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K Y B E R N E T I K A — VOLUME 33 ( 1997 ) , NUMBER 5, P A G E S 4 7 7 - 4 8 7 

A NOTE ON THE HAJEK-LECAM BOUND 

F R I E D R I C H L I E S E AND I N G O S T E I N K E 

Let En be a sequence of experiments weakly converging to a limit experiment E. One 
of the basic objectives of asymptotic decision theory is to derive asymptotically "best" 
decisions in En from optimal decisions in the limit experiment E. A central statement 
in this context is the Hajek-LeCam bound which is an asymptotic lower bound for the 
maximum risk of a sequence of decisions. To give a simplified proof for the Hajek-LeCam 
bound we use the concept of approximate Blackwell-sufficiency. 

1. INTRODUCTION 

The lower Hajek-LeCam bound is a central s tatement of asymptotic decision theory. 
The traditional way (see Strasser [7], LeCam [2]) to establish this statement is carried 
out in the following way. Using the concept of ^-deficiency, a metric is introduced 
which describes the so-called strong convergence of statistical experiments. A first 
step to the Hajek-LeCam bound is the relation between randomisation and deficien­
cy. A next step concerns the fact tha t for finite experiments the strong and weak 
convergence coinci le. The combination of these two results leads to the existence of 
accumulation points of sequences of decisions which belong to a weakly convergent 
sequence of experiments. This result is the key to prove the Hajek-LeCam bound 
for the maximum risk of a sequence of decisions. 

This way to get the Hajek-LeCam bound is well developed in the monographs by 
Strasser and LeCam. This approach is going parallel with a systematic development 
of the whole asymptotic decision theory. The results provide a deep insight into the 
structure of convergent sequences of experiments. But for lectures in mathematical 
statistics this way is connected with some disadvantages. A lot of sophisticated 
results from analysis, topology and other fields are necessary for these considerations 
although several interesting "by-products" are obtained. Therefore a direct and 
simplified approach to the Hajek-LeCam bound is desirable. 

Such simplified and direct approach is due to Millar [4] and LeCam [2] provided 
the infimum is taken over all decisions in the Hajek-LeCam bound. Sometimes the 
optimal decision for the limit experiment may be found only in restricted classes 
of decisions. The approach given by Strasser also provides lower bounds in this 
situation. Millar pointed out that his simplified approach is not applicable to the 
more general situation of restricted classes of decisions. 
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The aim of the paper is to simplify Strasser's approach to the Hajek-LeCam 

bound and to avoid topological assumptions on the space of decisions. 

2. APPROXIMATIONS O F F I N I T E E X P E R I M E N T S 

Let (Q,F) be a measurable space and 0 ^ 0 an arbitrary set. A statistical exper­

iment with parameter set O is defined to be a tripel E = (Q,F, Ptf,$ G 6 ) where 

(Q,F) is the sample space and V = (Ptf)$ee is a family of distributions on (Q,F). 

The experiment E is said to be finite if | 0 | < oo. 

Let \\p—v\\ = 2 s u p ^ e | ? \p(A)—v(A)\ be the variational distance of two probability 

measures p,v on (Q,J-). Given a further measurable space (R,7Z) and a stochastic 

kernel K : (Q,F) => (R,7Z), we denote by Kf the application of K to a bounded 

7^-measurable function / and by Kfi the application to a distribution p on (Q,F). 

Note that Kf is a bounded function on (Q, T) and K\i is a distribution function on 

(R,7Z). 

Denote by 

я(ЛQ)= [j(p"-я")2dџ 

the Hellinger distance of two distributions where p. is a dominating cr-finite measure 

and p, q are the corresponding densities. The following inequality is well-known (see 

Strasser [7]) 

H(P,Q)<\\P-Q\\l. (1) 

Furthermore by Csiszar's inequality 

H(KP,KQ)<H(P,Q) (2) 

for every stochastic kernel where equality holds iff the kernel K is sufficient for 

{P, Q}. For details we refer to Csiszar [1] and Liese, Vajda [3]. 

If T : (Q,F) —*• (R,7Z) is a sufficient statistic for (P^)^g© and (R,7Z) is a Borel 

space then there is a stochastic kernel L : (R,7Z) => (Q,F) such that P# = L(P$ o 

T - 1 ) , i.e. T is Blackwell-sufficient. 

Without any conditions on the measurable space (R, 7Z) regular conditional distri­

butions do not exist so that not every sufficient statistic is also Blackwell-sufficient. 

This leads to the following definition. 

Def in i t ion 2.1. Let (Q, T, P*, t? G 6 ) be an experiment and T : (Q, T) - * (R, 7Z) 

a statistic. T is called approximate Blackwell-sufficient if for every £ > 0 there is a 

stochastic kernel L£ : (R,7Z) => (Q,F) such that 

H P t f - L e ^ o T - 1 ) ! ! ^ for every tfeG. 

Let A(Q) be the system of all finite subsets of 6 . 
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Theorem 2.2. A statistic T : (Cl,T) —* (R,TZ) is sufficient for the experiment 
(Q, T, P,?, i? 6 0 ) iff T is approximate Blackwell-sufficient for every finite subexper-
iment (Q,T, P#,ti e J), Je A(B). 

P r o o f . Assume T is approximate Blackwell-sufficient for every pure subexperi-
ment, fix t?i,t?2 € 6 and set J= {i?i,i?2h Then by Csiszar's inequality (2) 

H(P,loT-\P^2oT~l)<H(Pdl,Pd2). (3) 

For every £ > 0 there is a stochastic kernel Le : (R,1t) =£• (Cl, T) such that 

\\Pdi-Lt(P^oT~x)\\<e, i = l , 2 . 

Consequently by (1) and (2) 

H(Pdl1P<,a) < H(Pt51,Le(P^1oT-1)) + H(Le(Pt?1oT-1),L£(P,2oT-1)) 

+H (L e (P t f 2 oT - 1 ) ,P t ? 2 ) ) 

< 2 v ^ + L / ( P ^ 1 o T - 1 , P l 9 2 o T - 1 ) . 

As e > 0 was arbitrary we obtain in conjunction with (3) 

Consequently T is sufficient for {Ptf.,Ptf2}. As {^i, ^2} was arbitrarily chosen we 
see that T is sufficient for (P#)t?e©-

Assume now that T is sufficient and fix J 6 A(Q). Let \J\ be the number of 
elements of J and put 

As P = (P^)^GJ" a n d A* a r e equivalent, we obtain from the Halmos-Savage-Theorem 
that there exist versions g# of the densities -jrjj- which are o-(T)-measurable. Con­
sequently, there exist functions h# : R —> Mi being IZ-Bi measurable so that 
g# = h$(T). The or-algebra 1Zh = a(h&,d £ J) is countably generated. Hence there 
are finite algebras 1Z\ C 7̂ 2 Q • • • with 1lh = a (Un°=i ^n) - But then .En = T - 1(7£n) 
is an increasing sequence of algebras with 

trf Q ^ J =T-1(7e,)-

Put gnj = E^(g^\Tn). Then Levy's martingale convergence theorem implies 

lim Eplgnt - gd \ = 0 
n —>oo 

for every d £ J, i.e. for any e > 0 there is a nE 6 W such that 

/ 
\9n,ů(x)-gů(x)\fi(áx)< - (4) 
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for every n > ne and every ! ? € / / • Let Ip denote the indicator function of the set 
B. Denote the atoms oi1Zn by BU)i, i = 1 , . . .mn, put .4n,; = T~ 1 (H n , i ) G •?>., and 
introduce the stochastic kernel Le : (R,7Z) => (^,-T) by 

L..(ar,.A) £ 
i : / ł ( A n , , ) > 0 

џ(AПAП)i) 

ß(An,i) 
Ipnti(x) + fji(A) INn(x), (5) 

where N„ = {j{Bn>i : fi(An)i) = 0} and p, is any fixed probability measure on 
(Q,T). Then for any A G T holds 

JLt(x,A)(P<> oT^Xdx) - P*(A) 

/ L£(T(u>), A) gd(u>) n(du>) - / ^(u;) / i (du;) 

A 

I L£(T(u),A)(g#(ijj) - gn)ti(u}))n(du>) + (gn>#(u}) - g#(Lu)) fi(du>) 

A 

/ Le(T(w), A)gnt#(u>) fi(du) - f gn^(ui) fi(du>) + 

and by (4) and (5), 

< 2 І + џ(AПAП)i) 

i:џ(Aщ„)>0 ^ A n ^ A 

E <7n,tf(w)/z(du>) - l gn)ů(u))n(du>) 

As r̂ n,!? is .Tn-measurable, this function is constant on every AH)i which shows that 
the second term on the right side is zero. Hence \\L£ (P# oT1"1) — P$\\ < e, "d G J.d 

Let X be a compact metric space and B be the cr-algebra of Borel sets. Suppose 
f$ :X—* [0, oo), d G J, is a family of bounded and continuous functions. Denote by 
S the set of all probability measures a on (X, B) such that 

/ fůda 1 for every tf E J • 

For cr Є <5 we set 

QoAB)= f Uá(T 

The symbol => will be used for weak convergence of distributions. 

T h e o r e m 2 . 3 . Assume \J\ < oo and a;an G <5. If crn => a as n —>• oo, then for 

every £ > 0 there exist ne and stochastic kernels A'n,e
 : (%,&) => (%,&) s u c h that 

\\Qon,d -Kn^QafW <£ 
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for every n > n£ and d G J • 

P r o o f . Let Q be the metric in X and denote by Sr(x) = {y : Q(y,x) < r} the 
open sphere with centre x G X and radius r. For every fixed x E X the set 

{r : a({y : Q(y,x) = r}) > 0} 

is at most countable. Consequently for every 8 > 0 any compact set K may be 
covered by a finite number of spheres with diameter not exceeding 8 and being 
^-continuity sets. As the system of (--continuity sets is an algebra we see that the 
compact set X may be covered by a finite number A\,..., A^ of disjoint cr-continuity 
sets with diameter not exceeding 8. As the /,? are uniformly continuous on X for 
every e > 0 we find an 8£ > 0 such that Q(X, y) < 8£ implies \f#(x) — f$(y)\ < £• 

Choose Xi G Ai and set 

ІV 

9ů (x) = У^U(xi)ІAj(x) 
i = í 

The algebra A generated by A\,..., AN is finite. Consequently there exist stochastic 
kernels Knie,Ke: (X,A) => (X,B) such that 

í Kn<є(x,B)an(dx) = an

ґAГ)B) 

A 

í Kє(x,B)a(dx) = a(AПB) 

for every A G A, B G B. Then Kn<eg = g <rn-a.s. and Keg = g <r-a.s. for every 
A-measurable g. Hence 

\(Kn,eQ#fé)(B)-Qentů(B)\ = I (KПiЄf#)(x) a(dx) - j fý(x)an(dx) 

< 2є + j (KПiЄgtì)(x) a(dx) - / ( I i П i f ^ ) ( x ) an(dx) 

< 2e + 2 sup \gt(x)\ sup \a(A) - an(A)\ 
x£X A£A 

as Kni£gi} is A-measurable. Since A is finite and a(dA) = 0 for every A G A we 

obtain sup \&(A) — On(-4)| —• 0 which proves the statement for compact X. • 
A£A n~*co 



482 F. LIESE AND I. STEINKE 

3. T H E H A J E K - L E C A M BOUND 

Given the experiment E = (Q, F, P$, $ € O) and J ~ A(Q) we set uj = T-̂ T J2 1V 

Denote by S j the set of all mappings x^ ::J—* [0,oo), J with ]T) x,? < \J\. Dj is 

a compact metric space, its cr-algebra of Borel sets is denoted by Bj. Introduce the 
.T-#7-measurable mapping Tj by 

H P 
(->("))* = d^(w)> tfe/J. (6) 

The statistic Tj is sufficient for P&, fl £ J• 
The notion of weak convergence of experiments is basic in asymptotic decision 

theory. Let E = (Sl,F,P$,d ~ O), En = (~\niFn,Pn^,d € O) be experiments. En 

is called weakly convergent to E, written En => E, if for every finite subset J C 6 

Cn,.7 ==> ~j 

as n —+ oo, where crnj = Vn,J°T~j, ~j = UJOTJ are the corresponding standard 

measures. 

Now we are able to establish the randomisation criterion for weakly convergent 
experiments. 

T h e o r e m 3 . 1 . Let E- = (Qn,Fn,Pn^,^ 6 0 ) , E = (Q,F, P^,d e Q) be experi­
ments so that En converges weakly to E. Then for every J ' A(Q) and every e > 0 
there exists a stochastic kernel Kn<Etj : (Q,F) => (Qn,Fn) so that 

HPM ~ Kn,e,jPd\\ <£ 

for every •d G J and every sufficiently large n. 

P r o o f . The proof is divided into several steps. 
Let THIJ and Tj be defined as in (6). 

1. Denote by ~j^ the projection of YJJ into the i9th coordinate. ~j,$ is a 
bounded continuous function and we have 

*{Pn,*oT-j) d(P,oTj') 
j = ~J,# , j = ~JJ • 
dcrn,j acrj 

Hence with f# = "RJQ and the notations in Theorem 2 .3 : 

Pn,d ° Tn~J = Qon,J,tf , Ptf O Tj = Qoj,ti • 

From Theorem 2.3 we obtain the existence of a stochastic kernel Kne : (Ej, Bj) =>• 
(T,J,BJ) such tha t 

g 
\\Q*u.a,4 -K-,cQ-j,A\ < 2 
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for every d ~ J and every sufficiently large n. 

2. Apply Theorem 2.2 to T = Tn>j, (R,R) = (EJ,BJ) and Qan,j,d = Pn,o ° 
T~j\ There exist stochastic kernels Ln>e : (T,J.,8J) => (Qn,Tn) so that 

\\Pn,ti - Lnt£QantJt#\\ < -

for every sufficiently large n and every d ~ J. Let b^3 '• (Q,F) => (T,J,BJ) be the 
kernel induced by the T-Bj measurable mapping Tj and put 

Knte,J = Lnt£Knt£8Tj • 

Then \\Pnt$ — Knt£tjPo\\ < £ for every d ~ J and sufficiently large n which completes 
the proof. • 

Let (Q,T) be a measurable space and ca(Q,T) the family of all finite, signed 
measures defined on (Q,T). If /i = / i + — //~ is the Hahn-decomposition of (A € 
ca(Q,.E) and |//| = / i + -f a~, then ||/^|| = |/^|(^) is said to be the total variation of 
[i. ca(Q, T) equipped with the total variation as norm is a Banach space. Note tha t 
| P — Q\(Q) is the variational distance if P and Q are probability measures on T. 
Given an experiment E = (Q,T,V), we fix a linear subspace M C ca(Q,T) so tha t 

(Ml) VCM, 

(M2) if ft € M and v < p, then v ~M. 

M(E) is defined to be the family of all linear subspaces of ca(Q, T) satisfying (Ml ) 
and (M2). Let // = fj,+ —fi~ be the Hahn-decomposition of fi 6 ca(Q, T). As / i + <C ^ 
and /i~ <C /-, it fol.jws from (M2) tha t /J. ~ M implies |/i | G M. 

Commonly, the L-space of the experiment E = (Q, T, Pti,ti ~ O) is defined by 

L(E) = {v : n~ca(Q,T),V~ C /z1} , 

where p = {P,?,i9 G 0 } and VL = {v : i/ 1 g for every £ 6 V}. Since p C L(E) 
and v <^ fi imply / z 1 C vL, it is easy to see that the L-space of E fulfils (Ml ) and 
(M2). 

Assume E) is a given decision space equipped with a er-algebra V. Let C be 
a linear subspace of 1B(T>), the space of all bounded, D-measurable, real-valued 
functions, and M ~ M(E). Let | | / | | denote the supremum norm of / . By B(C,M) 
we shall denote the set of all generalized decision functions, i.e. the set of bilinear 
functions (3 : C x jvf —•> JR\ which are supposed to have the following properties: 

(DI) |«/.rtl<ll/ll«IH. 
(D2) P(ft")>Q i f / > 0 , / i > 0 , 

(D3) «!,/-)-= MO)-
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Obviously, every stochastic kernel K : (£l,F) => (D,V) defines a generalized deci­
sion function by 

fa(f,li) = J J f(x)K(u>,dx)ii(dw) 

for any M and C, even if M = ca(Q, T) and C = B(V). 
Let Co C (i, Mo C M be subspaces. On B(C,M) we introduce the topology 

r(Co,Mo) as the weakest topology for which all mappings (3 —> (3(f,/i), / € Lo, 
At E jVfo, are continuous. 

Proposition 3.2. B(C, M) is convex and compact w.r.t. the topology T(CQ,MQ). 

If Co = C and .M0 = .M, then the statement of Proposition 3.2 follows with 
the same arguments as in the proof of Strasser [7], Theorem 42.3. To establish 
Proposition 3.2 we have only to remark that B(C,M) being compact w.r.t. to 
T(C,M) is again compact w.r.t. the weaker topology T(CQ,MQ). 

It turns out that every (3 £ B(C,M) which is defined only for / E C, /i E M, 
may be extended to a bilinear functional /? which is defined for every // E ca(Q,!F) 
where the properties (D1),(D2) and (D3) are preserved. 

Proposition 3.3. Assume that M E M(E). Then for any (3 E B(C,M) there 
exists a ^ G B(C, ca(£l, J7)) such that 

?( / , / - ) = «/,A«) V / e L V / i G M . 

P r o o f . Let K be a finite subset of M. Then by assumption (M2) 

t-/c = ]V H eM. 

Any /i E ca(f2, T) can be decomposed into //£- being absolutely continuous w.r.t. /i/c 
and /i^- being singular w.r.t. AtxS 

At = //£ + fi'K . 

Let î o E At be any fixed probability measure. For any At £ ca(Q, T) we define by 

a bilinear functional on £ x ca(Q,.T). It is easy to show that /?£ E B(C, ca(Q,, T)). 
Moreover, if // E /C, then follows At̂  = At a n d At̂  = 0. Hence 

W,li) = P(f,t*) V / E L , V/iE/C. 

Since #(£, ca(fi, T)) is compact w.r.t. the weak topology T(CQ,MQ) for any fixed 
subspaces CQCC and MoQM, there exists an accumulation point (3EB(C, ca(Q,T)) 
of the net (P)c)K.£A{ca{p,,T)), where A(ca(Q,!F)) is the family of all finite subsets of 
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ca(£l,jF), which is directed by inclusion. By definition, for any e > 0, any / E C, 
and any \i E M there exists a set Ke E A(ca(Q,J7)) that contains fi so that 

\hf, /-) - «/, /-)l = IW, *-) - Act/, *-)!<* 
for every if D A'e. That completes the proof. • 

Suppose now that En = (Cln, ?n, Pn,d, t? E 0 ) is a sequence of experiments which 
weakly converges to the experiment E = (f2,.T, P^,"d E O). Let M E jVf(L'), 
-Mn E M(En), and let /?n E B(C,Mn) be any sequence of generalized decision 
functions. (3 E B(C,M) is called an accumulation point in distribution of {/?nh if 
for every 3 E A(Q) and every finite subset G C C there exists a sequence n'(3, G) 
so that 

lim Pn>(g,Pn>,0) = P(g,P#) 
n' —»oo 

for every g £ G, d E 3-
The existence of accumulation points plays a key role in the proof of the Hajek-

LeCam bound for weakly convergent sequences of experiments. 

Proposi t ion 3.4. Assume that En => E, M E M(E), and Mn E M(En). Then 
every sequence {fin}, (3n E B(£,.A4), n £ N, has an accumulation point. 

P roof , (based on Strasser [7], Theorem 62.3) Let 6 > 0. According to The­
orem 3.1, for any 3 E A(Q) there exists a stochascic kernel Knjtj : (Q.,T) => 
(ClnjTn) so that 

\\Pn,4-Kn,6,jP*\\<6, V t fEJ , (7) 

for every sufficientl" large n . 
Denote by /3n E B(C,ca(Q.n,Tn)) an extension of @n E B(C,Mn) according to 

Proposition 3.3 and introduce /3n<j E B(C,M) by 

Pn,j(f,n) = #»(/ , Kn,6,jH) , / E L , H €M . 

Let £ 0 C £ and A4o C .A4 be any subspaces. Then the compactness of B(C, M) 
w.r.t. T(CQ,MQ) implies that for any net ((3n,j)neiN there is an accumulation point 
j3j E B(C,M) and for the net (flj)jeA(e) there is again an accumulation point 
/? E 5(£,A4). Here ^4(0) is supposed to be directed by inclusion. 

It is to be shown that (3 is an accumulation point of (/3n)neiN in distribution. Let 
Jo E -4(©), G C C a finite subset and e > 0. The proof is complete if we show that 
for any no E -#V there is a ne £ W so that ne > no and 

IA,.(LPn„#)-W,P#)|<e 

for every f € G and every d £ 3 • 
Since /? is an accumulation point of [3j, 3 E A(Q), there exists a :/, E ^4(0), 

Jo C :/., so that 

ifo(LP#)-/?(LP#)i<! w 
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for every / G G and every i? e Jo- Take a = max{JJ/|J0J/ e G} and 8 = e/(3a). 
Choose ni sufficiently large so that the kernel Kn,s,je from (7) fulfils 

\\Pn,#-KnAJcP#\\<~ (9) 

for every t? G Jo and n > ni< For (5jt is an accumulation point of Pn,Jt> there exists 
a nE > maxjno, ni} such that 

\Pne,Je(f,P,)-PJc(f,P#)\<£- (10) 

for every f E G and every d E Jo- Consequently, 

IA..(/.^)-A.,^(/.^)l '= ^.(/Pn.^)--^.^,^.,^-^)! 
< .|/||«||P».,« - Kne,6,Jc PA\ < *« = | ' (-1) 

The triangle inequality in conjunction with (8), (10), and (11) implies 

\m P*) - & . ( / . Pne,#)\ < W(f, P«) - & ; ( / , ft). + |flj.(/. ft) - 0ne,Je(f, P*)\ 

+ IA...j'.(/,P«)-A».(/,P».,«»)|<«! 
for every i?£ Jo and every f EG which completes the proof. • 

Assume that we are given a decision space (E),V) and a family {W$,-d G 9 } C 
C of loss functions. Let En = (Qn,Tn,Pn,^^ G 0 ) , E = (n,f,P#,ti G 6 ) be 
experiments and fix Lo Q C, Mo CM in order to introduce the topology To = 
T(C0,MO) for B(C,M). 

Theorem 3.5. (Hajek-LeCam bound) Suppose that En => E and assume that 
f3n G B(C,Mn) is a sequence of generalized decision functions. If Mn G M(En), 
M G M(E), 6o C 0 , and H = n({0n,n G IN}) is the closed convex hull of the 
accumulation points of {{3n} w.r.t. TQ, then 

liminf sup pn(W$, Pn,*) > inf sup /?(Wtf.ft). 

The p r o o f of Theorem 3.5 may be carried out in the same way as in Strasser 
[7], Theorem 62.5. The essential part of this proof is the existence of accumulation 
points which was established in Proposition 3.4. It is clear that the right-hand side of 
the Hajek-LeCam bound depends on the choice o f £ o C £ and Mo C M because Lo 
and jVf0 have influence on the structure of the topology r(Lo, j^o) which determines 
the set n. 

If C is large enough, the definition of generalized decision functions may be ex­
tended to measurable functions bounded from below, in the same way as was done in 
Strasser [7], Definition 43.1. Then the result of Theorem 3.5 is valid for W& bounded 
from below. 

(Received April 26, 1996.) 
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