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KYBERNETIKA — VOLUME 30 (1994), NUMBER 6, PAGES 617-628

EVALUATION OF THE REACHABILITY SUBSPACE
OF GENERAL FORM POLYNOMIAL MATRIX
DESCRIPTIONS (PMDs)

G.F. FrRaGguLis AND A.IL G. VARDULAKIS

We consider the concept of Reachability for systems described by PMDs, generalizing
various known results from the theory of generalized state space systems using time domain
analysis,which takes into account the finite and infinite pole-zero structure of the associated
matrix. We extend also the theory of admissible initial conditions and we introduce the
concept of Reachable subspace for PMDs providing a precise form for all future(reachable)
states of our system.

1. INTRODUCTION

Let a multivariable system described by a Polynomial Matrix Description (PMDs)
i.e. systems of the form } :

A(ﬁ)ﬂ(t) = B(p) u(t) (1)
y(t) = Clp) B(1),

rxr

91 N
where p 1= % is the differential operator, A(p) = 5 4;p' € R7*" [p], Aie R, i=
i=0
g R
0,1,2,..., ¢ > 1 with rankgA,, < r, B(s) = S.B.jJ € ®*™[g, B; €
i=0

g1 :
R =0,1,2,...,020,0(p) = .Cp € RV, G € RMXT, j =
i=0

0,1,2,...,01 > 0,8(t) : (07,00) — R" the pseudo-state of the system (_) and
u(t) : [0, 00) — R™ the control input to the system (3_).Polynomial Matrix Descrip-
tions are governed by singular differential equations which endow the systems with
many special features that are not found in regular state space systems. Among
these are impulse terms and input derivatives in the free and forced pseudo-state
responce, nonproperness of the transfer function matrix, noncausality between input
and pseudo-state (or input and output), inconsistent and admissible initial condi-
tions and many others which make the study of PMDs more complicated than the
study of the classical regular systems. Starting from the fact that generalized state
space systems i.e. systems of the form Y, : Epz(t) = Az{t) + Bu(t), y(t) = Cz(t),
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where E € R7%" rankgE < r, A € R™%", B € %™ C € R™*" represent a
particular case of PMDs, we generalize various known results regarding the smooth
and impulsive solutions of the homogeneous and the non-homogeneous system (3°,)
to the more general case of PMDs (J°). In recent papers (see [10,9,6]) various
known results regarding the smooth and impulsive solutions of homogeneous gener-
alized state space systems have been translated to the more general case of PMDs.
Also relying heavily on the theory regarding the Smith-McMillan form of a rational
matrix at infinity and applying it to the polynomial matrix A(s) = L_[A(p)] the
theory of Weierstrass canonical form of a regular matrix pencil Es — A under strict
equivalence to the more general case of polynomial matrix A(s) was generalized [9].

2. MAIN RESULTS

Theorem 1. [9] Let

As) = Ao+ Ais + ...+ Ags™ € F7[s] @)
rankgp(s)A(s) = 7, g1 > 1 with Smith-McMillan form at s = oo given by 5%,(s) =
block diag s“,s“,...,s"",—r‘—,...,-v‘v] ,where 1 < k < rand @ = -G, i =

sTRH1 sar

k+1,...,rsothat g1 >¢2>...>qx>0and g > g—1 > ... > Qi1 2 0. Wecan
write: A3 (5) = Hyy(s) + Hyps(s), where Hyei(s) € 3% [s] and Hype(s) € B2 (s)
is strictly proper. Let n = deg|A(s)|. Then n = p(Hope(s)). Let p= E:=k+l(§\" +
1). Then 6y (Hpoi(5)) = p. Now let C € R™*", J ¢ %", B € R**" be a minimal
realization of Hepe(s) and Coo € R™*H J,, € REXH B, € R#X" be a minimal
realization of Hpoi(s). Then C, J is a finite Jordan pair of A(s) and Coo, Joo is an
infinite Jordan pair of A(s). Furthermore A~!(s) can be written:

oo o[ L e T

The solution of the homogeneous matrix differential equation A(p) () = 0 is
found to be [9]:

e’tz,(07)

B (t) =[C C""] —qzré(i_l).];z,(o_) s
i=1

@

where
0)
Ao Ar - Apes A0")
(1)(07)
27(07):=[Bw, Joo Beo, ..., J8™1 Bo) (,] Af’ Aq§"2 p . eRH
0 0 -+ A ﬁ(?l’i)(o-)

®)
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and
[ Ag 0 - 0 ﬁ()o—)
Agp-1 Aq - 0 A0~
2:(07):= [J®7'B,J""%B,..., B] ‘“:1 ! . ( ) en”
l Y R B T ()

25(07) is the “slow state at £ = 07" and z,(07) is the “fast state at t = 0~ ([9]).
Consider the PMD (1). Now we shall present the solution of a non-homogeneous
matrix differential equation:

A(p) B(t) = B(p) u(t)- U]
Taking the L- Laplace transform of (7) and assuming that the initial conditions
are zero i.e. AX(07)=0,i=0,1,...,¢:~1,u®(07)=0,i=0,1,...,0- 1, we
obtain: .
A(s) B(s) = B(s)a(s)- (8)
Hence in light of (3) we can write:
A~Y(5) B(s) = Cwll, — 5] ' B B(s) + ClsI» — J|_ BB(s) 9)

which after some matrix manipulations {9] can be written:

J°-1B,J°~?B,...,B 0 ~
A(s)™'B(s) = [C C=] mlaAr (10)
Ou,or B JoBe,...,J& Bo
[ B, 0o - 0 0 s 0]
B,_y By - 0 0 o 0
: : . : : : In
N B, By --- B, 0 e 0 slm
By By - Bs.i B, 0 0 :
0 BO cre Ba—Z Bs_1 B, - 0 5;"+01m
| 0 By B; |

-1
+C[sl» —J] [J°BBy; +J° 'BBs_1+ -+ BBs].

Taking the inverse Laplace transform of (10) and in light of (8) we obtain the
solution of (7) [7]:

-1
/t el Qu(r)dr + Z ;1 u®(t)
Fo=Ic c-]| 7 : (11)

qr o—1
Z J;oﬁu(”+i)(t) + Z Ziu®(t)
i=0

i=0
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where the superscript (i) means distributional derivative, o is the maximum power
of s in B(s) and

a

Q:;J"BB; =J°BB,+J° " 'BB,_1+ -+ BBo (12)

= ;J‘BB,-H i=12... ¢ (13)

Q= ;Jilme(a,i) = BeoBo + JowBewBooi + -+ Jo. B Bo (14)
Z(omi) = XU:J;B%B(H)_,- i=12...,0 (15)

1=0

with B(y_j)—; = 0 for 4, j : (6 — j) —i < 0.
We obtain that the complete solution of (1) is given by:

B(t) =8 0)+5 (1) (16)

t a—1
el (07) +/ e Qu(r)dr + Z ®;4ul(t)
0

[C Cw] N R i=0
qr . . qr L . o—1 .
=36 (07) + DO T QU (1) + Y Ziu(t)
i=1 i=0 i=0

where the superscript (i) means distributional derivative. Let us now denote ulil()
the ith (ordinary) derivative of y(t). Using the identity (see [1] p. 52) ’

u (1) = ull@®) + suli-1(0) + -+ 66 Uu(0) =12, (17
B°(t) can be written (see [7]) as °(1) = fi (2) + Bi(t) where:
g—1

gt)=C [e“zs(()“) -{—/(J et Qu(r)dr + Z@lﬂu ®

i=0

g-2 g—2—1 (1&)
[z Djpaqiul] )H

j=0
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qr
A5(t) = —Coo Y 88T 0, (07)

i=1

o—1 -2 g—~2—1
i=0 i=0 i=0

~ - (19)
qr a~—1 qr
+Ceo {Z TEQTFI(@) + 3 60 [Z Jg'nﬁu,[”f-"-ll(o-)]
i=0

i=0 =0

ot =1 a ) _
+ 3 O S gl |

j=i—(o-1)

It is obvious that the complete solution of (1) may have impulsive components.
Since discontinous (impulsive) behaviour is not desirable we have the following:

Definition 2. A point §, = 8°(0~) € R is said to be an Admissible Initial
Condition (A.I.C.) for the system (1) if the solution 8°(t; 0~, 85, u(t)) is continously
differentiable on [0, 7] for some input u(t) and for some T > 0, i.e. §°(t; 0-,4;,
u{t)) is impulse-free.

It follows from (18) and (19) that a point §, is an A.L.C. if the following conditions
hold:

7
Coo 80 DT 24(07) = 0= 2,(07) € Ker[Jeo] (20)
i=1
o—2-1 )
> Bip04iu)07) =0  i=0,1,...,0-2 (21)
=0
o—2—1 )
> Zipapall(0T) =0 i=0,1,...,0—2 (22)
i=0
/‘Z\r J— N .
SOl 0T =0 i=0,1,..,0 -1 (23)
j=0
o o
> LTy =0 i=o,.0+G -1 (24)

j=i—(o=1)
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The set of Admissible states for ¢ > 0~ is given by:

t o-1
eltz,(07) + / EJtQu(T)d‘r + Z (I)i+lu[i](t)
c o iz
() =[C C] P ot (25)
Z fo)ﬁu[”“](t) + E Z,-u[‘](t)
i=0 i=0

[—

From (25) for t = 0~ the set of ALC. is:

o—1
z,(07) + Z (I);Hu[i](()—)
Hr =8 (07)e® /B (07)={CCx]]| =~ =

qr

PRN— - o-1
2T TH07) + 37 2l 07y
i=0

i=0
or equivalently:. (26)
Hpu = {ﬂc(O") = [C Cx] [ ;fgg:g ] Je5(07) € ®7,
(27)

;,‘ o—1
and z,(07) € ZJ;Im§+ ZImZ,- + Keer} .

i=0 i=0

Remark 3. Note that the zero vector 0 belongs to Hry because there exist z. 0=
0 and input u(t) such that ull(0~) =0for i =0,1,2,...,G- ori=0,1,2,...,0 - 2
in the case 6 — 2 > ¢.

Now we shall generalize the notions of Reachability given in [8,11] in such a way
to cover the general case of PMDs as in (1).

Definition 4. Given a point f; = $°(0~) € Hir,, we say that another point
Br € ® is Reachable from f, if there exists an input u(t) and T > 0 such that
B () =8°(t; 0-, B, u(t)) is impulse-free on [0~, 7] and holds:

B (T) = Br. (28)

Let R(8;) denote the set of Reachable states from 8, € Hr,. R(8:) # 0 means
that there exists an input which will make the solution °(t) impulse-free on [0, T].
We shall try to describe R(G:) in terms of its finite and infinite spectral data i.e.
the finite Jordan triple (C, J, B) and the infinite Jordan triple (C, Joo, Beo) of the
matrix A(s).
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We firstly assume that @, = 0 € H,, and describe the set R(0) i.e. the set of
Reachable states from 0 € Hy,. We introduce the following notation (see also [11]):

(A/ImB) :=ImB+AlmB+---+ A" ImB. (29)

Following the lines of [11] we can prove that:

Theorem 5.
o—1

(J/Tm@Q) + Y Im®;
R(0) = [C C=] =, ,
(Joo /TmT) + Y Im 2;
i=0
where Z:,i=0,1,...0 — 1 is given by (15) and &;, j = 1,...,0 is given by (13).
In the above theorem we have examined the structure of R(0). We shall now

examine the structure of R(f;) with 8, = #7(07) # 0 € R7. To this end consider
the following two sets of admissible initial conditions (taken from (27)):

i) ALC. with z;(0") =0 € ®" and z;(0") # 0 i.e.
. e 207 1o . 0o e SR
2= 480 ):[ccm][m;(o_)]/w.(o )=0€R", z;(07) €Y JiImD
i=0

a-1
+ZImZ; + Ker Jm}
i=0
(30)
and
ii) A.L.C. with 2;(07) # 0 and z,(0") =0 i.e.
Hs= {ﬁ”(o*) =[C C=] [ji((?;))] Jei(0) £ 0 e R and z;(0") =0 € w} . (31)
The complete set of A.I.C. can be written:
%ﬂ

(Voo /ImE2) +§ImZ,—

=0

Hyo= {6 (07) e®'/ 5°(07) C [C Cx] 32)
or equivalently from (30} -(31) and Remark 3:
Hpy = HaUHsU {0}, (33)

where {0} denotes the zero vector corresponding to «+(07) =0 and to an input u(2)
such thait u(’](O‘) =0,i=1,2,...,4 + 1+ 0. Now the complete set of Reachable
states 8 (T) € R from B ¢ H,, is:

E= |J R(p)=RO)UR(E:)UR(E), (34)

BEH
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where R(0) is the set of Reachable states from0 € H,,, R,(ﬂz) is the set of Reachablc
states from B: € Ha, i.e. from all A.I.C. which have z.(07) = 0 and z;(07) # 0
and

R(Bs) = {ﬂa (t) € Hs/Bs(t) = [C Cw] [:!((?)] Jzi(t) = ez, (07)
- (35)
+3 Suulit) R, 2/ () =0 € R* V> 0}
=0

which represents the free-state reachable set from starting point(state) 8:(07) =
o—1 .
Czs(07)+ 3 ®iyyull(07). From Theorem 5 we have the form of R(0). From the

form of R(ﬂla) in (35) we have:
R(Bs) € [C C=][R" & {0}]. (36)
Hence it remains only to find R(f:) where 8- € H2.We can easily prove that:

Proposition 6. Let 2 € H2 as in (30). Then:
®"

ag—1

(Joo /ImQ) + > Im Z;

=0

R(f:) = [C C=] (37)

o=1
Taking into account that (J /ImQ)+ 3~ Im®;41 C R and {0} C (Jo /ImQ) +
i=0

g-1
>~ ImZ; from (34) and Theorem 5, (36) and (37) we obtain that the complete set
i=0
of Reachable states from any # € Hj, is given by:
E}eﬂ
el
(Joo /[ImQ) + > Im Z

i=0

R= |J Rr@)=I(CCx] (38)

BEH

o=1
Remark 7. Taking into account that (J /ImQ) + 3 Im®;4; C R™ we obtain
=0

that every point y in R, where:

o-1
(J/ImQ)+ > Im P,y
R :=[C C=] =0 (39)
(Joo /TmQ) + > Im 2;

i=0

is Reachable (according to Definition 4) from every point z in R.

We have the following definition:
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Definition 8. The system (1) is called Reachable if every point 8, € " is Reach-
able from every point fo € Hyy,.

Proposition 9. The system (1) is Reachable iff: R = ®".

Definition 10. The set R as in (39) is called the Reachable subspace of the system

0.

Now we shall give some useful Reachability tests for Polynomial Matrix Descrip-
tions which are natural extensions of the corresponding tests for generalized state

o=1
space systems. Let the subspace R« := (J /ImQ}+ 5 Im®;;; C R". R: isspanned
i=0

by the linearly independent columns of the matrix:z—
Q= J...,777Q, &1, &:,...,8.] € RHHI™, (40)
o—~1
Let also the subspace Ry := (Jw /Imﬁ) + > ImZ; C R*. Ry is spanned by the
i=0
linearly independent columns of the matrix:
Qr =@, Jull...,JTQ, Do, Zs,..., Zomi] € RFXGrt1¥OIm, (41)
From the form of R in (39) and (40) - (41) it follows:

Definition 11. The Reachable subspace R is spanned by the linearly independent
columns of the matrix

— Qx 0 rx(n+?,+1+2<7)m
Q_[CCw][ ey eR (42)
which is called pseudo-state Reachability matrix of (1).
Combining (42) with Proposition 9 we can state the obvious:
Theorem 12. Every fr € X" is Reachable iff:
R=R" = rank[Q] = r. (43)
Remark 13. We have the following:

[C Co] € R7*(**#)  and rank[C Cw]=r (44)

E
ntp=r+y (¢-1) (45)
i=1
Hence generally it holds:
n+p>r (46)

From Theorem 12 and Remark 13 we can state the following:



626 G.F. FRAGULIS AND A.IG. VARDULAKIS

Corollary 14. The system (1) is Reachable iff:

rank [C C=] =7 (47)
and
Qs 0
rank[ 0 Q ] >r. » (48)

3. ILLUSTRATIVE EXAMPLE

s+1 &2
0 1

20
s:oo:Sff(J)(s):[ 01

Let A(s) = [ ] be a polynomial matrix with Smith-McMillan form at

]andr:2,n:l,p:?;hencen+p:l+2=3>

2=r. LetalsoC = [ (1) ], J =[-1], B = [1 1] a minimal realization of the strictly

proper part of A~!(s) and Cee = [ _01 i ], Jo = {(()) é},Bm = [g _01 ] a
minimal realization of the polynomial part of A=!(s). Then

o 11 1],
tank[C(,au]ﬁrank[O o 1]_2_7‘.

Hence the first condition (47) of Corollary 14 holds true.

_ |10 10 | s+1 0 .
CASE A. LetB(s)an+Bls_[0 1]—1\—[0 l]s_[ 0 s+1]l'e'
o =1. Then:

Q=JBB; +BBy=[0,0], & =BB;=[1,-1]

’Q:BwBlJerBmBg:[o ‘1], ZQ:EDQBD:[O _01]

0 -1 0
i) rank[@;] = rank [2, @] = rank[0,0,1,~1] = 1
) o 0 -1 0-10 01]_
ii) rank [Qf] = rank [@, Joo %2, Zo| = rank [ 0 10 0 0 -1 ] =2
Q 0 001 -1]70 0 0 0 0 O
iii)l‘ank[o8 Q ]:rank 000 0 |0 -10-10 0/[=3>r
s 000 0 |0 -10 0 0 —1

i.e. the system is Reachable according to Corollary 14.

CASE B. LetB(s):Bo+Bls:[8]+H]s:[g]i.e4g:14 Then:

Q=JBB: + BB =[-1], & = BB: =[1]

Q= BeBi + Jo B Bo = [8] Zo = BoBo = [g]
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i) rank[@s] = rank [2, ®;] = rank [-1,1] = 1

.. ror = 000
i) rank [@y] = rank [Q,JOQQ,ZO} = ra.nk[ 0 0 0 :l =0
o o 11000
iii) lank[ 05 0 ]:rank 0 0] 0O0O0|=1l<r
4 0 0] 00O

i.e. the system is Not Reachable because the condition (48) does not hold.

4. CONCLUSIONS

The concept of Reachability for Polynomial Matrix Descriptions (PMDs) is consid-
ered. After generalizing various known results regarding the smooth and impulsive
solutions of generalized state space systems (which represent a particular case of
PMDs) we developed a theory regarding Reachability properties of PMDs using
time-domain analysis. This analysis extends in a general way a number of results
previously known only for regular and generalized state space systems. Finally we
have to point out that our definition of Reachability is equivalent and natural gener-
alization of the notions of Controllability [2], C-Controllability [11] and Reachability
[8]. However, the way that our theory is related to further aspects such as the no-
tions of Strong Controllability, Observability and duality for the case of PMDs are
topics for further research.
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