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K Y B E R N E T I K A — VOLUME 33 (1997) , NUMBER 5, P A G E S 5 5 7 - 5 7 6 

APPROXIMATION A P P R O A C H FOR NONLINEAR 
FILTERING P R O B L E M W I T H TIME D E P E N D E N T 
NOISES 

Par t II: Stable Nonlinear Filters 

S. H O A N G , R. B A R A I L L E , O. T A L A G R A N D , T . L. N G U Y E N AND P . D E M E Y 

This second part is devoted to the design of a stable nonlinear filter conditionally optimal 
in the minimum mean square (MMS) sense. The technique used here is known as an 
inversion of a direct Lyapunov function method which suggests to find a filter in such a 
way that a Lyapunov function, calculated along the filter trajectory, will change according 
to some prescribed law. Some properties of the stable filter are investigated. Connections 
of a stable MMS filter with an MMS filter proposed in Part I is established. Stability of the 
p oposed stable filter with respect to misspecification of the model error statistics as well 
as the parameter uncertainty will be also examined. Numerical examples and simulation 
study are given to illustrate the efficiency of the pro; osed stable filter. 

1. INTRODUCTION 

In [15] a new approximation approach is proposed to solve a nonlinear filtering 
problem 

x(t+l) = <f>t[x(t),w(t)], t = 0,l,... 

z(t+l) = ht+1[x(t + l),v(t + l)], t = 0 , 1 , 2 , . . . (1) 

in which x(t) denotes the n th dimensional system state, z(t) is an observed vector 
of p dimension, 4>t(-) and ht(-) are known deterministic functions, w(t), v(t) are 
random vectors of corresponding dimensions which may not be white and mutually 
independent. This approach allows to construct a nonlinear recursive filter, optimal 
in the minimum mean square (MMS) sense, in members of a class of admissible 
nonlinear filters. A uniqueness w.p. l (with probability 1) of the MMS-filter (denoted 
by MMSF) is established. Computat ional method for realization of the filter as well 
as its efficiency are also demonstrated numerically. 

The purpose of this second part is to apply the method in [15] to design a stable 
MMSF (denoted by SMMSF). It is known (cf. [18]- [19]) that one of the most diffi­
culties arising in practical implementation of any filter is concerned with its possible 
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instability with respect to the different types of uncertainty available in specification 
of system parameters (for instance, a priori statistics for the initial state, model and 
observation e r ro r s . . . ) . As example, in the field of the data assimilation in meteorol­
ogy and oceanography [29], [6], [8], specification of the statistics for the model error 
(i.e., the error resulting from descretization, linearization, missing physics, bound­
ary conditions. . .) in the numerical model, is simply impossible. Unfortunately, this 
type of uncertainty, as shown in [21], can lead to large estimation error or even to 
divergence of the s tandard Kalman filter (KF). From practical point of view, any 
filter could be useful only if it can meet conditions ensuring the filter's stability [7]. 

Historically, the question on stability of the KF arised very early when Kalman 
and Bucy presented their first significant work related to the optimal filtering [18]. 
Even for the simplest case of linear filtering with white noises, an optimality of the 
KF does not imply its stability. This property has to be proved [7], [17], [19], [21]. 
The first results, related to stability of the KF, are obtained in [9], [10], [25] [27], [28] 
from which we know, for instance, that if the linear system is uniformly completely 
observable and uniformly completely controllable, then a KF is uniformly asymp­
totically stable, provided that the initial error covariance matrix (ECM) for system 
state E(0) is symmetric nonnegative definitive. This fact is very important since in 
practice the initial statistics are never known exactly. Mention that to analyse a sta­
bility of the constructed filter, the so-called direct Lyapunov function (LF) method is. 
of common use so far. This method proposes first to select a LF candidate and after, 
to demonstrate that for the filter under consideration this LF possesses the necessary 
properties (cf. [17], [19]). The difficulty, associated with the direct LF-method, is 
that there exists no universal tool to select the LF for particular system, and check­
ing the required stability conditions represents in general a hard task. To overcome 
this difficulty, in present work, we will follow other approach which may be referred 
to as an "inversion" technique (cf. [3], [4], [5], [31]). The inversion method suggests 
to seek an optimal filter (cf. [14]) in members of a family of nonlinear filters of given 
structure, so that along the filter trajectory, the selected LF will change according 
to some prescribed law. In other words, according to this inversion approach, our 
task is not to establish the existence of LF for the designed filter, but inversely, the 
structure and parameters of LF are given a priori and the problem then reduces to 
the design of an optimal filter possessing this LF candidate. 

The paper is organized as follows. In Section 2, the problem statement will be 
formulated in precise fashion. Solution to the defined stable filtering problem is pre­
sented in Section 3. Some properties of the stable filter are studied in Section 4. We 
show there that inversion of the direct LF method is an efficient tool for constructing 
an SMMSF and proof of its stability follows directly from the equation required for 
the selected LF. Application to a linear filtering problem as well as sensitivity anal­
ysis of the SMMSF and MMSF with respect to parameter uncertainty are shortly 
presented in Section 5. It is clear that the inversion technique allows to verify, in 
the simple fashion, stability of the linear filter when the noises may be correlated 
and whose covariance matrices may be singular. Numerical examples and simulation 
study, concerning application of the SMMSF to parameter and state estimation in 
linear and nonlinear dynamical systems, are presented in the Section 6. Conclusion 
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and final remarks are given in Section 7. 

2. PROBLEM STATEMENT 

2.1 . Def in i t ion o f t h e filter s tabi l i ty 

Consider a filtering problem for the system (1). For simplicity, without loss of 
generality, let {v(t)} be a sequence of dependent values which is independent of 
{w(t)} and has F(v\),v] := [ v ( l ) , . . . , v(t)], where F is a distribution function 
(d.f.). Let {w(t)} and {v(t)} be independent of x(Q), and {w(t)} be a white sequence 
with zero mean and the covariance matr ix Q(t). The variables x(Q) and {w(t)} are 
supposed to be given with a known d. f. Following the method in [15], let us introduce 
the following class of nonlinear admissible filters 

x(t + 1) = 8tit[x(t - r), . .. , x(t), z(t -q)!...,z(t+l)] + 7t, t = 0 A , . . . (2) 

where r, q are integer numbers, 0 < r < / , — 1 < q < t — 1. Subject to the constraint 
(2), the filtering problem for the system (1) reduces to the problem of finding an 
optimal (in some sense) filter in members of the class (2). In (2), the n^-dimensional 
vector-function £t is supposed to be known [15], [24] and 6t £ RnXnt,'yt G Rn are 
unknown functions to be determined as a solution of some optimization problem. 
The equation (2) is referred to as a (r,q)-mode\ [15]. It is proved in [15] tha t an 
MMSF in the class (2) exists, is unique w.p.l and the optimal parameters (£t,Jt) 
along with the error covariance matr ix (ECM) P(t + 1) for the filtered estimate 
x(t + l) can be determined explicitly (Theorem 1 [1^]). Let tr(A) denote the operator 
"trace" of a matr ix A. In present paper, a stable MMSF in the class (2) is defined 
as follows 

Def in i t ion 1. A. nonlinear filter in the class of filters (2) is stable if lim{f;r P(t)} = 
tr P(oo) < oo as t —* oo. 

The fact of existence of lim{tr P(t)} < oo is of great practical importance since 
if it holds, the estimate x(t) will track x(t) with a finite error even X^fc=i m(t, k) ~> 
oo as t —-> oo where m(t,k) := E[xk(t)]2, xk(t) := Xk(t) — Xk(t),Xk(t) is the kth 
component of x(t) [19]. 

2.2. Def in i t ion o f an o p t i m a l S M M S F 

The idea on possible inversion of the direct LF-method was first suggested by Zubov 
[31] for the optimal control problem. Some procedures related to the design of 
control algorithms by the inverse LF-method are presented by Crutko in the works 
[3], [4], [5]. In [14] this idea was proposed to design a stable nonlinear filter in the 
members of a-class of nonlinear filters for nonlinear systems with dependent noises. 

The key idea underlying the inversion of the direct LF-method, in the context 
of the filter design, is outlined as follows (cf. [14]): To estimate the state x(t) of 
the system (1), let a class of the filters (2) be assumed to be selected a priori. Let 
0 E (0,1) be some fixed value. Considering u(t) := tr{P(t)} as a LF and one 
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requires that along the trajectory of the filter (2), the function v(t) must change 
according to the rule 

Av(t) + (3v(t) = 0, Av(t):=v(t+l)-v(t). (3) 

Evidently, if (3) holds, the filter (2) will be stable since Au(t) = -0v(t) < 0. Let 
A denote the transpose of the matrix A. 

Definition 2. Let )3 G (0,1). A filter in the class (2) is the SMMSF if it satisfies 
three following conditions: 

(CI) unbiasedness: L'[.r(i)] = E[x(t)] where E(-) is the expectation operator; 

(C2) v(t), considered as a function of the time variable t, must change along the tra­
jectory of the filter (2) according to the rule (3); 

(C3) J[6] := tr[6T6]-+mm6. 

2.3. Relationship between the SMMSF and MMSF 

Two following questions naturally arise in the light of Definition 2: (1) what is the 
reason which motivates the need to introduce the SMMSF? (2) what is the rela­
tionship between the SMMSF and the MMSF defined in Part I [15]? One observes 
that major difference between these two definitions is concerned with condition (C2) 
which, as expected, is introduced to ensure stability of the filter. Really, that con­
dition implies Av(t) = —/3v(t) < 0 or the sum of error variances of the estimate 
x(t) monotonically decreases and if v(0) < oo then v(t) < oo for all t. Stability of 
the filter (2) is thus established (Definition 1). As to the second question, since the 
condition (CI) is the same as (CI) in Definition 1 of [15], let us turn the attention to 
the condition (C3) and its relationship to the condition C(2) in Definition 1 of [15]. 
One sees from the proof of Theorem 1 [15] that finding an MMSF is equivalent to 
solving the matrix equation (8) in [15] for 6. As the latter has a nonunique solution 
(uniqueness is provided only if K^ is nonsingular), the solution 6° with minimum 
norm (10) [15] is proposed to be used which is unique w.p.l (Theorem 1 of [15]). 
The MMSF thus minimizes the criterion (C3) under the constraints (2) (CI) and 
(8) in [15]. 

3. SOLUTION TO THE SMMSF PROBLEM 

For definiteness, let in (2) f G Rn*, 6 G Rnxn*. For two random vectors \ a n d V, 

let x = E[X],KX = E[xxT],KXn = E[Xr}T]. Introduce ||x|| := [V^=1 x
2f2 , ||_4|| := 

[tr(AAT)y/2 where x G Rn and A G RnXm matrix. 

3.1. Theorem on existence of the SMMSF . Scalar case 

To present clearly the idea on inversion, consider first the case when £(') l n (2) is 
scalar. 
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Theorem 1. Suppose that the condition Kxr] 7- 0 in (33) (Appendix) holds where 
X := x(t + 1) - x(t + 1), 77 := £ - £. Then the optimal parameters (6* ,j*) for the 
SMMSF, in the class (2), are given by 

7t* = x(t+l)-8^t,8; = K8Q,8° = KXT1K-1 (4) 

K = l-VT^,a :=(U + /3- l )[np2] - 1 

II := n(/ + 1/t) = tr(Kx) [tr[P(t)]]~\p2 := p2(t + 1) = K^K^K.tr^)]-'. 

Under the condition 

g := g{t + 1/t) = (p2 - 1)11 + 1 > 0 (5) 

for j3 from the interval 

m < P < 9, 9o •= max(0,1 - II) (6) 

the solution 8* to the minimization problem (C3) (Definition 2) exists, is unique 
and which is given in (4). The ECM P(t + 1) for the filtered estimate x(t + 1) is 
governed by (12). The LF v(t), computed along the trajectory of the filter (2), will 
change according to the rule (3). 

P r o o f . Condition (CI) (Definition 2) implies the formula for 7t* as shown in the 
proof of Theorem 1 [15]. According to Definition 2, finding the SMMSF reduces then 
to the minimization problem (C3) subject to the constraint (C2). Making the use of 
the multipliers Lagrange method leads to the following unconstrained minimization 
problem 

J[8, X] = J[6] + X[Av(t) + /3v(t)] -> min, 8 := 6t. (7) 
(S,X) 

Substituting 7* in (4) into (2) gives x(t + l) = 8tr] + x(t + l),e(t + l) := x(t + l)-
x(t +l) = 8trj-x hence Av(t) = E[e(t + 1)Te(t + 1)] - E[e(t)Te(t)] = tr E{(6tr) -
x)(t;T1-X)T}-tr{P(t)}. 
Inseiting of the obtained relations into (7) reads 

J[8, X] = tr[88T + X(88TKr} - 26KT + A)] -» min, A :=' Kx + (/? - l)P(t). (8) 

(<5,A) 

A necessary condition for the optimization problem (8) is 

V,J[8, X] = 0, VXJ[8, X] = Av(t) + 0v(t) = 0. (9) 
Consider (9). Taking a derivative of J[8, X] with respective to 6 yields V$J[8, X] = 

8(1 + XKr,) — XKxr) = 0 from which follows 

6* =XKXV[1 + XKT]]-1. (10) 

The parameter A is determined by inserting (10) into (9). This leads to equation 

aX2 + 2bX + c=0, a := bK^, b := cKn - KT
nKxn, c := tr[A] (11) 
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with the matrix A defined in (8). For equation (11), the condition D := 62 — ac > 0 
implies that (11) has two solutions Ai,A2 determined by (33) (Lemma Al, Ap­
pendix). From Lemma Al, the optimal value A* which minimizes J[6*(X)] (condi­
tion (C3) in Definition 2) is A* = Ai = K[(1 — y/a) Kn]~l here K,a are defined in 
(4). From D > 0, subject to Kxv ^ 0 (Lemma Al), one comes to the requirement 
(6) where II and p2 are defined in (4). 
It rests to show that under the conditions of the theorem, the function u(t) indeed 
changes along the trajectory of (2) according to the rule (3). Really, setting A* into 
(10), after lengthy but trivial series of manipulations, one arrives to the formula for 
6* in (4). The ECM P(t + 1) for the estimate x(t + 1) now is determined by 

P(t + l) = KX+(K2 -2K)6°KVX (12) 

since a = 2K — K2 . From (12) and (4), 

P(t + 1) = Kx - (H + 0 - 1) WY'K-'K^K^ (13) 

= Kx-(n + ^-i)[n/]-HK^--(Kx)r1^^^(-^x) 
and taking the operator tr(-) for both sides of (13) gives 

tr[P(t + 1)] = tr[Kx] - (II + 0 - 1) [n>2]- V - r ( K x ) = ( ! - / ? ) tr[P(t)]. (14) 

Remembering i/(t) = tr[P(t)] by definition, one concludes that really along the 
trajectory of the filter, the LF u(t) changes according to the rule (3), and as conse­
quence, the constructed filter is stable. • 

Comment . 
(i) From Subsection 4.1, g < 1 therefore if (5) holds then j3 from (6) always 

satisfies 0 < /? < 1. Solution for an SMMSF is unique only up to a fixed value j3 
from the interval (go,g)- For (3, ranging in (<7o, g), one obtains a whole family of the 
SMMSFs. The choice of/? influences on performance of the filter (see Theorem 4). 

(ii) Due to Lemma Al, A4, the condition Kxv ^ 0 (see (33)) is most important 
for existence of the solution. 

(iii) From Lemma Al, condition for existence of A should be D > 0. However, 
due to (33) Kxn ^ 0, L> = b(b - cKv) = bK^Kxn = 0 iff (if and only if) 6 = 0. 
The latter implies a = 0 and hence c = 0 (see (11)). Finally, 6 = 0 and c = 0 lead 
to Kxv = 0 which is in contradiction with the assumption (33). 

3.2. Multidimensional case 

Suppose now £*(•) is an n^-vector function. Consider the filter (2) with 

Yt=x(t + l)-6Ut, 6*=K6°, 6°:=KXVK+ (15) 

where Kt is the Moore-Penrose pseudoinverse of Kv [1]. It is not hard to see that 
for thus defined (6*, 7*) the estimator (2) is unbiased and its ECM P(t + 1) satisfies 
the equation 

P(t + 1) = Kx + (K2 - 2K) 6°K1JX. (16) 



Approximation Approach for Nonlinear Filtering Problem . . . . Part II obo 

In further, let K be parametrized as 

K :- 1 - v T - a , 0 < a < l . (17) 

Evidently, K(a) is a strictly monotonically increasing function of a, 0 < a < 1. 
For (17), equation (16) takes the form 

P(t + 1) = Kx-a6°Kr]X. (18) 

Return to the filter (2), (15), (17), (18). Let a in (17), in its turn, be parametrized 
as 

a(ft):= (U + ft-l)[Ilp2}-\ if fir > 0 1 

a(j3) := af,0< af < 1, ifp < 0. J 

In (19), af is a fixed value in (0,1), g is given by (5), II - in (4) and 

p2 := p2(t + 1) = trlK*xK+K,x]{tr[kj}-1. (20) 

From (19) for g > 0, a = a((3) is also a strictly monotononical increasing function 
of ft. The values of a((3) then can vary only from 0 to 1 since g < 1 (see Subsection 
4 - 1 ) ' 

Remark . Function g will be nonpositive if II > l / [ l — p2] (l—p2 ^ 0 since if p2 = 1 
then g = 1 > 0 (see Theorem 1)). For nonpositive g, there exists no possibility to 
make tr[P(t + 1)] < ir[P(/)] due to, for example, a very high uncertainty in the 
model error (M(t + 1) = Kx is large enough in comparison with P(t); See the 
formula for II). 

Theorem 1 \ Under the condition (5), for ft £ (go,g) the LF v(t) computed along 
the trajectory of the filter (2), (15), (17), (18), will change according to the rule (3). 

Proof of the theorem can be found in the Appendix. 

4. SOME PROPERTIES OF THE SMMSF 

4.1 . Stability 

From (C2) (Definition 2), for xj>(t,0) := Ur'Joi1-Pr) one sees v(t) = $(tt0)v(0) and 
hence if the covariance matrix of the initial state P(0) is finite, <v(0) < oo and for 
0 < ftT < 1 we have v(t) < oo for all t or u(oo) < oo which implies a stability of the 
designed filter. The fact that 0 < / ? r < l i f < 7 > 0 may be shown as follows: In view 
of Lemma A3, 0 < p2 < 1, and as II > 0 the inequality g < 1 always takes place. 
The latter means that the choice of ftT from interval (6) guarantees 0 < ftT < 1. 
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4 .2 . C o n v e r g e n c e 

Due to the inequality 1 — x < e~x for small positive x, 

t - i t - i f 1 

^(t,0)=Y[(l-PT)<l[e-^=e-T/;=o^. (21) 
T=0 T=0 

T h e o r e m 2. Suppose there exists a possibility to choose the sequence {0T} a such 

that lirm_oo £Tr=o PT < oo. Then the sum of error variances of x(t) will tend to a 

finite value as t —> oo. If lirm_oo Y1T=O PT — oo then tr[P(t)] tends to 0 as t —> oo 

Coro l lary. Suppose that g(t + l/t) < 0 only finitely happen. Then the filter 
(2), (15), (17), (18) is stable. Otherwise, the filter (2), (15), (17), (18) is unstable. 

4 . 3 . R e l a t i o n s h i p b e t w e e n S M M S F and M M S F 

A nonlinear MMSF in the class of filters (2) is defined in [15] as an unbiased (con­
dition (CI) in Definition 2) filter which minimizes the penalty function 

J[6] = tr[P(t)] -> min . (22) 
6 

This MMSF exists, is unique w.p. l and its optimal parameters (6°,y°) are deter-* 
mined by 

T ° = x(t + 1) - 6%, 6° = KxnK
+ (23) 

P°(t + 1) = M(t + 1) - 6°K^, M(t + 1) := Kx. 

Now we show that the SMMSF (2), (15), (17) (18) can approach the MMSF in 
mean square. 

T h e o r e m 3 . Let the matr ix of the second moments A'̂  exist. Then the MMSF 
(2), (23) is a limit (in mean square sense) of the SMMSF (2). (15), (17), (18) as « -> 1. 

Theorem 3 is valid since for x = 6*rj + x,x' = 6°r) + x we have x — x' = (6° — 6*)r) 
therefore E{(x - i') (x - i')T} = (6° - 6*)KT](6° - 6*)T. As /c-> 1 (for relationships 
between j3, a, K see Lemma A2), we have 6° — 6* = (1 — K) KX1]K

+. One can conclude 
that limtr[P(t)] = tr[P°(t)] as K - * 1. 

Theorem 4 below, whose proof is evident, confirms that in members of the family 
of filters (2), the MMSF is the best one. In what follows, P(t;a) denotes the ECM 
P(t) defined in (18) which depends on the parameter a. 

T h e o r e m 4 . The function tr[P(t;a)] is a strictly monotonically decreasing func­
tion of a in (0,1), i.e. tr[P(t;a2)] < tr[P(t;a\)] for 0 < a\ < «2 < 1 and 
lim tr[P(t; a)] = tr[P°(t)] as a -> 1. 

Thus, the closer a to 1, the better performance of the SMMSF. This rule, however, 
does not hold in general if there exists a misspecification of the required parameters. 
For details, see Sections 5 - 6 . 
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4.4 . Prac t i ca l rea l i za t ion of S M M S F 

Theorem 3 shows that when all the parameters are known perfectly, in order to 
minimize the mean square error (MSE) of SMMSF one should guess a to be close 
to 1 independently on whether g is positive or negative. For g > 0, this strategy is 
equivalent to keeping 0 close to g (Lemma A2), and the corresponding value of 0 
is found from 0=1 + I I (ap 2 — 1). Then is(t) = tr[P(t)] may be computed simply 
from equation (3). One simple method is to put a = aj with aj being a fixed 
positive value from (0,1) which is close to 1. Theorem 3 then guarantees that the 
performance of the SMMSF is almost the same as the performance of the MMSF 
when all the parameters are precisely given. 

5. LINEAR SMMSF. SENSITIVITY ANALYSIS 

5.1 . L inear S M M S F ( L S M M S F ) 

For linear system when in (1) <f>t[x(t), w(t)] := $tx(t)+w(t), ht[x(t), v(t)] = Ktx(t) + 
v(t) one can introduce the class of linear filters x(t + l) = 6t£t[x(t), z(t + l)] + -yt, 6t : = 
(At,Kt+1), ff[z(t),z(t+l)] := {[<$tx(t)]T, zT(t+1)} where At, Kt+i are the matrices 
of appropriate dimensions. Introduce x(t + 1/t) := &tx(t), z(t + 1/t) := Ht+\x(t + 
1/t), x := x(t + 1)- x(t + 1/t), r) := z(t + 1) - z(t + 1/t). Evidently for the choice 
At — (I — Kt+\Ht+i) where I is a unit matrix, condition (CI) in Definition 2 is 
satisfied with j t = 0. Class of filters (2) is simplified as x(t + 1) = x(t + l/t) + Kt+\n 
and application of Theorem 1' to this model gives K*+1 := KK®+1, Kt+1 := KXTJK+ 
This filter will be referred to as an LSMMSF. Denoting by D an (n x n) diagonal 
matrix D := diag[«, K, . . . , K] one can write A'*+i : = -^K t+i- This structure for 
the gain matr ix is introduced in [12] for which one can ensure a stability for the 
filter under detectability condition. Subject to K = 1, the LSMMSF reduces to the 
MMSF obtainec1 in [23] for the linear system with correlated noises. In addition, if 
{w(t)}, {v(t)} are white and mutually uncorrelated and uncorrelated with x(Q) the 
LSMMSF reduces to a KF. 

5.2. Sens i t iv i ty of S M M S F t o p a r a m e t e r u n c e r t a i n t i e s 

For simplicity, we present here only results on filter's sensitivity for the scalar obser­
vation case (p = 1). Let 0 denote the vector of all uncertain parameters. Suppose 
that instead of knowing the exact value of 6 we are given only its approximation 
6C. Let K* denote the value of the gain K* which is computed through the formula 
for the gain A'* subject to 0C. The same notations are introduced for K , P(t;a), 
ect. which are computed through the formulas of the optimal filter. Recall that 
P°(t + 1) = P(t + 1; a = 1). Mention that Pc(t; a) is only a computed ECM but no 
longer the actual ECM. The actual ECM will be denoted by Pa(t;a). We reserve 
the notation Pa(t;a) for the actual ECM when 0C = 0, i.e. when all the parameters 
are correctly specified. 

From Theorem 4, for 0 < a i < a 2 < 1 

tr[Pa(t, a,)] > tr[Pa(t,a2)] > tr[P°'a(t)]. (24) 
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The question we are interested in is whether a relationship similar to (24) holds 
for tr[Pc(t, ai)]? In further, let AA := Ac — A where Ac is a computed value of some 
parameter A. Let M := M(t+l/t) = E{[x(t+l/t)-x(t + l)][x(t+l/t)-x(t+l)]T} = 
E(XXT). 

Theorem 5. Consider an LSMMSF and suppose that 0 < «i < 0*2 < 1. Let 

Ki := K(ai) where K(a) is defined by (17). Assume that x(t) is given. Then 

tr[Pa(t, a,)] > tr[Pc
a(t, a2)] > tr[P?>a(t)] (25) 

iff the following inequality holds 
or/,'0,a]Tr^0 

D : = ||A'0||2 < J J\\ K°'a := K°'a(t + 1). (26) 
(«1 + K2) 

Otherwise 

tr[Pc
a(f, ai)] < tr[Pc

a(t, a2)] < tr[P^a(t)]. (27) 

Theorem 5 is proved by using the following formula for the actual Pc(t, K) 

Pa(t + l;K) = Ma + K*K*[K*[TKI - KK°C[KXT,]T - KKXT)[K°]T (28) 

and calculating Pa(t + 1; «i) - Pa(t + 1; K2). 

Comment . Theorem 4 is a consequence of Theorem 5 since if 0C = 6 and 0 < K ; < 
1, i = 1,2, then D = | |N°'a | |2 < 2||N°>a||2/(Ki + K2). That relation holds even if 
one of Ki is equal to 1. 

Statement 1. Consider a scalar filtering problem (i.e. n = p = 1) for the linear 
system in Subsection 5.1 with white noise sequences {w(t)},{v(t)} which are mu­
tually uncorrelated and uncorrelated with x(0). Let P(0), Q(t), R(t) be covariance 
matrices of x(Q), w(t), v(t) respectively. Suppose that the class of filters is chosen as 
in Subsection 5.1 and instead of P(0), Q(t), R(t) we are given only their approxi­
mations Pc(0),Qc(t),Rc(t). Then for the LSMMSF, under the condition that x(t) 
is given, Ma := Ma(t + 1/t) < Mc := Mc(t + 1/t) and a2 = 1, the relation (25) is 
valid iff 

Mmm(t + 1/t) < Ma(t + 1/t; KX) < Mc(t + 1/t; Kl) 

Mmm(t + l/t) := (l-f/ci)HMc[2Hc + H2Mc(l-«i)]~1. (29) 

Formula (29) expresses the condition only under which the KF performs better 
than the SMMSF with a given value «i. In what follows suppose that all the param­
eters are exactly specified except that the model covariance Q is known unprecisely, 
Q < Qc (in practice of satellite altimetric data assimilation, if R may be assumed to 
be known precisely (indeed, R is very small), specification of Q is simply impossible, 
cf. [8]). From (29), if we keep KI to be close to 1, the value Mmin(^ + 1/t) will 
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approach Mc(t + l / * ; « i ) and "almost surely" Ma(t + l /< ;« i ) < Mmin(t + 1/*). In 
other words, the SMMSF will certainly perform better than the corresponding KF 
under misspecification of the model error variance. By keeping «i to be close but 
not enough to 1, one can guarantee a good performance for the SMMSF in both 
cases of perfect and imperfect data . Tha t is one of the most nice properties of the 
SMMSF (for numerical example, see Section 6). Using (28) one can prove 

T h e o r e m 6 . Under conditions of Theorem 5, for a fixed value a £ ( 0 , 1 ) the 
inequality tr[Pa(t;a)] < tr[Pc(t;a)] holds iff 

D = ||A.o||2 >
 2 [ K ^ ^ - I f ^ ! , AM := Mc(t/t - 1) - Ma(t/t - 1). (30) 

The following statement is an application of Theorem 6 whose proof is given in 
the Appendix. 

S t a t e m e n t 2 . Suppose that AM(* ) := Mc(t/t - 1) - Ma(t/t - 1) > 0. Then for 
the SMMSF the relation (30) always holds. 

R e m a r k 1 . At instant t let (30) hold hence AP(t) > 0 (Theorem 6). Evidently 
fo Qc > Qa it follows AM(t + 1) > 0. Then as a consequence of Statement 2 we 
have AP(t + 1) = Pc(t + 1) - Pa(t + 1) > 0. Thus if (30) holds for t then it will be 
true for t + 1. By choosing -Pc(0) > P(0),Qc > Q the computed P c( /) , Mc(t) can be 
considered as the upper bounds for the actual P(t),M(t). 

R e m a r k 2. Consider the situation described in Remark 1. Since for all /, A M := 
Mc(t/t - 1; K) - Ma(t/t - 1; K) > 0 from (30) it follows that for Qc > Q if we keep 
K to be close to 1 then for all t almost surely the SMMSF performs better than the 
corresponding MMSF. 

S t a t e m e n t 3 . Suppose that the vector of uncertain parameters 6 consists of ele­
ments of covariance matrices P(0 ) , Q, R. Assume that Pc(0) > P(0),Qc > Q, Rc> 
R. Then for the LSMMSF tr[Pa(t,a] < tr[Pc(t,a)}. 

Statement 3 implies that although actual value of 9 (for instance, P(0),Q,R) 
can be given unprecisely, the computed "variance" in the LSMMSF, as in the KF 
case (cf. [17]), can be considered as an upper bound for the actual error variance, 
and to determine whether the conservative estimates of 0 give the satisfactory filter 
performance. More importantly, in view of Statement 1, overestimation of the error 
variances should be considered as a preferred strategy (in comparison with underes­
timation) . By appropriately choosing the parameter a such strategy can yield the 
SMMSF which performs certainly better than the corresponding MMSF, for all /, 
as shown in Remark 2. 
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6. NUMERICAL EXAMPLES. SIMULATION 

6 .1 . N u m e r i c a l e x a m p l e s 

(a0) Consider the problem of estimation of the state of the linear model in 
Subsection 5.1.. For simplicity let $ = I, T — 0. Tha t problem is led to a problem 
of estimation of the unknown n-vector x(t + 1) = x(t) = x. Suppose that H ^ 
0,P(0) > 0. The SMMSF subject to a = 1 constitutes the recursive MLS (Mean 
Least Squares) algorithm (cf. [20]) for estimation of x. Since whatever is a £ 
(0,1), M(t + l/t) = P(t), from (4) II = l,g0 = 0,g = p2 > 0 (p2 > 0 due to 
P(t;a) > 0 and H ^ 0; The fact P(t;a) > 0 is guaranteed by Lemma A5 with the 
assumption P(0) > 0). It means that v(t) satisfies (3) for all t. Then v(t) is a strictly 
monotonically decreasing function of/ which is bounded from below by 0. Thus the 
sequence v(t) must have a finite limit, i.e. the filter SMMSF is stable. Mention that 
no assumption concerning a whiteness of the observational noise sequence {v(t)} was 
required to establish a stability of the filter. 

(b°) Consider the model in a0 with the difference that <I> ̂  I, $ is nonsingular. 
Suppose that all the singular values of $ are no larger than 1. We state then that the 
SMMSF is stable. Really, let T be the orthonormal matrix diagonalizing <1>T$. From 
TTT = I and tr[TP(t)TT) = tr[P(t)] it implies tr[M(t + l/t)] = tr[<I>P(t)<&T] = 
tr[P(t)$T$] = tr[TTP(t)TTT$T$T] = tr[TTP(t)TD%] where D% is the diagonal 
matrix whose diagonal elements X2,(i = 1 , . . ., n) are the eigenvalues of $T<I>. Direct 
computation yields tr[TT' P'(t)TD%) = YA=I P.*0O^i where p'a(t) is the (n) element 
of TTP(t)T. Due to P(t) := P(t;a) > 0 (proof is similar to that of Lemma A5 
subject to P(0) > 0 and 4> is nonsingular), all p'n{t) are positive, and since X2 < 1 
the following estimate is valid 

n 

tr[M(t+l/t)] = tr[TTP(t)TDl) = £*<<(*)*? < tr[TT P(t)T] = tr[P(t)] 
i = l 

from which IT = tr[M(t + l/t)]/tr[P(t)] < 1 therefore g > 0 for all / (this fact follows 
from p2 ^ 0 due to P(t; a) > 0, H / 0 and p2 ^ 1). Equation (3) then holds for all t 
which means that the SMMSF is stable. If the transition matrix $ t is time-varying 
which is unstable only at time instants t = t\, . .. ,t]\f where N is finite then the 
SMMSF remains stable due to Corollary 2.1. It is not hard to obtain the stability 
conditions for the case of singular <3>. As in a0 the sequence {v(t)} may be correlated. 
For the case when there exists the model error T / 0 the analysis of filter stability 
may be carried out in the same manner and it depends mostly on whether the events 
II > 1/[1 — p2] happen finitely or infinitely (see Remark in Subsection 3.2). 

(c°) Let in the linear SMMSF n = p = I and consider the sensivity of SMMSF and 
KF to the model error uncertainty. Suppose $> = H = R= Rc = I, Q = 3, Qc ~ 5 
and all x(0), {w(t)}, {v(t)} are uncorrelated. For simplicity, at instant t, let P(t) = 1. 
Equation (29) yields M m i n = (1 + « i ) M c / [ 2 + Mc(\ - KX)] where Mc = $>2P(t) + 
Qc - 6, Ma = $2P(t) + Q = 4. In Figure 1 the curve labelled MMIN shows M m i n as 
a function of Ki. TWO curves M C O M P U T E D and MACTUAL denote values of Mc 

and Ma respectively. It is seen that for KX E (0.87, 1) the constraint Ma > M m i n (see 
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(29)) cannot be satisfied and by Statement 1 the SMMSF must perform better than 
the KF. This fact is confirmed numerically in Figure 2 where the curve PKALMAN 
denotes the actual error variance of the estimate produced by the KF, and the curve 
labelled PSMMSF expresses the actual error variance of the SMMSF estimator which 
depends on the parameter K\. Computat ions for PKALMAN and PSMMSF were 
carried out on the basis of the formula (28). The best performance for SMMSF is 
attained at about KI E (0.93,0.94). When K\ tends to 1, two filters yield the same 
estimate. The choice of «i to optimize the performance of SMMSF can be considered 
as a problem of regularization (cf. [12]). Under parameter uncertainty, one possible 
way is to select K\ to minimize the prediction error as done in the adaptive filtering 
[16] under the constraint, for example, K± E [0.6,0.95] (see also next subsection). 

MACTUAL -*-
MMIN -+--

MCOMPUTED -Q-- J 

l-QBBBQBBBOQQBBOBQQBBBBBBBBBBBOH 

00000000000000 

L++ ++ +++' ++ ++ ++" 
$#*£ 000000000004 

0.7 0.75 0.8 0.85 0.9 0.95 1 

F i g . 1 . Behaviour of Mmin(«l) under model error uncertainty Qc 

6 .2 . S i m u l a t i o n 

The SMMSF and KF are used to test their effectiveness in estimation of the solution 
of the nonlinear reaction-diffusion process described by the following system of PDEs 
(cf. Sewell [26]) in the domain Q := [0,1] x [0,1]: 

ut — uxx — Uyy — v2 + 3u = 0, vt — 4vxx - 4vyy + 2v2 — 6lí = 0 

u(t, x, y = 0) = v(t, x, y = 0) = u(t, x = 0, y) 

= v(t, x = 0, u) = u(t, x = I, y) = v(t, x = 1, y) = 1 

dv 

(31) 

дu 
— (t,x,y= 1) 
дy 

дy 
(t,x,y= 1) = 0,u(t = 0,x,y) = v(t = 0,x,y) = 1. 

System (31) is integrated by a simple finite difference scheme, centered in space, 
and by the Euler scheme in time, with Ax = Ay = 1/20, A* = 1/3200. The 
resulting discrete-time nonlinear numerical model in state-space form is x'(tk + 1) = 
F[x'(tk)],tk '•— k*At whose full state x'(tk) is of dimension n = 882 (441 grid points 
for two components u, v). 

The "true" s tate x(tk),tk := k * At is numerically obtained by integration of 
the numerical model for x'(tk) from /Q to 2̂00 in which a spatially and temporally 
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uncorrelated Gaussian noise w, with zero mean and variance Kw = 0.5 * I, is added 
at each time instant tk to simulate the model error. At each tk, 12 observations 
for each component of the velocity vector (u, v) are given, which are homogeneously 
distributed in the domain (see crosses in Fig. 3a). Observations are contaminated by 
a Gaussian noise with zero mean and variance Kv = 0.1*7 (spatially and temporally 
uncorrelated). 

0.9 

0.88 

0.86 

0.84 

0.82 

0.8 V 

-i i i 1 1 i 1 1 r 
PKALMAN -o-

PSMMSF -+-• 

* 0 0 0 0 0 o-ţ o o o o o o o o o o o o 
.'+' 

0 78 i i i i i 1 i L- l L-
0.8 0.820.840.860.88 0.9 0.920.940.960.98 1 

Fig. 2. MSE of stable MMSF and standard KF under model error uncertainty Qc 

y 

— X X—X-

- -X- -X- -X 

-X- -x- X 
I * I 

X- X- X 

Fig. 3a. Locations of 12 points (xi,yj) of observations for each component (u,v) of the 
velocity vector the reduced-space consists of 24 elements u(xi,y}) and v(xi,y0). 

(x := points of observations for each velocity component) 

Due to high dimension of the system state (typical systems, arising in the field 
of data assimilation in meteorology and oceanography [8], have the system state of 
dimension of order 106 — 10 7 ), a reduced-order filtering approach in Hoang et al [11] 
is used. The reduced state xr is defined as the vector whose components are the 
values of (u, v) at the points where observations are available. Then the dimension 
of the reduced state is nr = p = 24. One defines Lr as an operator giving the values 
of u, v at the observational points, i.e. xr — Lrx. The operator Pr : = Lf, where 
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L+ is the pseudoinversion of Lr. The class of reduced-order filters is supposed to be 

of the form [11] 

xr(tk+l) = F[Pr(xr(tk))} + Kr{z(tk + l)-HF[Prxr(tk)}}, (32) 

x(tk + 1) = Prxr(tk + 1) 

where H is an observation operator. Thus xr is the estimate for the reduced state 

xr and x is the est imate for the full s tate x. Using the extended KF approach one 

can write down immediately the formula for the gain Kr := K ^ by linearizing 

F[xr(tk)] at each t ime instant tk around the current estimate xr(tk) and solving 

the associated Riccati equation. The SMMSF (or stable KF) is of the form of 

extended KF except that its gain matr ix K^ is of the structure Kr = KKr

KF. 

Due to nonlinearity, in fact we cannot specify exactly covariances for the model and 

observation errors. T h a t is why in the experiment we used only KW,KV for their 

approximations. Parameter K is estimated adaptively by the method [11] to achieve a 

minimum prediction error (MPE) subject to the constraint K G [0.6,0.95]. To have 

the idea on how the SMMSF work in comparison with other filters, in Figure 3b 

we present the MSE for the filtered estimates produced by 5 filters: (i) SMMSF; 

(ii) extended KF; (iii) Diagonal adaptive filter (AF), i.e. the A F in which diagonal 

elements of the gain matr ix are tuned adaptively to achieve a M P E [11]; (iv) Adaptive 

filter (i.e. the A F with all elements of the gain matr ix tuned adaptively); (v) Newton 

relaxation (nudging method) . The Newtonian relaxation is the method widely used 

up to now in data assimilation in oceanography [30]. 

EMSEF (R=1100) 

S """'•Ч-. 
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Fig. 3b. MSE for the estimates produced by 5 filters. 
: Nudging, : Adaptive Filter, . . . : Diagonal Adaptive Filter, . . . - . . . - : 

Kalman Filter, : Stablr Kalman Filter 
This method consists in introducing, at the points where observations are available 
(denoted by * ) , a term of the form —R(u — u*) (and —R(v — v*) respectively) in 
the first equation of system (31) (and in the second one respectively). It is assumed 
here that the parameter R is constant in time and in space, and that the value of R 
is equal to 1100. Initial values for both velocity components, used in all the filters, 
are equal to 0.5 at every point in the modeling domain, except at the boundaries at 
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which the boundary conditions are assigned. Mention that true system is initialized 
by 1 for all values of u, v. The boundary conditions, described in (31), are assumed 
to be exactly known. 

Figure 3b presents the MSE expressed in the term of Empirical Mean Square 
Error for the Filtered estimate (EMSEF := [1/(200 - k)] J2l = i00 \\e(k)\\2, eik) • = 
x(tk) — x(tk) ) , for all the filters. In SMMSF and EKF the values of KW,KV are 
exactly specified. Note that no information on Kw, Kv is used in the AF and diagonal 
AF [11]. It is clear that , the EKF and other AFs produce nearly the same results. 
Worse efficiency is observed for the Newton relaxation. The best performance for the 
filtered estimate is obtained by the SMMSF. This result can be explained by the fact 
that due to nonlinearity and involving the model reduction, the EKF is no longer 
optimal. In contrast, in the SMMSF, which is of the optimal structure of the EKF 
with correctly specified statistics of the model and observation errors, the parameter 
AC is used as additional degree of freedom to optimize the filter performance. This 
factor is of importance to compensate the lack of information on the model noise 
statistics we have in the practice of data assimilation. 

7. CONCLUSION 

The inversion approach, presented in this paper, is developed for the design of a 
stable filter. This technique proposes to find the conditionally optimal filter in such 
a way that along the filter trajectory, the LF-candidate will change according to 
some prescribed law. Examples for checking the stability conditions are illustrated 
in Subsection 6.1. By introducing the Definition 2, the stable optimal filter in fact is 
only a slight modification of the MMSF, obtained in the Part I. It appears that the 
optimal matrix S* (or the filter gain K in the linear case) in the SMMSF differs from 
the corresponding optimal parameter 6° in the MMSF only by a positive parameter 
K, 0 < K < 1. This makes the problem of computational realization for the SMMSF 
to be of the same order as that of the MMSF. The inversion approach, as we see, 
is not an alternative to the classical MMSF approach. Sensitivity analysis of the 
filtered error with respect to system parameters shows a possible large degradation 
of the MMSF performance under parameter uncertainties which, however, can be 
avoided in the SMMSF. The SMMSF thus can be regarded as an extension of the 
MMSF (or of a KF in particular) to deal with parameter uncertainties. Simulation 
study for the nonlinear filtering problem in Section 6 supports this encouraging fact. 
Under parameter uncertainties, one simple way to find an optimal value of K is to 
tune it adaptively to achieve a MPE [11] as done in Subsection 6.2. In general, 
K should be chosen as a function of the parameter uncertainty [12]. Derivation 
of the theoretical results related to this regularization problem, is of practical and 
theoretical interest, and requires the further study. 
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APPENDIX 

L e m m a A l . Let x £ Rn, V 6 R1 be random variables. Further, let 

Kxv^Q,K(X):=XKxn(\ + XKJ1)-
1 

Ai = [-b-y/D][bKr,]-\ A2 = [-b + ^/D^bKr,]-1 

D:=b2-ac>0, a:=bKv, 6 < 0, c > 0. (33) 

Under conditions (33), the following strict inequality holds 

| |A(Ai) | | < | |A(A2) | | . (34) 

P r o o f . To prove lemma, let us show the equivalent version 

e : = l | A ' ( A i ) | | 2 - | | A ( A i ) | | 2 < 0 . (35) 

Since | |A(A)| |2 = A2 | |A'x r ) | |
2(l + AK. , ) - 2 then under the condition (33), the in­

equality (35), in turn, is equivalent to ex := Af (1 + Ai A ' , , ) - 2 - \\{l + A2A' r ;)"2 < 0. 
After some manipulations for the left of the last inequality, one sees that e1 < 0 iff 
[Ai - A2](Ai + A2 + 2XlX2Kr)) < 0. However, due to Xx - A2 = -(2y/D)[bKv]-1 > 0 
since b < 0, the last requirement holds iff e2 := Ai + A2 + 2AiA2A'?7 < 0. Under 
condition D > 0 we have e3 := Ai + A2 = -2\[D < 0, e4 := AiA2 = acf&A'.,]-2 < 0. 
H nee e2 = e3 + 2e4A'r? < 0 which proves the lemma. • 

C o m m e n t . In (33) we implicitly assumed A'r/ ^ 0. This condition holds under 
assumption Kxv ^ 0 (see Lemma A2 below). Clearly, the formula for A'(A) is correct 
only if A ^ —l/Kv. For A equal to Ai or A2 this requirement is always satisfied. It 
is not hard to see that the formula for K\ may be represented as 

K(X) = K(c) = Kxri[e + K,,]-1, e := 1/A. (36) 

In the form (36) the parameter e is introduced in the works [20], [12] as a reg-
ularization parameter to provide a stability of the filter with respect to parameter 
uncertainties. 

L e m m a A 2 . Let /? -* 0. Then for a defined in (4), a -> (II - l)(Up2),K -> 
1 — ^/g/(^\p2). For 0 —> g we have a —> 1,K —* 1,e —+ 0. 

Lemma A2 is proved by direct checking. 

L e m m a A 3 . For p2 defined by (4), the following inequalities hold: 0 < p2 < 1. 

P r o o f . For a = 1, P°(t + 1) in (23) is the ECM for the estimate obtained 
by the MMSF. Thus, P°(t + 1) must be nonnegative definitive, P°(t + 1) > 0. 
Applying the operator tr(-) to both sides of the equation for P°(t + I) in (23) leads 
to tr[P°(t + 1)} = tr[Kx] - tr[KXJ}K+iqn] > 0 or tr[KxrlK+K^} < tr[Kx] or 
P2 = tr[KxtlK+K^]{tr[Kx]}-1 < 1. • 
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L e m m a A 4 . Let x> V he any two random vectors variables. Then KXrj ^ 0 implies 
Kx ? 0, K, # 0. 

P r o o f . First we prove 

tr[KT
nKxn]<tr[Kx)tr[Knl (37) 

Write T] = ( r / i , . . . , rjnn)
T evidently # £ . = ( N J ^ , . . . , .Kj,nJ and t r [ K J . K x , ] = 

!Ci=i ^ [ ^ x n . ^ x w ] ' Due ^° L e m m a A3 KT Kxr]i < tr[Kx]Kr)l therefore 

YZZi tr[K%*.Kx^ < tr[Kx] XDr=i A'^. = --H^-xl'*[#•.] f r o m w h l c h f o l l o w s (37)-
Now, for instance, if we suppose that Kv = 0 then tr[A'.,] = 0 and (37) implies 
tr[KT„Kxv] = 0 which contradicts the condition of lemma. • 

P r o o f of T h e o r e m 1' . Consider the filter (2). (4). Let the condition (5) 
hold. By definition (19), a(/3) varies only in the interval (0,1) and the values of 
K = K[a(j3)] belong to (0,1) too. From (19), a(/3) is defined in (4) since g > 0. 
Substituting this a(fi) into (18), one can check, as in the proof of the Theorem 1, 
that indeed the equation (3) holds. • 

P r o o f of S t a t e m e n t 1. Using the linear SMMSF in the Subsection 5.1, 
the inequality (26) is equivalent to Ma[H2Mc + Rc]/[H2Ma + R]MC > (I + « i ) / 2 
from which follows Ma[2JRc + ( l - K 1 ) H 2 M c ] > (\ + K1)RMC or the left of (29). The 
right inequality of (29) is evident from assumption made in statement. • 

P r o o f of S t a t e m e n t 2 . Using the linear SMMSF we have to check (30) if 
A M > 0, or 

A M I !:2H2AM(HMC)2 HAM(HMC) 
A M + [H2MC + R]2 ~ 2K [H2MC + R] 

which is equivalent to [H2MC+R]2 AM+K2H2 AM(HMC)2 > 2KHAM(HMC) [H2MC+ 

R]. Due to A M > 0 the last inequality reduces to [H2MC + R]2 + K2H2(HMC)2 -
2KH2MC[H2MC + R] > 0 or aM2 + 2bMc + c > 0 where a := (1 - a)H4,b : = 
(1 — K)H2R,C := R2. Here we used again the fact that a = 2K — K2. Consider­
ing the left of aM2 + 2bMc + c > 0 as a function of M c , one can check that since 
b2 — ac = —2a < 0, the function aM2 + 2bMc + c is positive for all M c since a > 0 
which proves s tatement . • 

L e m m a A 5 . Let in (1) <j>t[x(t), w(t)] = <j)t[x(t)] + w(t) and the covariance matr ix 
Q(t) for the model error w(t) be nonsingular. Then for all t, the ECM P(t;a), 
defined in (19), is positive definitive, i.e. for all t, P(t;a) > 0,Vo• G (0,1) where 

P(t + 1;a) = M(t + 1) - 6;KT„ = M(t + 1) - ad^K^. (38) 

P r o o f . From (1) with <f>t[x(t), w(t)] = <f>t[x(t)] + w(t) it is not hard to see that 
M(t + l) = E{[x(t + 1) - x(t + l)][x(t + 1) - x(t + 1)]T} > 0 due to independence 
of \w(t)} on x(0), {v(t)} and Q(t) is nonsingular. Consider the ECM P°(t + 1) (cf. 
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(23)) for the MMS estimator. Evidently P°(* + l ) > 0. It means that x T P 0 ( * + l )x > 
0 , V x £ P n , x ^ 0. Let P n \ { 0 } = P i Q ^ 2 where Rx := {x :xTP°(t + l)x = 0,x ^ 
0}, H2 '•= {x : xTP°(t + l )x > 0, x :-= 0}. Now lemma will be proved if we can show 
that x T P x > 0 , P := P(* + 1; a ) , V x £ P n , x ^ 0 . Let M := M(t + l),A :=6$KT

n. 
For x £ R\,xTMx — xTAx therefore from M > 0 it follows x T A x > 0. We have: 
xTPx = xTMx — axTAx = xTMx — xTAx+xTAx — axTAx = (1 —o;)xT

J4x > 0 since 
1 — a > 0. It remains to show xTPx > 0,Vx £ R2. But for x £ R2,xTMx > xTAx 
and V a £ (0,1) evidently xTMx > axTAx or xTMx — axTAx = x T P x > 0. • 

(Received July 31, 1995.) 
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