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KYBERNETIKA — VOLUME 30 (1994), NUMBER 6, PAGES 629-638 

EVALUATION OF THE IMPULSIVE SOLUTION SPACE 
OF LINEAR MULTIVARIABLE HOMOGENEOUS 
IMPLICIT SYSTEMS 

GEORGE F. FRAGULIS 

A closed formula is given, which allows the determination of the impulsive solutions of 
Linear Homogeneous Matrix Differential Equations (L.H.M.D.E.) directly in terms of finite 
and infinite spectral data of the associated polynomial matrix. Specifically the notions of 
finite and infinite Jordan pairs for a general polynomial matrix are defined and it is pointed 
out the strong relationship among them and the impulsive solutions of L.H.M.D.E. 

1. INTRODUCTION 

In the recent years there has been a growing interest in the system-theoretic problems 
of generalized state space or singular systems due to the extensive applications of 
this kind of systems in large-scale, singular perturbation theory, circuits, robotics, 
economics, demography, control theory and other areas. Generalized state space 
systems are systems described by: 

Epx(t) = Ax(t) + Bu(t), (1) 

where p = |L is the differential operator, E G 3? rx r ranksRE1 < r, A G 5Rrxr, 
B G 3trXm, whereas (regular) state space systems are the systems described by: 

px(t) = Ax(t) + Bu(t) (2) 

which represent a particular case of (1) with E = Ir, the identity matrix. Regular 
state space systems were studied explicitly in the past decades (see e.g. [10]). On 
the other hand many researchers in the recent years explored special properties 
of generalized state space systems and found many connections between them and 
regular ones. Generalized state space systems were studied in the frequency domain 
(see [11,14-16]) as well as in time-domain (see [2-6 ,8-9]) . Generalized state space 
systems as (1) represent a particular case of Polynomial Matrix Descriptions (PMDs) 
i. e. physical systems whose dynamics can be described by a linear matrix differential 
equation having the form: . , . „ , , „ , , , , 

A(p)p(t) = B(p)u(t), (3) 
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where A(p) = £ Aip
i e » r x r [p], A,e 3?"*', i = 0 ,1 ,2 , . . .,qx > 1 with r a n k g j ^ < 

i=Q 

r, B(p) = JZ B,p{ € Wxm[p], B, G 3T x m , j = 0,1, 2 , . . . , a > 0, /?(<) the pseudo-
t'=0 

state of the system and u(t) the control input to the system. In a recent paper [13] 
various known results regarding the smooth and impulsive solutions of homogeneous 
generalized state space systems have been translated to the more general case of 
PMDs. A new treatment of PMDs using Algebraic methods is given in [12]. Among 
other topics the author gives a formula for the determination of the impulsive so­
lutions of L.H.M.D.E. in terms of the notions of fast and slow states at t = 0~ 
which are introduced. Campell in [2-3] has found the solution of systems of the 
form (1) using the notion of Drazin inverse. Also in [4-6] Cobb used a different 
approach which utilizes the Weierstrass canonical form. Comparing those methods 
to ours we remark the following: Each method has its advantages and disadvantages 
for different problems. The main advantage of our method is that it treats systems 
of the form (3) which seem to be generalizations of systems of the form (1). The 
possible disadvantage is that the proposed solution is associated with the evalua­
tion of several matrices which are derived by means of some previously established 
algorithms. On the other hand the approach based on the canonical decomposition 
which separates the system behavior in the finite and infinite frequencies provides 
deep insight into the structure of singular systems in systems analysis. However, it 
does not always provide a useful framework for actual computation. The canonical 
form also uses a change of the internal variable which is unconvenient in practical 
situations since the original variables are chosen to have their own significance. The 
main drawback of the method proposed by Cambell is the computational complexi­
ty of the proposed algorithm. Our approach differs from that given in [12] because 
we give a formula such that the set of the Dirac impulses and its derivatives which 
are used in the determination of the impulsive solutions of L.H.M.D.E., as well as, 
the set of finite and infinite spectral data of the associated polynomial matrix are 
presented in a - easy to use - closed form. 

2. MAIN RESULTS 

Consider the linear, homogeneous matrix differential equation: 

A(p)P(t) = 0, t>0 (4) 

and let sj(ss(s) be the Smith-McMillan form at s = oo of A(s) = Ao + Ais + • • • 
+ ^ S ? 1 : . r i n 

* ' L s?1-*-1 s H 
If A(s) has at least one zero at s = oo then the Laurent expansion of A_ 1(s) can 

be written according to [12]: 

A~1(s) = K~ s«-+#~_ s""--2+.. + i / i s+ / fp+i l - i s _ 1 +t f - 2 s" 2 +. . . = HPoi(s)+H,Pr(s), 

(6) 
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where r7P„i(s) G 9£rxr[s] is the polynomial part of ^4_1(s) and H*rr(s) G 3?r><r(s) 
is the strictly proper part of A~1(s). Let (C,J) and (Coo,</oo) be a finite and an 
infinite Jordan pair respectively of the polynomial matrix A(s). Then the matrices 
(C, J ) , (Coo, Joo) satisfy the conditions [17]: 

AqiCJqi + Л ^ - i C J ' 1 - 1 + • • • + AoC = 0 

Є 3 ř r " x " , rankQn =n 

C 
CJ 

CJn~ 

AoC-J^+AiC-J*}-1 +AqiC- = 0^ 

Coo 
C„oJo 

C o o / Г 1 

, rankgi(5„ = H, 

(7) 

(8) 

(9) 

(10) 

where n = degdet A(s), ji = £ (§) + 1) = £ % + (r - k), where %, j = 
j=k+l j=k+l 

h +1,..., r ate the orders of the zeros at s = oo of A(s). Then we can write (see [7]) 
A~1(s) = C~[sJoo -I^'BOZ +C[sL - J f ' - B , where B, B°° are constant matrices 
defined by: 

[ / o o]-t /« ,^- 1][^-f ,[o,o, . . . )o, /^, (11) 
W h e l e : r C CooJ^" 

C J CooJ^r 
5.-2 = 

K = 

C J Coo 
CT-1 

A . C J ' - 1 , -v^^.Cooj: 

(12) 

(13) 

(14) 

Considering now the Laplace transformed equation (4) we obtain: 

/3(s )=A- 1 ( s )a(s )G5R r x l , 

where a(s) G ^ x ^ s ] is the initial condition vector associated with the initial values 
of j3(t) and its (qi - l)-derivatives at t = 0" i.e. 0(O~), /?(1)(0 ) , • • - , /?(?1 1}(0 ) 
given by [1]: 

a(S) = [S^lr , S"
l-2Ir, ...,Slr,Ir]*P (15) 

F-

Aqi 0 
Aqi — i л ? 1 

w: 

••• л . J L ŕ""1^ J 
(iб) 
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After some matrix manipulations between A x(s) and d(s) we finally arrive at 
the following special form for /3(s) which appeared originally in [12]: 

ß(a) = [8*r+n-lIт, sЧ-+^'2Ir,...,sIr,Ir | s _ 1 7 r , s 2 / r , . . . ] 

0 
Я~ 

Я Î r - ( î l - l ) Я Í r - ( î l -2 ) 

Я_ ( î l_i) я_ ( 5 l_ 2 ) 

я_ f ł 
II-(?1+1) 

II-(íl-l) 
я_„. 

Я 0 

Я_j 

я_2 

(17) 

+ þ " 7r,s~ Jr , . . . ] 

я~ 
?r 

Я î r - 1 

0 
Я î r 

... o 

... o 

- 2 7r , . . . , s7 r ,Ir] Я Î r - ( î l - l ) 
Я ľ r - ( ? i - 2 ) ... #~ 

?r 

Я- ( g i _2) 
. Я _ ( î l _ i ) 

Я - ( ? 1 - з ) 
II-(îi-2) 

• •• Я i 
••• Я 0 

" Il-?1 
Я _ ( î l _ i ) ••• я . -1 

Я - ( î l + i ) я. •u ••• я - -2 F = /3Po i(s) + ß., 

are respectively the polynomial and the strictly proper part of /?(s). We examine 
the form of /3Poi(s). Consider the identity: A (s)A(s) = L, which can be written 
also: 

A~ (s)A(s) = 

1 + . . . + Я . s + 

[AqisЧ + J 4 S l _ 1 s " - 1 + . . . + Л0] =Ir 

[H~rs
ÍT + H~risi'-1 + ... + His + Ho + H-is + .. (18) 
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from which after multiplying the matrices involved, we obtain the relations: 

H7Atl = 0 

^A.-1 + ̂ . A . =° 

IIí/i + Hîr_гA2 + HгЛ-___ + . . . + **>__(,.__,>-._ = 0 

Я.Лo + Я o Л . + . . . + Я _ ( , _ _ 1 ) Л , _ = 0 

ЯoЛo + Я__Л. + . . . + Я _ f ł A f l = / ' 

Я-iЛo + Я _ 2 Л . + • • • + я _ ( w + г ) л f l = 0 

(19) 

The first <_! equations of (19) can be written in matrix form as: 

Я-

Я -

0 

я~ 

^ ? r - ( ? . - l ) J / ? r - ( ? . - 2 ) 

0 ••• 0 

0 ••• 0 

Now in light of (20),(16) we have: 

/_„ 0 
-4ţ__i Л__ 

Ai A 2 

ДPo.(_) = [_£•+«•-1 _., . . . , _£+!, _îгjr, | ««'--/,, . . . , SІr, _.] 

0 0 0 
0 0 0 

0 0 0 

Я Î r - î . Я ?r-(„,+l) я-
îr 

Я-(..-2) 
- Я_(____) 

lI-(ïi-З) 
lI-(îi-2) 

Яj 
Я Q 

Г я___. я~ - Í - . . L 

= _«- - 1 7r , . . . , s J r , / r 
Il-(ï.-2) Я_(___3 ) 

- Я - ( î i - l ) Il-(5i-2) 

Я l 
Я 0 

(20) 
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= [ I I í ; - , , ^ - 1 + • • • + II-(«i-2)« + II-d-i) I • • •] 

[... | H~ _2s^~l + ... + H0s + H-i | H~ _ 1 s^ ' - 1 + ... + HlS + //o] E 

(21) 
= [Ht_v..., Hx,Ho | //-i, / / - . , . . . , // .,] 

0 s^- 1 / , 

s î i - l 7 r S 3 i - 2 7 r . .. s J r 

s ? i - 2 / r s -ři-3/ r . .. 7 , 

s7r 

Ir 

or equivalently: 
ßP„i(s) = L A(s)F, 

where: 

L = [#£__, • • • ,IIi,IIo | H-i,H-,,...,ff_( ,] 6 sj_rxK?,+íi-i)] 

Д ( _ ) = 

0 0 ••• 0 S^~lIT 

0 0 ••• S^~lIr S^-2Ir 

s ? i - l / r s í i - 2 / r . . . s / r 

s ? , - 2 / r s ? i - 3 / r . . . / r 

SІr Ir 
Ir 0 

(22) 

(23) 

_3_KÍr+íi-i)]xr„jsj (24) 

Remark 1 . A(s) has the form (24) in the case <_r > <_i. In the case gi > gV A(s) 
has the following form: 

Д(_) = 

0 

0 

0 

0 

0 

• • sìr-Чr 
_«--> 
s ? r - : 

^ o 
sîr-Чr 

$îr-г 
IГ • SІr 

Iт 

/r 

0 

SІГ lт 0 0 

Ir 0 0 0 

(25) 
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(26) 

The matrix L as defined in (23) can be written also: 

L = [-Ce.j£'-15- )... )-C-J=.J3o=1 -CooBoo | CB,CJB,...,CJ^~2B] 

= [-C~J^-1_?oo,...1-CooJooBoo,-C»5oo |0,0,...,0] 

+[0,..., 0,0 | CB, CJB,..., CJii~2B] 

- -C°°[JlZ~\JlZ~'->---,J°°J» I 0,. . . ,0]diag[5«,5»,. . . ,£~] 

+C[0,..., 0 | U, J, J2,..., J*'-2]diag[B, B,..., B] 

- r r i ^ i f I £ r _ 1 4 r 2 ••• Ioo /„ I 0 0 ••• 0 - L - C ~ | G J | 0 0 . . . 0 0 I j n j . . . j ,x-

xblock diag[5=o, B~,..., S» | B, B,...,B] = L. 

If we take the inverse Laplace transform L_ of A(s) as defined in (24) and taking 
in mind that: L_ [sJ] = 6^3\t),j = 0,1,.. . , we obtain: 

0 0 
0 0 

0 
• • Й ( Ғ - - І ) ( Í ) / Г 

б(---'Ҳt)ir 

б&-~Ҳt)ir 

б^-^^u б(<ч~2Ҳt)ir • 
б(^-2Ҳt)ir б^-~Ҳt)ir • 

• • 6<'Ҳt)Ir 

•• 6{t)Iг 

6(t)Ir 

0 

б('Ҳt)Ir 6(t)Ir 

6(t)Ir 0 
0 
0 

0 
0 

д(0 = Ľ_ [д(s)] = 

Thus we have found: 

#...(<) = L~- [̂ ••(*)] = L A(<)F = po6(t) + Pi6M(t) + ... + P?r_xffi
T 

(27) 

•i) (t), (28) 

where /?,• t = 0 , 1 , . . . , qT~i are r x 1 vectors obtained after some manipulations in 
the terms of (28). From equation (28) and the definition of F in (16) it follows 
that if the initial conditions /?(0") , . . . , /? ( ? r - 1 )(0 _ ) are appropriate then p(t) has 
an "impulsive behavior" at t — 0" which consists of a Dirac impulse 6(t) and its 
(qr — 1) distributional derivatives. In other words when the initial conditions are 
imposed on f3(t) and its (qT_i) derivatives at t = 0~, P(t) may exhibit an impulsive 
behavior at t = 0" which is a consequence of the fact that (4) forces j3{t) and /3(,)(t), 
i = 1,2,..., qT_i to satisfy certain constraints at t — 0~. The exact derivation of 
these constraints and their relation to the structure at s — oo of A(s) are examined 
in [13] explicitly. From equation (28) it is also clear that the impulsive solutions 
of L.H.M.D.E. are closely related — because of the form of L in (16)- to the finite 
and infinite Jordan pairs (C, J) and (C°°, J°o) respectively, of the polynomial matrix 
A(s). 
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3. ILLUSTRATIVE EXAMPLE 

Consider the following differential equation: 

I " J * 1 6(0 1 _ [ o 
€.(*) J " [ o 

and the corresponding polynomial matrix ( in the s-domain): A(s) = 8+1 s2 

0 1 

with A~ (s) = .+1 .+1 and S~(j)(«) = 
s2 0 
0 1 

i.e. г = 2, n = 1, џ = 

92 + 1 = 1 + 1 = 2, ci = 2, $2 = 1. We can find the finite and infinite Jordan pairs 
ofi4 _ 1 («) (see [12,13]): 

C = 
-1 1 
0 1 

0 1 
0 0 J = [-l], c~ = 

The forms of B, £ » are respectively: 5 = [1,-1] , 5 ~ = Mj ? • From (26) 

we have: 

J L=[ -C 0 0 ,C ] 

1 - 1 1 
0 - 1 0 

0 Ii 
^oo 0 

0 B 

0 0 0 0 
0 1 0 0 
0 0 1 - 1 

0 - 1 1 - 1 
0 - 1 0 0 

From (27) we have 

Д(í) = 

0 
0 

6(t) 0 

0 6(t) 0 
0 0 6(t) 

0 0 
0 <5(ť) 0 

From (16) we obtain: 

F = A2 0 
M A2 

ß(0~) 
ßM(0~) 

0 1 0 0" Г б(o-) -
0 0 0 0 б(o-) 
1 0 0 1 6(1)(o-) 
0 0 0 0 [ tftø-). 

6(0-) 
o 

6(0") + &\o~] 
o 

Finally from (28) we obtain that the so-called impulsive solutions of the differen-
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t ial e q u a t i o n are given by: 

(3^(t) = LA(t)F 

0 - 1 1 - 1 

0 - 1 0 0 

0 0 6(t) 0 

0 0 0 6(t) 

6(t) 0 0 0 

0 6(t) 0 0 

б(o-) 
0 

б(o-)+41}(o-; 
0 

= И<)Ы0-)1 M i l 

It is clear from the above t h a t the s y s t e m yields an impulsive solution in t h e case 

6(o-) ^o. 

4. C O N C L U S I O N S 

In this p a p e r t h e d e t e r m i n a t i o n of t h e impulsive solut ions of Linear Homogeneous 

M a t r i x Differential E q u a t i o n s has been invest igated. By a d o p t i n g the definitions of 

finite a n d infinite J o r d a n pairs of the associated polynomial m a t r i x , a closed formula 

for t h e d e t e r m i n a t i o n of t h e impulsive solut ions has been presented. 
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