling zero of the decoupled 
system. Because of the invariance of invariant zeros under state feedback, assigning 
all poles of decoupled system to be, for example, in ( -2 ) , we have the invariant 
zero (—1) which occurs as a transmission zero of the decoupled system S(a): 

V + 1 0 

1 
(P + 2)2 

0 

0 

1 S("'(p) = 

P + 2J 

Note that this would be impossible when the maximal controllability subspaces 
were connected, because of the fixed position of common modes. 

3. OUTPUT FEEDBACK DECOUPLING OF MULTIVARIABLE 
SYSTEMS 

In comparison with the state feedback decoupling, the output feedback decoupling 
was given rather insignificant place in the literature. Some authors (Falb and 
Wolovich [2], Hazlerigg and Sinha [4]) examine necessary and sufficient condition 
for decoupling by output feedback as conditions for solution of the matrix equation: 

(54) F = KC , 

because of the trivial substitution (for systems with D = 0): 

u = Ky + Gv = KCx + Gv . 

Such a solution of the problem is an immediate consequence of a more general 
decoupling problem and if the decoupled system is stable, then the output feedback 
will ensure stability, too. Condition (54) is quite strong and only restricted group 
of systems satisfies it. The only paper that solves the output feedback decoupling 
problem (Howze [5]) also in the case when for a given F (54) fails, is devoted to the 
classical Morgan's problem. In this section we derive conditions for the general 
output feedback decoupling problem defined in Part I. The method used will be 
rather different than that of Howze [5], as the results for Morgan's problem may 
not be mechanically extended to the problem of group decoupling. Only systems 
(1) with D = 0 will be considered. 
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Definition 1.2. Output feedback (K, G) by (3) trivially decouples a given system 
if there exists a state feedback (E, G) decoupling the system and the matrix K is a solu­
tion of matrix equation (54). 

It is well known that the very problem of pole assignment by output feedback may 
not be generally solved. Hence, Definition 1.2 is quite unrealistic, as state feedback 
that decouples the system has to ensure not only noninteraction, but also pole assign­
ment and output feedback has to ensure the same requirements, too. In this paper 
the output feedback decoupling problem will be solved by compromising with the 
ability to arbitrarily assign the poles of the decoupled system. 

Clearly, from (2) and (3), if output feedback (K, G) decouples the system, then 
there exists state feedback (E, G) decoupling the system, too. 

Definition 2.2. Out put feedback (K, G) decouples a given system if the state 
feedback (E, G), where F = KC, decouples the system. 

Expression (54) has not to be true for every state feedback decoupling the system. 
In contrast to the trivial solution, defined for a fixed state feedback matrix F, Defini­
tion 2.2 determines a solution for the class of all matrices F decoupling the system. 
Evidently, the class of all matrices F defined by Definition 2.2 includes the class 
of all trivial solutions in the sense of Definition 1.2. 

Remark 2.2. A simple consequence of Definition 2.2 is that solvability of state 
feedback decoupling problem is a necessary condition for output feedback decoupling. 
Another necessary condition follows from the invariance of observability under 
output feedback (3). Really, if state feedback, decoupling the system, reduces ob­
servability (the maximal controllability subspaces 3k*, i e I are not independent), 
matrix K may not exist as the observability is invariant under output feedback. 

The class of all matrices (F, G) which stable decouple the system in the sense 
of maximal controllability subspaces is given by Theorem 1.2: 

(55) Ғ = - [D^C^R* \...\Ď*l
+c:iR*] + G 

0 

G = [Gt \...\Gt] G, = Ker д;' 'єl, 

where matrices F: of dimensions (r, x dim Sk*) are arbitrary, R* are the bases 
of subspaces <M*, ie 1 and R* is formed from R*, i e I as R* = [R* \... \ R*]. 
Substituting(55) for F in (54) and multiplying (54) on the right by matrix R*, we get: 

(56) KCR* = - [D*: C* R* :..."; £>* + C*,R*] + G 
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Recall that subspaces 2ft*, i e 1 are determined at Step 3 of Algorithm 1 by the ex­
pression: 

(57) M* = _\{A + BF^-1 <BG;> , 
j 'en 

where 

(58) G; = Ker D*t = Ker{L%B), iel 

and are disjoint, so R* is nonsingular. 
According to the structure algorithm, applied to subsystem S*', i e / by (4), 

< 0 * <c;> 
because 

(59) <Cf"> = I < C * ' > , ÍЄ 
Jєì 

j * i 

Note, that (59) fails v/hen rows of C; are linear combinations of rows belonging 
to other submatrices C„ i =j= j , i, j e I, but it is easy to see that such a system pertains 
to the case of inherent interaction and may not be decoupled by any control law. 
Then from (57), (58), (59) we get: 

"Ci 0 " 
(60) KCR* = K ' • 

. ° c, 
where C; are nonzero matrices of dimensions (m; x dim M*), i 6 /. According 
to (31), we have for the ranks of matrices C;: 

rank C; = gt, iel 

where gt denotes the rank of output controllability matrix of subsystem S,-, i e I. 
Equation (56) will be transformed to the form: 

(61) 
С 

0 С, 
= -[£>Vc*лf;...; ß*+Č*Rf] + G 

r. 

o 
The conditions for solution of the above matrix equation for K will be discussed 
further. 

Denote K = [K, •,../: K,] 

where Kt are arbitrary submatrices of dimensions (r x /?.,-), i e I. From (61) we get: 

(62) K;C; = - 5 V C* Rf + G;F; , i £ / . 

Substitute: ^ _ _ 0 * + c * ^ * + G . F . > . g ; 

Then the necessary and sufficient condition for equation (62) to have a solution 
Ktis: 

(63) fê]-rank — - = rank C;, / e / . 
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Assuming that the columns of C;, i e 1 are not redundant, the above condition is 
equivalent to the condition: 

(64) rank C; = dim M* , iel 

(by redundant columns of Ct we mean those columns which may be zeroed if a linear 
transformation is performed to zero a maximal number of column of matrix [C^ \ U-]'). 
If some redundant columns are available and rank C, = gt < gt, then (64) will be 
modified to be: 

rank C; = gt, iel. 

For unity of description the redundance will not be considered. 
Some important conclusions are derived from the foregoing results. 

(i) Only very special types of stable decouplable systems are also output feedback 
decouplable for a fixed matrix E (in the sense of Definition 1.2). The maximal con­
trollability subspaces M*, i e 1 of these systems have to be of dimensions equal to the 
rank o;, iel of relevant output controllability matrices. Availability of (64) with 
rank C, = a,, i = / implies quite strong condition rank C = n. 

(ii) It is seen from (63) that solvability of output feedback decoupling problem 
depends on matrix E and suitably selecting matrices E;, i e 1 (hence poles of the 
decoupled system), the solvability of (62) may be modified. 

Further we deal with determination of restrictions on matrices Ft, iel in (55) 
in order to ensure (if possible) solvability of (62), hence of (61). 

Let T be nonsingular (dim 3%* x dim 3k*) transformation matrix of the type: 

T = [T;1 : T;2] , Tn = Ct , Ti2 = Ker C;, iel 

Then the following partition of matrix C; is obvious: 

(65) CiT = [ C P • 0] , rank C\l) = 9i, iel 

9i 

Multiplying (62) on the right by matrix T we get: 

9t J[± 

(66) Ki[C^\Q\ = -D'*i+C*i[R*^}R*(2)] + G, [F\l?\ F\2)] , iel 

i.e. 

(67) KtC\{) = - 5 * + C*R*(1) + G,F\l) 

(68) 0 = - D* + C*R*(2) + GtF\2), iel. 

As rank C\l) = gt (from (65)), the first equation has always the solution: 

K, = ( - 5 * + C*R*(1) + GiF\X)) C;.!)+ , iel. 
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and, for any matrix Fh i e I, it is possible to determine a matrix Kh i e I satisfying 

(67). The second equation is not generally satisfied. Rewrite it to the form: 

(69) G,fJ2) = Z5*+C* ;If ( 2 ), iel. 

Let ?; be nonsingular transformation matrix of the form: 

Hf] 
where 

G+ = (Gfi.y1 G't 

and nonsingularity is guaranted by Step 3 of Algorithm 1: 

G, = Ker D* 

Multiplying (69) on the left by tt we get: 

(70) 

Finally we have from (70): 

(71) 

(72) 

F',2) = CZR, lєl 

0 = C*Я* ( 2 ) 

F{2) = 0 , iєl 

and the necessary and sufficient conditions for validity of (68) follows. 

Summarize the derived results: 

(71) 

(72) 
(67) is always true 

- И W ( 6 8 ) L ( 6 6 W ( 6 2 Ж 6 2 ) 

Hence, if (71) and (72) are true, there always exists an output feedback decoupling 

the system. 

The foregoing results, together with Remark 2.2, are concluded in the following 

theorem. 

Theorem 2.2. Given a system S by (1) with D = 0. Output feedback (K, G) by (3) 

decouples the system if: 

(i) There exists state feedback (F, G) by (2): 

~Fl 0 

- [25*+c*tR*;...; D*J c* R*I + G (73) R*" 1 

G = [G t ! . . . ! G,] , G; = Ker D* , iel 

stable decoupling the system S; 
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(ii) Holds: 

(74) CxiR*i2) = 0 , iel 

where matrices R*(2) are given by the transformation: 

C,.R*T; = C p * ' 1 ' : R*(2>] = [C, i 0] T = [C+ : Ker C,] , iel. 

Then the output feedback (K, G) with matrices: 

(75) K=[K,\..:.KI], Kt= [ - B * + C*(R*(,) + Gjf}"] CS I ) + , i s / 

solves the decoupling problem. The poles of the decoupled system are identical 
to the poles of state feedback decoupled system (obtained by application of state 
feedback (73)), where matrices F, are defined by the expression: 

(76) F, = [F^ : F ( 2 )] Tf1 

with elements of Fj11 and Fj2 ) , i e / resp. arbitrary and zero. 

Proof, (i) is implied by Remark 2.2 and Theorem 1.2; 

(ii) is implied by (71). Expression (75) is implied by (67). (76) is implied by (67) and 

(72). • 

Clearly, selecting submatrix F-1 ' in (76) and since Kj in (75), all poles of the de­
coupled system may not be freely assigned. The fixed poles are determined by the 
condition F(2) = 0 in (76). 

Theorem 2.2 is based on Theorem 1.2 and for that reason gives only sufficient 
conditions for output feedback decoupling. The necessity of these conditions for the 
cases when the state feedback decoupling problem is solved in the sense of maximal 
controllability subspaces 01*, i e I (see also Remark 1,1) is obvious from the discus­
sion foregoing Theorem 1.2. 

In a rather different manner, using the geometric approach of Wonham and Morse 
[8], Denham [ l ] derived the necessary and sufficient conditions for output feedback 
decoupling to be (5), (6), (7) to which are added also: 

(77) A{m{ n Ker C) e J>,., iel, 

(78) 0f = 0 , 

where 
M1 = n &f, 0t\ = y gti.. 

J * I 

Obviously (78) expresses the necessary condition for observability and arbitrary 
pole assignment of the state feedback decoupled system. Condition (77) is only 
a geometric interpretation of (74). Recall that (5)-(7) represent geometrically the 
necessary and sufficient conditions for state feedback decoupling. For the reasons 
described in Part I, Section 3, these conditions are reduced to the case of solution 
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in the sense of maximal controllability subspaces &*, i e I (Remark 1.1). Therefore, 
the geometric approach of Denham [1] gives a solution only for those systems for 
which the sufficient conditions of Theorem 2.2 are also necessary, hence just the same 
result. Note, in addition, that our approach outlines a concrete algorithm for solution 
of the output feedback decoupling problem and also completely treats the question 
of stability of the decoupled system in contrast to the approach of Denham [ l ] 
where these problems are not examined. 

4. CONCLUDING REMARKS 

The problem of state feedback group decoupling of linear multivariable systems 
is considered as a transformation of the geometric formulation of Wonham and 
Morse [8] into a matrix form, useful for engineering calculations and computer 
implementation. 

The equivalence established between the conditions for compatibility of the maxi­
mal unobservable subspaces and the relevant maximal controllability subspaces 
appears to be the main result of Part I. On that ground: 

(i) decoupling problem is formulated geometrically for system with D =j= 0; 
(ii) general algorithm for state feedback decoupling, similar to that of Silverman 

and Payne [7] is derived; 
(iii) the stabilisation of the decoupled system is proposed as a process of "sending 

back" the invariant zeros. 
Decoupling of not completely output controllable systems is considered and 

a class of systems with inherent interaction is described. 
Conditions for output feedback group decoupling are derived and treated in con­

nection with the structure of the poles of the decoupled system. 
It is clear that the described theory may not be applied when the maximal un­

observable subspaces are not compatible and there exists "smaller" compatible 
controllability subspaces, preserving output controllability. The problem of outlining 
such controllability subspaces remains open and will be the subject of further in­
vestigations. 
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