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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 3 

DEADBEAT PERFORMANCE 
UNDER MEASUREMENT DYNAMICS 

VLADIMÍR KUČERA, HOANG MINH HAI 

The possibility of achieving a deadbeat regulation and tracking in linear systems independently 
of their initial conditions is investigated. The attention is focused on single-input single-output 
control systems incorporating a dynamical sensor in the loop. A necessary and sufficient condition 
for a deadbeat controller to exist is established. All deadbeat controllers are described in paramet­
ric form and the one which yields the shortest transient is identified. 

1. INTRODUCTION 

One of the fundamental problems associated with the discrete-time control of linear 
(either discrete or continuous) systems is that of driving some signal to zero in finite 
time and holding it there for all discrete (sampling) times thereafter. 

The problem is simple if it is the system state that is to be driven to zero. The 
state deadbeat controller is independent of the initial state of the system and results 
in a nilpotent state trasition matrix. 

A more difficult problem is that of deadbeat regulation or tracking, when one 
wishes the system output either to be zeroed or to track a reference signal in a deadbeat 
fashion. Such a deadbeat controller is a dynamical system which may depend on the 
initial states of the system to be controlled and reference generator. Moreover the 
question of causality and stability arises for the closed loop. 

The possibility of achieving a deadbeat regulation and tracking independently 
of the initial conditions was investigated by Kucera [2], Wolovich [4], Eichstaedt [1] 
and Kucera and Sebek [3]. The last paper provides a necessary and sufficient condi­
tion for the existence of deadbeat controllers under the constraint of loop causality 
and stability. 

The present paper studies the effect of measurement dynamics upon the deadbeat 
performance. Such a situation arises when the response of the sensor is not instantane­
ous but contains some transients that are not negligible with respect to those of the 
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system to be controlled. This additional dynamics within the feedback loop makes 

the problem much more difficult. We propose here a simple solution for the case 

of single-input single-output systems which is based on polynomial algebra. 

2. FORMULATION 

Consider the system to be controlled called hereafter plant 

(1) 

another system called sensor 

(2) 

and the reference generator 

(3) 

xt+1 = Apxt + Bput 

Уt = Cpxt + Dput 

vt+i = Asvt + Bsyt 

zt = Csvt + Dsyt 

W ( + i = AtWt 

rt = CTwt 

for t = 0, 1,2, .... Here ut is the control, yt is the output, zt is the measurement and 

rt is the reference at time t, all of them being scalar quantities. 

The deadbeat controller is defined as a system of the form 

(4) s t + i = Asst + Biczt + B2crt 

ut = Ccst + Dlczt + D2crt 

which makes yt follow r, exactly after a finite time t, independently of x0, v0, w0 

and s0. As an additional requirement, the composite system (1) —(4) shown in Fig. 1 

is to be causal and stable, i.e. its free motion should start no earlier than at t = 0 

and should converge to zero when f -> oo. 

Write x for the sequence {x(}f°i_„ and define the unit delay operator d: xt -> xt{ t . 

Controller 

= H/G 
V„ 

Plant 

- Q 

C/A 

Sensor 

Fig. 1. Closed loop system. 
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Then ( l ) - (3 ) give 

A(d) y = B(d) u + C(d) 

D(d) z = E(d) y + F(d) 

G(d) r = H(d) 

where A through H are polynomials in d given by 

(5) Dp + Cp(I-Apd)^Bpd = ^ 

(6) Cp(/-Apd)-1x0 = ^ ) 
A'd) 

(7) Ds + C/I-Asd)-1Bsd = ^ 
. D(d) 

(8) Cs(/-A8d)-^0 = 5 | 
D(d) 

and 

(9) c/j-AIdy>Wo = ^± 
G(d) 

The polynomial pairs A, C and D, F and H, G are assumed to be coprime for at least 
one x0, v0 and w0. 

Accordingly the controller will be sought in the form 

P(d) u = - Q(d) z + R(d) r + S(d) 
where 

(10) Dic + Cjl-AcdY'BlQd = - ^ 

(11) D2c + CC(I - AJ)'1 B2cd = & 
P(d) 

(12) Cc(I-Acd)->s0=
S^y 

We say that polynomial A(d) is causal (or stable) if the sequence obtained by 
expanding 1/A into ascending powers of d is zero for negative powers of d (or con­
verges to zero). Note that A, D, G and P are all causal polynomials. Denote by B0 

and D0 the greatest causal stable factors of B and D and write 

(13) B(d) = B0(d) B'(d) 

D(d) = D0(d) D'(d) . 
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3. DEADBEAT CONTROLLERS 

The deadbeat regulation and tracking requires that the error 

e = r — y 

be a finite sequence for every x0, v0, w0 and s0, i.e., for every polynomial C, F, H 
and S. A simple algebra yields 

(14) e - ° ^ C + BQ~~F-
ADP + BEQ ADP + BEQ 

BD s + (i BDR ^H 

ADP + BEQ V ADP + BEQ) G 

where the explicit dependence upon the argument d has been suppressed for the sake 
of brevity. 

The existence of deadbeat controllers will now be investigated. 

Theorem 1. There exists a deadbeat controller which makes the closed loop system 
( l ) - (4 ) causal and stable if and only if 
1) the uncontrollable and unconstructible parts of plant (1) and sensor (2) are stable, 
2) polynomials AD' and B'E are coprime, and 
3) polynomials B'D' and G are coprime. 

Proof. The necessity of l) is clear. As for 2), suppose that e is a finite sequence 
for every C, F, H and S. Then (14) implies that 

BD 

ADP+ BEQ 

is a polynomial, i.e. ADP + BEQ divides BD. Moreover ADP + BEQ is causal 
and stable for a causal and stable closed loop. Hence it actually divides B0D0, i.e. 
there exists a polynomial Tt such that 

(15) (ADP + BEQ) T, = B0D0 . 

This means that the gratest common factor of AD and BE divides B0D0. Then 2) 
follows on using (13). To prove the necessity of 3) suppose that e is a finite sequence 
for every C, F, H and S. Then 

BDR \ 1 

ADP+ BEQ) G 

is a polynomial. Using (15), G is seen to divide 1 — B' D'RT^, i.e. 

1 - B'D'RTj = GT2 

for some polynomial T2. Hence the claim follows. 
The sufficiency of l ) - 3 ) will be proved by construction. Let 

(16) P = B0P', Q = D0Q' 
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and let P', Q' and R, Tbe any polynomials satisfying the equations 

(17) AD'P' + B'EQ' = 1 

(18) B'D'R + GT = 1 . 

These equations are solvable whenever 2) and 3) hold. Moreover P' can always be 
taken causal. Then (14) gives 

(19) e = -D'P'C + B'Q'F - B'D'S + TH 

so that P, Q and R define a deadbeat controller. The closed loop system is causal 
and stable by 1) and by causality and stability of 

ADP + BEQ = B0D0 . • 

Theorem 1 admits a simple intuitive interpretation. In addition to l), condition 2) 
requires stability of the uncontrollable part of the tandem plant-sensor. In other 
words, only stable common factors between A and B, B and D, and D and E are 
allowed. Otherwise the closed loop system cannot be stabilized. Moreover 2) also 
requires complete constructibility of the tandem plant-sensor. This rules out any 
common factor between A and E; otherwise the deadbeat performance is out of reach. 
Finally condition 3) rules out unstable common factors between G and BD. Thus 
deadbeat tracking is possible only if the reference generator and sensor have no 
unstable poles in common and if the unstable poles of the reference generator are 
disjoint with the unstable zeros of the plant. 

The sufficiency part of the proof provides a simple constructive procedure to find 
a deadbeat controller. There are good many other deadbeat controllers, however. 
To delineate all of them let Bx and Dx be any, not necessarily the greatest, causal 
stable factors of B and D, respectively, such that B' and D', defined by 

(20) B = BXB' , D = DXD' 

satisfy the hypotheses of Theorem 1. The family of deadbeat controllers is then 
given by 

P = BXP' + BEV 

(21) Q = DXQ' - ADV 

R = R + GW 

where P', Q' is a particular solution of equation (17) and R is a particular solution 
of equation (18). The polynomials Vand Ware free parameters but such that P is 
causal. 

It is to be noticed that the deadbeat controller makes but e finite. All other signals 
in the composite system shown in Figure 1 are infinite sequences in general. The free 
motion of the closed loop system contains, in addition to finite modes, the infinite 
modes associated with BXDX corresponding to pole-zero cancellations in the inter-
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connection of sensor-controller-plant and, of course, all uncontrollable and un-

constructible modes of the plant, sensor and controller. 

It is sometimes of interest to have the error sequence not only finite but as short 

as possible. Then (19) indicates that we simply have to take the least degree solutions 

P', Q' of (17) and Tof (18) and use (16) to define the triple P, Q and R. Thus the 

controller has a uniquely specified transfer function which must be minimally realized 

to keep the degree of S as low as possible. 

4. EXAMPLE 

Consider a simple illustrative example. The plant, sensor and reference generator 

are given by (1) —(3) where 

Ap = - « Bv = p - a 

Cp= 1 Dp = l 

As = 0 Bs = 1 

Cs = 1 Ds =. 0 

Ar = 1 

Cr = 1 

where a and jS are real numbers such that a + p. Then (5) —(9) gives 

A = 1 + ad B = 1 + Pd C = x0 

D = 1 E = d E = w0 

G = 1 - d H = w0. 

Applying Theorem 1, deadbeat tracking is possible if and only if jS + — 1. To 

obtain the deadbeat controllers, set 

Bx = 1 B' = 1 + pd 

Dx = 1 D' = 1 

and solve equations (17) —(18). This gives the controllers in the parametric form (21) 
as 

P = i + -f-L j + (i + pd)dv 
a - P 

Q= ^ - ( l + «d)V 
a - ) 8 

R = — ^ — + (1 - d) If 
1 + f i V ; 

аnd 

T = — " (1 - ßd) W 
1 + ß ' 
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for any polynomial V and W. The shortest error sequence is obtained for V = 0, 
W = 0; namely, if the controller is realized as in (4) with 

A = - - ^ - _ . . - - « / , ( - _ - ] ' B2C=- l 

1 + 

a - PJ 1 + p a 

Cc = 1 DU = - _ _ D2c = _ _ . 
a - j 8 1 +j8 

then (19) gives 

e = _ Xo U + - _ - d ) - .„ •—— (1 + /W) - s0(l + /Jd) + 
V a - P J a - p 

If |/?| < 1, however, one can take 

BK - 1 + pd _ ' = 1 

Dx = 1 D' = 1 

and another solution is possible. Equations (17) —(18) now give the triple (21) 

P = 1 + j8d + (1 + /Jd) dV 

Q = -a - (i + ad) V 

R = 1 + (1 - d) W 

and 
T = -W 

for any polynomials V and W. The shortest error sequence is obtained again for 
V = 0, W = 0. If the controller is realized as in (4) with 

Ac = -p Bu = -aP B2c = -p 

Cc = 1 Du= a D2c = 1 
then 

e = -x0 - o-o - s0 . 

The diference between the two cases is that the former closed loop system has 
three finite modes while the latter has just two plus one infinite mode associated 
with 1 + pd, unobservable at the plant output. This makes the error sequence shorter 
but, of course, more sensitive to plant variations. 

5. CONCLUSION 

A necessary and sufficient condition for achieving a deadbeat regulation and 
tracking in single-input single-output linear systems has been established. The result 
has two distinct features: it provides a truly closed-loop solution as the controller 
is independent of the initial states and it allows for imperfect measurements modelled 
by a dynamical sensor in the feedback loop. 

All deadbeat controllers have been identified in parametric form (21) in terms 
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of two free polynomial parameters V and W for any choice of Bx and Dx in (20). 

Then it is a simple matter to single out those controllers that yield the shortest error 

sequence. They correspond to the least-degree solution of polynomial equations 

(17) and (18). 
(Received March 18, 1985.) 
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