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K Y B E R N E T I K A — V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 6, P A G E S 6 1 7 - 6 2 8 

EVALUATION OF THE REACHABILITY SUBSPACE 
OF GENERAL FORM POLYNOMIAL MATRIX 
DESCRIPTIONS (PMDs) 

G . F . FRAGULIS AND A . I . G . VARDULAKIS 

We consider the concept of Reachability for systems described by PMDs, generalizing 
various known results from the theory of generalized state space systems using time domain 
analysis,which takes into account the finite and infinite pole-zero structure of the associated 
matrix. We extend also the theory of admissible initial conditions and we introduce the 
concept of Reachable subspace for PMDs providing a precise form for all future(reachable) 
states of our system. 

1. INTRODUCTION 

Let a multivariable system described by a Polynomial Matrix Description (PMDs) 
i.e. systems of the form £ : 

A(p)ß(t) = B(p)ч(t) 
(1) y(t) = C(p)P(t), 

ii r x r 

where p := ^- is the differential operator, A(p) = £ Ajp' G 3? rx r [p], Au 3i , i = 
t=0 

0 ,1 ,2 , . . . , qi > 1 with r a n k ^ , . < r, B(p) = f 5 ' / G ^rxm[p], B, G 

3t r x m ,j = 0,1,2, . . . , (7 > 0, C(p) = EC .p 1 ' G 3T l X r [p] , d G K r a i X r , j = 
i=0 

0, 1, 2 , . . . , <xi > Q,0(t) : (0~,oo) —* 5Rr the pseudo-state of the system (J2) and 
u(t) : [0, oo) —+ 3im the control input to the system (£).Polynomial Matrix Descrip­
tions are governed by singular differential equations which endow the systems with 
many special features that are not found in regular state space systems. Among 
these are impulse terms and input derivatives in the free and forced pseudo-state 
responce, nonproperness of the transfer function matrix, noncausality between input 
and pseudo-state (or input and output), inconsistent and admissible initial condi­
tions and many others which make the study of PMDs more complicated than the 
study of the classical regular systems. Starting from the fact that generalized state 
space systems i.e. systems of the form ^ , : Epx(t) = Ax(t) + Bu(t), y(t) = Cx(t), 
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where E G 3t r x r , rankg_£ < r, A G 3* r X r , B G 3. rXTO,C G 3?TOlXr represent a 
particular case of PMDs, we generalize various known results regarding the smooth 
and impulsive solutions of the homogeneous and the non-homogeneous system (_>___) 
to the more general case of PMDs (____). In recent papers (see [10,9,6]) various 
known results regarding the smooth and impulsive solutions of homogeneous gener­
alized state space systems have been translated to the more general case of PMDs. 
Also relying heavily on the theory regarding the Smith-McMillan form of a rational 
matrix at infinity and applying it to the polynomial matrix A(s) = L-[A(p)] the 
theory of Weierstrass canonical form of a regular matrix pencil Es — A under strict 
equivalence to the more general case of polynomial matrix A(s) was generalized [9]. 

2. MAIN RESULTS 

T h e o r e m 1. [9] Let 

A(s)=Ao+AlS + ... + Aqis*i G3- rx r[s] (2) 

rank__(_)A(s) = r, q\ > 1 with Smith-McMillan form at s = oo given by S^Js) = 

blockdiag s ? 1 , s ? 2 , . . . , s ? t , - ^ J—, . . . , -4 - , where 1 < k < r and q = -%, i = 

jfc + 1 , . . . , r so that <_i > q2 > • • • > qk > 0 and qr > qr-i > •••> gjt+i > 0. We can 
write: A~\s) = Hpol(s) + HspT(s), where Hpol(s) £ 3.rXr[s] and 7fspr(-) G 3_rxr(s) 
is strictly proper. Let n = deg \A(s)\. Then n = 8M(Hspr(s)). Let p, = _C.=_+i(_. + 
1). Then ~M(IIPoi(-)) = P- Now let C G 3? r x", J £ 3J"X", B G 3?"xr be a minimal 
realization of HspT(s) and Coo G ^rXfl,Joo G 3.''x ' ',Soo G 3 ^ x r be a minimal 
realization of Hpo\(s). Then C, J is a finite Jordan pair of A(s) and coo, Joo is an 
infinite Jordan pair of A(s). Furthermore -4_1(s) can be written: 

A-1(s) = [C Coo ] 
SІn-J 0n,,x 

Iц - Sj0 

(3) 

The solution of the homogeneous matrix differential equation A(p) P(t) = 0 is 
found to be [9]: 

where 

eJixs(0~) 

/?"(.) = [cC~] 

i = l 

' . (4) 

-,..., J2Г1-*.-] 

" Лo -4i ••• Aqi-\ " 
0 Ao ••• Aqi-2 

Г ß(0') ' 
ßtщo-) 

ЄЗř^ 

- 0 0 ••• A0 - [ ßЫ-V(0-) _ 
(5) 
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and 

a r . ( 0 - ) : = [ J ł l - 1 B 1 J î l - 2 B ) . . . ) B ] 

0 
Aqi-i Aqi ••• 0 

Aj. 0 ••• Л . J L /0( ,1_1)(0-) . 

ß(0~] 
ß^(0-

ЄЭÌ" 

(6) 
ar.(0") is the "slow state at t = 0 _ " and ^ ( O " ) is the "fast state at t = 0" ([9]). 

Consider the PMD (1). Now we shall present the solution of a non-homogeneous 
matrix differential equation: 

A(P)ß(t) = B(p)u(t). (7) 

Taking the L- Laplace transform of (7) and assuming that the initial conditions 
are zero i.e. / ?« (0 _ ) = 0, i = 0 , 1 , . . .,qi - 1, u« (0~) = 0, i = 0 , 1 , . . . ,<r - 1, we 
obtain: 

A(s)P(s) = B(s)u(s). 

Hence in light of (3) we can write: 

A~l(s)B(s) = Coo[Iii - sJoo}'1 Boo B(s) + C[sln - J]~* BB(s) 

which after some matrix manipulations [9] can be written: 

Ja-1B,J"-2B,...,B 0 
A^B^s) = [C C~] 

0Ł 

" . ( í r + l)r ^ 
BooJooBoo,...,J^B« 

(8) 

(9) 

(10) 

Bа 
0 • 0 0 

Bа-l Bа • 0 0 

5l B2 • •• Bа 
0 

в0 
Bl • •• Bа-l Bа 

0 в0 • •• Bа-2 Bа-1 B s^+Чn 

0•• • B0 

+C[sIn - J] [J"BBa + Ja-yBBa-i + ••• + BBo}. 

Taking the inverse Laplace transform of (10) and in light of (8) we obtain the 
solution of (7) [7]: 

ß"(t)=[C Coo] 

, t - - 1 

/ eJtnu(T)dT + J2<f>i+1uW(t 
J° >=0 

'£jÍ0íiut°+iXt) + J2Zi»li\t) 
l 

L . =0 

(11) 
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where the superscript (i) means distributional derivative, a is the maximum power 
of s in B(s) and 

a 

n = ] T J ! B 5 , = 7*55 , , + Ja-xBBa-X + --- + BBo (12) 
i=0 

CT-J 

$ ; = ] T j'BBi+j j = l,'2,...,a (13) 
i=0 

Q, = s£jJ
lB~B{a_i) = B~B, + J~,B°oB„-, + •• • + jlS«.J3o (14) 

^ ( - i ) = E J ~ 5 ~ 5 ( ^ ) - i = i,2,...,<T 
i = 0 

with S(CT_j)_t- = 0 for i, j : (<x - j ) - i < 0. 

We obtain that the complete solution of (1) is given by: 

/?c(0 = /?*(*)+ / f (0 = 

[CCľ-

(15) 

(16) 

, í < r - l 

e л æ s ( 0 - ) + / e ; ' ß u ( г ) d г + У ] ф i + 1 u W ( ť ) 
л i=0 

-І> ( i - 1 )4>*/(0") + E •&<--('+0rø + Ziu{l)^ 

where the superscript (i) means distributional derivative. Let us now denote uM(t') 
the z'th (ordinary) derivative of u(t). Using the identity (see [1] p. 52) 

u
<0(t) = «M(f) + «ut.-l](0) + • • • + 5t,'-1]u(0) i = 1,2,... (1>) 

/?"(<) can be written (see [7]) as / f (f) = p[(t) + (£(t) where: 

ßl(t) = C '/txs(0~)+ / eJtnu(T)dT+J2$i+1uM(t) 
jo 7TÍ 

+ £ - и ^ Ф j + 2 + i « W ( 0 -

(й) 
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/?IW = -oro£й ( ' '~1VL J.r/(o-) 

+ Cа 

+c0 

£Z,«BI(Í)+I;«W 
i=0 

îr 

J2 ZІ+1+ІUЩQ~) 

j2JL^[a+4t) + J26íi) ^ J ^ Q u l " ^ ' - ' - 1 ] ^ - ) 

(19) 

а+qr-l 

53 JL^-^ҲQ-) 
J=i-(<7-l) 

It is obvious that the complete solution of (1) may have impulsive components. 
Since discontinous (impulsive) behaviour is not desirable we have the following: 

Definition 2. A point /?<,=/? (0~) € 3ir is said to be an Admissible Initial 
Condition (A.I.C.) for the system (1) if the solution /?' (t; Q~ ,P°0, u(t)) is continously 
differentiable on [0,T] for some input u(t) and for some T > 0, i.e. /?'(t; Q~,pl, 
u(t)) is impulse-free. 

It follows from (18) and (19) that a point (30 is an A.I.C. if the following conditions 
hold: 

IT 

C°° J26(l~1)jl°°xf(°~) ~ ° =*" XJ(°~) ' Kert J~] (20) 
i = l 

(7-2-2 

53 $j+2+iuW(0-) = 0 i = 0,l , . . . ,<r-2 (21) 
i=o 

<7-2 - i 

53 ^i+1+i^' ](0-) = 0 i=0 , l , . . . ,<r~2 (22) 
i=o 

IT 

5 3 j 4 « w [ " + j - , ' ~ 1 ] ( 0 - ) = 0 i = 0, l , . . . | ( r - 1 (23) 

5 3 J І > ß « Ľ - 1 ] ( 0 - ) = 0 i = tr ł . . . ) cr + ç r - l . (24) 
i = i - ( a - l ) 
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The set of Admissible states for t >0~ is given by: 

z , ( 0 ~ ) + f c J « n u ( r ) d r + ^ $ . + l U W ( t ) 

«=o 

f2JL^[a+i](t) + J2z^-[i](i) 
i=0 i=0 

From (25) for t = 0~ the set of A.I.C. is: 

ß\t) = [C C~] (25) 

Hы = ß\0~) Є w/ßc(o~) = [C C~] 

**(0~)+ .£*.+!«%-) 
л i=0 

f]JІ)Пu^(o-) + gw.i(o-) 

or equivalently: 

HIu = cj / ř ( 0 - ) = [C C~] [ * ' g _ )
) ] /.-.(O") <= S* 

and x^(0 - ) G ~T J ^ I m f i + ^ I m z i + Ker J„ 

(26) 

(27) 

Remark 3. Note that the zero vector 0 belongs to Hiu because there exist x- (0~) = 
0 and input u(t) such that u^(0~) = 0 for i = 0,1,2,... ,qr ox i = 0,1,2,... ,a - 2 
in the case <r — 2 > qr. 

Now we shall generalize the notions of Reachability given in [8,11] in such a way 
to cover the general case of PMDs as in (1). 

Definition 4. Given a point fil = /?C(0~) € 7J/U, we say that another point 
fir € 5Rr is Reachable from (f0 if there exists an input u(t) and T > 0 such that 
f(t) = j3°(t; 0~, Pi, u(t)) is impulse-free on [0 - ,T] and holds: 

ß°(T) = ßт. (28) 

Let R(po) denote the set of Reachable states from /?0 € JJ/« • R(P0) ^ 0 means 
that there exists an input which will make the solution /? (t) impulse-free on [0, T]. 
We shall try to describe R(P°0) in terms of its finite and infinite spectral data i.e. 
the finite Jordan triple (C, J, B) and the infinite Jordan triple (C~, J » , 5 ~ ) of the 
matrix A(s). 
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We firstly assume that pi = 0 € HIu and describe the set R(0) i.e. the set of 
Reachable states from 0 6 #/„• We introduce the following notation (see also [11]): 

(A/lmB) :=lmB + AlmB+-+An ImB. 

Following the lines of [11] we can prove that: 

(29) 

T h e o r e m 5. 

Д(0) = [C C. 

(,//ImQ) + ] r im$, + 1 

i=0 
< T - 1 

( J o o / I m ^ + ^ I m Z , -
i=0 

/here Zi, i — 0 , 1 , . . . <r — 1 is given by (15) and $;, j = 1,.. . ,cr is given by (13). 

In the above theorem we have examined the structure of R(0). We shall now 
examine the structure of R(Pi) with /?j = P°(0~) 5- 0 G 9T. To this end consider 
the following two sets of admissible initial conditions (taken from (27)): 

i) A.I.C. with ar.(O-) = 0 G 3?" and *J(0") -t 0 i.e. 

я 2 = {/?c(o-) = [cc. 

C T - l 

+ ^ I m Z i + KerJ1 

^ (° } I /.-.((T) = ()€»", íc;(0-)G52I~Irníž 

and 
(30) 

ii) A.I.C. with x](0~) 7- 0 and ^ ( O - ) = 0 i.e. 

I{3 = | /?°(0-) = [C C~] ^ I g l j ] /xI(O-) -- 0 e » " and x't(Q-.) = 0 G » " } . (31) 

The complete set of A.I.C. can be written: 

нlu = {/?>-) є зг/ ßc(o~) C [C C=o] (Joo/Imfi) + ^ I m z , - (32) 

or equivalents from (30)-(31) and Remark 3: 

Hlu = mumu{0}, (33) 
where {0} denotes the zero vector corresponding to x.(0~) = 0 and to an input u(t) 
such that uf'l(O-) = 0, i = 1,2,... ,qr + 1 + cr. Now the complete set of Reachable 
states P°(T) 6 3T from p e Hlu is: 

Ř= \J R(p) = R(0)UR(p*)UR(ps), 
рены 

(34) 
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where R(0) is the set of Reachable states from 0 6 Ht,, R((3i) is the set of Reachable 
states from (3i ~ Hi, i.e. from all A.I.C. which have xl(0~) = 0 and xs(0~) ^ 0 
and 

•] (OІl' 

+ J $ i + } « [ i l ( l ) e f , .-,(.)= 0 G3Í" Vť>0 

(35) 

which represents the free-state reachable set from starting point(state) ^ ( 0 ) = 

Cxs(0~) + J2 $i+iw [ , ](0~). From Theorem 5 we have the form of R(0). From the 
i=0 

form of R((3*) in (35) we have: 

R(fa)-[CC~][%r®{0}]. (36) 

Hence it remains only to find R((3i) where /?2 ~ Hi.We can easily prove that: 

Proposit ion G. Let /3i G Hi as in (30). Then: 

R(ßi) = [C C ] 
îřn 

(Joo/Imfi) +VJlmZi (37) 

Taking into account that ( J / I m f i ) + J" I m $ 1 + 1 C Kn and {0} C ( J » / I m ^ ) + 
i = 0 

J~ lmZ{ from (34) and Theorem 5, (36) and (37) we obtain that the complete set 
i=0 
of Reachable states from any /3 € Hju is given by: 

Д = U R(ß) = [CC~] 
ß€H:„ 

ŞRn 

(Joo/Imí2) + V ^ I m z i 
(38) 

Remark 7. Taking into account that (J/Irnf l) + £ Im<&«+i C 3i!n we obtain 
i=0 

that every point y in i?, where: 

R := [C C» 

(J/Imíí) + £ l m $ i + i 
i = 0 

0--1 

(Joo/Imn) + y^Im^ 
(39) 

is Reachable (according to Definition 4) from every point x in R. 

We have the following definition: 



Evaluation of the Reachability Subspace of General Form ... 625 

Definition 8. The system (1) is called Reachable if every point f)T G 3Jr is Reach­
able from every point /?o G Hju. 

Proposi t ion 9. The system (1) is Reachable iff: R = 3?r. 

Definition 10. The set R as in (39) is called the Reachable subspace of the system 

(1). 

Now we shall give some useful Reachability tests for Polynomial Matrix Descrip­
tions which are natural extensions of the corresponding tests for generalized state 

»--l 
space systems. Let the subspace R. := (J / Imfl)+ ]_ Im<J>,+i C 5ft". R. is spanned 

1 = 0 

by the linearly independent columns of the matrix: 

Q. = [Q, JQ,..., J n " ' f i , $ i , $ 2 , . . . , $„] G sft»x("+<0m ^40j 

_ ( 7 - 1 

Let also the subspace i?/ := (JQO / I rml) + _} I m z , C $&. Rs is spanned by the 
i'=0 

linearly independent columns of the matrix: 

Qs = [Q, JcoQ,. . . , j£ -n , _ , , Z i , . . . ,Z , - i ] G ̂ "x(«-+1+ff)"». (41) 

From the form of i j in (39) and (40)-(41) it follows: 

Definition 11. The Reachable subspace R is spanned by the linearly independent 
columns of the matrix 

Q=[CC~]\Q
Q

S ° 1 G „'X(n+?r + l + 2<0m (42) 

which is called pseudo-state Reachability matrix of (1). 

Combining (42) with Proposition 9 we can state the obvious: 

T h e o r e m 12. Every f3T 6 2Rr is Reachable iff: 

R _ W => rank[Q] = r. (43) 

R e m a r k 13. We have the following: 

[C Coo] G 3r*("+") and rank[CC~] = r (44) 

n + ti = r + Y^(l< - I ) - (45) 
i=i 

Hence generally it holds: 
n + /I > r. (46) 

From Theorem 12 and Remark 13 we can state the following: 
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Corollary 14 . The system (1) is Reachable iff: 

rank[CC~] = r 

and 
:\ QJ J? I 

0 Qf 

(47) 

(48) 

3. ILLUSTRATIVE EXAMPLE 

I ̂ 1 í be a polynomial matrix with Smith-McMillan form at 

s = oo : S™(s)(s) = 

2 = r. Let also C = 

0 
! I and r = 2, n = 1, ft = 2; hence n + fi = 1 + 2 = 3 > 

, J = [—1], B = [1 — 1] a minimal realization of the strictly 

proper part of A'^s) and C=° = ~Q i \> J°° = \ Q Q > B°° = \ Q _ I a 

minimal realization of the polynomial part of A~1(s). Then 

rank [C C°°] = rank \ I '} ! | = 2 = r. 
0 0 1 

Hence the first condition (47) of Corollary 14 holds true. 

CASE A. LetB(s) = Bo+BlS=\l ? | + í l ? I . 

a= 1. Then: 
0 1 0 1 

s + 1 0 
0 s + 1 

n = JBB1 + BB0 = [0,0], $ x = BBX = [1,-1] 

0 - 1 ' -7o = -Booflo= 0 __x 
0. = BooB1 + JooBooB(ì = 

i) гank[<Ҙs] = rank [fi, Фi] = гank [0, 0,1,-1] = 1 

0 - 1 0 - 1 0 0 
ii) rank [Qf] = rank [Q, J^Q, ZQ] = rank . ( 

••••. i \Q> o 1 
m)rank „ „ = r a n k 

= 2 

= 3 > 
0 0 1 - 1 I 0 0 0 0 0 0 
0 0 0 o j o - 1 0 - 1 0 0 
0 0 0 0 J 0 - 1 0 0 0 - 1 

i.e. the system is Reachable according to Corollary 14. 

CASE B . Let B(s) = Bo + Bis = f J 1 + [ J 1 s = [ S
Q 1 i.e. o = 1. Then: 

Q=JBBí+BBo = [-l]i $ , = BBi=[l] 

fi = B~Bi + J°°B°°Bo = I Zo = 5oo5o = 
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i) r a n k [ o s ] = rank [Q, # J = rank [—1,1]== 1 

ii) r ank [Qj] = r ank [ÏÏ, J^U, Z0] = rank \ Q °Q °Q 1 = 0 

- 1 1 

0 0 1 0 0 0 = l < г 

0 0 0 1 

0 0 0 

0 0 0 

iii) r a n k * n = r a n k 

0 0 

i. e. t h e sys tem is JVofc Reachable because t h e condit ion (48) does n o t hold. 

4. C O N C L U S I O N S 

T h e concept of Reachabi l i ty for Polynomia l M a t r i x Descr ipt ions ( P M D s ) is consid­

ered. After general izing various known results regarding t h e s m o o t h and impuls ive 

solut ions of generalized s t a t e space sys tems (which represent a par t icu lar case of 

P M D s ) we developed a t h e o r y regarding Reachabi l i ty propert ies of P M D s using 

t i m e - d o m a i n analysis . T h i s analysis extends in a general way a n u m b e r of results 

previously known only for regular and generalized s t a t e space sys tems. Final ly we 

have t o p o i n t o u t t h a t o u r definition of Reachabi l i ty is equivalent a n d n a t u r a l gener­

al izat ion of t h e n o t i o n s of Control labi l i ty [2], C-Control labi l i ty [11] a n d Reachabi l i ty 

[8]. However, t h e way t h a t our theory is re lated t o further aspects such as t h e no­

tions of S t r o n g Control labi l i ty, Observabi l i ty and dua l i ty for t h e case of P M D s are 

topics for fur ther research. 
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