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KYBERNETIKA ČÍSLO 5, ROČNlK 5/1969 

On the Synthesis of Stationary Dynamical 
Systems 

SlLVIU G U I A S U 

In this paper the Wiener-Hopf equation is examined from the point of view of the distribution 
theory. The application of the solution of this equation to the synthesis of the stationary dynamical 
systems is given. 

Let 3 denote the set of all complex-valued infinitely differentiable functions on 
real line having compact supports and equipped with the topology of Schwartz [8]. 
A random distribution X, as defined by Ito [5], is a continuous linear map of 3 
into the L2 of some probability space {Q, Jf, P}. Let <<p,/> and X(p denote the 
value of the scalar distribution / and the value of the vectorial distribution X respec
tively for the function cp e 3. We put E[X</>] for the expectation (mean value) of the 
random variable Xcp with respect to the probability measure P. Then the mean mx and 
the covariance Kx of the random distribution X are defined by 

W, ™x> = E[X<o] , 

Kx(<p,t) = E[(X<p)(Xt)] 

for every cpe 3, i// e 3. The random distribution X is stationary if for any real 
number h we have 

<-t,/P, m x > = <>, m x > , 

M ^ P , T*tfO = M<p, ^) 
where the translation operator rh is defined by 

Th Cp(t) = q>(t + h) . 

The covariance Kx(<p, ij/) of a stationary random distribution X is a hermitian 
bilinear functional, continuous separately in each coordinate and invariant under 
all translations. Hence, by a consequence of the theorem of kernels of Schwartz, 



there exists (Gelfand, Vilenkin [4]) a distribution kx on 3 such that 

Kx((P, $) - (9 * $, kx> 

where $(s) = &( — s) and * is the convolution. We shall call kx also the covariance 
distribution or sometimes simply the covariance of X. 

Now, let be two random distributions X and Y. We define the mutual covariance 
between X and Y and we denote it by KXY, the hermitian bilinear functional, conti
nuous separately in each coordinate 

KX ¥^^)= EliXcp)^)], 

where (p e 3, \j/ e 3, and we suppose that this mutual covariance is invariant under 
all translations, i.e. 

KXy(<J>> i/0 = KXY(Tft<p, xh4>) 

for all real numbers h. Then there exists a distribution kXY on 3 such that 

&XY((P, "A) = <<P * f, kXY} . 

A stationary dynamical system if is a mathematical object iV = \X, w, Y] 
(see Fig. 1), where X is a stationary random distribution — the input of the dynamical 

Fig. 1. 

system —, Y is also a stationary random distribution — the output of the dynamical 
system —, and w is a scalar distribution with compact support — the characteristic 
of the dynamical system — such that the correspondence between output and input 
of the system is given by 

Y = w * X . 

We suppose that the random distributions X and Y have mean values equal to zero 
and that they are stationarily correlated, i.e. with mutual covariances KXY and KYX 

invariant under all translations. 
The synthesis problem for dynamical systems is the following: to find the charac

teristic w, and sometimes the input I of a dynamical system if = \X, w, Y] such 
that the output Y would be "near" to the ideal output Z. In this direction we will 
prove two theorems. 

Let "/" = \X, v, Z] be a stationary dynamical system with 

Z = v*X 

where v is a scalar distribution with compact support and X, Z are stationary random 
distributions, stationarily correlated. Then we prove 



380 Theorem 1. 

(1) kzx = v * kx . 

Proof. For every q> e 3), ij/ e 3 we have 

(2) <<? * ¥, kz*> = Kzx(cp, rp) = E[(Zcp) (*£)] = 

= E{[(V * x) y] (x$)} = E[(X«~.) (xj)-] = <?. * f,kxy 

where 

(Pi(s) = <<P(t + s), D(0> • 
But 

(3) (cpx *^ ) ( s ) = I* V ( s - 0 ^ ( 0 d€ = [ <<K< + s - «). K0> < ^ ) d ^ = 

= / f %(f + s - <) $(£) ^ <t)\ = <(<? *$)(t + s), «<.)> . 

Then from (2) and (3) we obtain: 

<<p * $, kzx> = <(<p. * ^) (s), kx(s)> = 

= «(<P *<£)(* + s), u(f)>, kx(s)> = <<p * f, t, * kx> , 

i.e. 
kz x = o * kx , 

q.e.d. 

Remark. If X and 7 are usual stochastic processes and the distributions kzx, v and kx are 
defined by the locally integrable functions kzx(z), v{z), kx(z), respectively, the equation (1) is the 
well known Wiener-Hopf equation (Lee [6]). 

Let now if = [X, w, Y] be a stationary dynamical system, where the characteristic 
w has compact support and X, Y are stationary random distributions, stationarily 
correlated. Let also be the desired ideal output Z, a stationary random distribution, 
so that X and Z are stationarily correlated. Then 

Theorem 2. / / the scalar distribution v with compact support is the solution 
of Wiener-Hopf equation 

(4) kzx = v * kx 

and if for every q> e <2> we have 

(5) | <<p, kz - v * kxz> | < e 



then taking w = v we obtain 3.1 

|<</>, kz_y>| < e . 

Proof. From the definition of covariance, for every <p e 2, \ji e 3) we can write 

(6) (<p * IA, kz_y> = Kz_Y(cp, xjf) = E[(Zcp - Yep) (Zij, - Y^)] = 

= E[(z<p)(ziA)] - £[(z<p)(m_ ~ £[(»)(-¥)] + EK^)(W)] • 
But 

Y= w * X 
and if we put 

(p^s) = <<?(< + s), w(0>, ^i(s) = <>A(t + s), w(t)y 
because 

(</>i * f ) (s) = <(<? *$)(t + s), w(t)y, 

(<P *"^,) (s) = <(<? *~$) (t + s), w\t)y 

we have successively 

(7) E[(Z<p)(Z^)] = <<p*f ,k z >, 

E[(Z<p) (Yф)] = E{(ZФ) [(w * X) <A]} = ЩZę) (Xф,)] = 

= <<P * Ф, kzx> = <<P * Ф, w * kz_> . 

E[(Y<p) ( Щ ] = E{[(w * __) «p] (Źÿ)} = E[(Xęi) (Zф)] = 

= <ф! * ф, k x z > = <ф * ф, w * kxzy , 

(10) E[(Yp) (?£)] = E{[(w * Z) <?] [(w * X) iffl = E[(__9l) ( X ^ ) ] = 

= <<p1 * y/u k^> = <<p * iff1, w * kx> = (<p * f, w *w * kx> . 

From (6) —(10) we obtain for the covariance k z _ r of the error Z — Ythe expression 

kz_y = k2 — w * kxz — w * kz x + w * w *kx . 

Further, from (4) and by a simple calculation, we can write 

(11) kz_y = kz - v *kxz + I 

where 

(12) I = (v - w) * kxz + ~v * (w - v) * kx + 

+ (.*_ — w * v — w*v + w*w)*kx. 



382 Now, let !F be the Fourier transform and if we put 

p = ^(v), g = ^ ( w ) , Sx = ^(kx), Sxz = ^(kxz) 

we have from (12) 

= (P - «) Sxz + P{l - p)Sx+ \p - q\2 Sx . 

Obviously, if w = v, where v is the solution of Wiener-Hopf equation, then p = q 
which implies that #"(/) = 0 and finally that 1 = 0. Now, from (11) and (5) we 
obtain that 

|<*p, kz_y>| < e 
- for every i p e ® . Q.e.d. 

Remark. The Wiener-Hopf equation (4) and the condition (5) are non-contradictory. If we 
have a dynamical system "f" = [X, v, Z] and if there is the inverse dynamical sys tem'^" - 1 = 
= [Z,v~1,X], then from the theorem 1 we have 

kzx = » * kAT 
and 

kxz = P'1 *kz i e - k z - v * kxz = ° • 

Announcement. I would like to thank to Prof. R. Cristescu for general encouragement and 
specific advice. 

(Received July 17th, 1967.) 
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O syntéze stacionárních dynamických systémů 

SILVIU GUIA§U 

Budiž stacionární dynamický systém Ý~ = [X, v, Z], kde vstup X a výstup Z 
jsou stacionární náhodné distribuce, které jsou stacionárně korelované a mají 
střední hodnoty rovné nule, a charakteristika v je skalární distribuce s kompaktním 
suportem, takže Z = v * X (* znamená konvoluci). Potom charakteristika v je 
řešením rovnice 

(1) kzx = v * kx , 

kde kx je kovariance X a kzx je vzájemná kovariance X a Z. A opačně, je-li řešení 
v rovnice (l) charakteristikou dynamického systému [ Z , v, Y] a je-li \(cp, kz — 
— v * kxz}\ < s pro každé <p e 3, potom |<>, k z _ y > | < e pro každé <p e 3), kde 3) 
je množina všech komplexních neomezeně derivovatelných funkcí na reálné přímce, 
které mají kompaktní suporty. 
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