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K Y B E R N E T I K A —- V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 6, P A G E S 6 0 7 - 6 1 6 

MINIMAL REALIZATIONS OF THE INVERSE 
OF A POLYNOMIAL MATRIX USING FINITE 
AND INFINITE JORDAN PAIRS 

GEORGE F. FRAGULIS 

A simple method is given which uses the notions of finite and infinite Jordan pairs from 
the theory of operators in such a way to find the minimal realization of the inverse of a 
given polynomial matrix. An application of the proposed method is to find the generalized 
state-space system which has as transfer function the inverse of the polynomial matrix. 

1. INTRODUCTION 

It is rather obvious that the connections between control theory and linear algebra 
are very strong. Several formulas and notions, as well as, known techniques from 
matrix theory and theory of operators are used efficiently in control theory. The 
important treatise of [4] gives a nice example of how matrix theory can be applied 
to the analysis and solution-finding of several difficult problems in control theory. 
On the other hand Gohberg and other researchers [5] presented their work on oper
ator polynomial and general operator-valued functions, and pointed out the striking 
similarities among them and formulas and notions in control theory making the ob
servation that ". . .from the systems theory point of view, we study here systems for 
which the transfer function matrix is the inverse of a polynomial matrix" [5, page 7]. 
In this paper we present a simple method which uses the notions of finite and infinite 
Jordan pairs from the operator theory in such a way to find a minimal realization of 
the inverse of a polynomial matrix. The notions of finite and infinite Jordan pairs 
were found originally in [5] and are based on the notions of finite and infinite Jordan 
chains [4,5]. Our analysis is based on the theory presented in recent papers [3,9,10], 
where simple and efficient methods of finding finite and infinite Jordan chains - and 
as a consequence Jordan pairs - using the notions of finite and infinite elementary 
divisors, are given. 
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2. MAIN RESULTS 

Let A(s) be a polynomial matrix: 

A(s) = Ao+Axs+-.. + Aqis'i G3T x r [s] 

with Smith-McMillan form at s = oo [9]: 

S~(i)(s) = diag U ,-to ...,«», JL, . . . i l , 
L S«* + » S?rJ 

(1) 

(2) 

where 1 < fc < r and 9. = -q, i = k + 1,.. ,r such that qi > ga > • • • > g* > 0, 
9r •> ?<•-l > " •" > 9fc+l > 0. 

Let also the finite Jordan pair Cs G 3 i r x n , Js g sftnXn

 w i t h rt = deg \A(s)\. Let 
also the infinite Jordan pair (C°°,J<*>) of ̂ (s),with C~ G 3J r xf, J«, G 3t ," x ' i

) where 
/i is given by [9]: 

* r 

,i = ( r - l ) g 1 - Y J g , + ^ ^ ( 3 ) 

1=2 j = t + i 

where g ,̂ i = 1, . . . , k and ^ j = k+1,..., r denote the orders of the poles and zeros 

at s = 00 of A(s) respectively. It is well known [11] that the rational matrix A'1 (s) 

can be written: 

A~1(s) = Cj [s/„ - Jf] Bj+C~ [sJ» - J„] B» 

where B3, B^ can be found [11] 

B, 
вl ]=[I», fГЧp'1-2] [o,o,...)o,Jrf 

V = [A,xCjJ?~\ - Y, A.C-J^-1-'} 

Sqi-2 = 

Cfjy 

First of all we shall show the following 

С, Ссо7й-- 1 
ЗД С о о ^ ^ - 3 

(4) 

(5) 

(6) 

(7) 

P r o p o s i t i o n 1. Let ^(s) £ 3£rxr[s] be a polynomial matrix as ill' (1). Let also the 
finite Jordan pair Ci G 3J r x n , j y g $ftnxn, and the matrix Bj G 3^>xr a g defineci j n 

(5) with n = deg |A(s)|, such that: 

IIspr(s) = Cf[«/. - Ji] BS, (8) 
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where Hspr(s) is the strictly proper part of A *(s). Then the triple (CJ,JJ , Bj) is 
a minimal realization for Hspr(s). 

P r o o f . Consider the degree d (in the finite complex plane). We have d(Hw(s)) = 
d(A~x(s)). The right hand side equals to the total zero multiplicity of A(s) at finite 
points, hence is equal to n = deg|A(s)|. Thus by classical realization results, any 
realization of dimension n for 7f»Pt(s) is automatically minimal. D 

Now we define the dual polynomial matrix A(w) of A(s) as in [5]: 

A(w) := Aowqi + Alio*1"1 + • • • + Aqi = w"A(-) G 3Txr[w] (9) 

Definition 2. [5] The infinite elementary divisors (IEDs) of A(s) are defined as 
the finite elementary divisors of A(w) at w = 0 i.e. as the finite elementary divisors 
of A(w) that have the form: 

w"', fij>0. (10) 

In order to examine the structure of the IEDs of A(s) we thus see that we need 
the zero structure at w = 0 of A(w). Let S~ (w) denote the local Smith form of 

A(UJ) 

A(w) at w = 0. Then it can be proved that: 

Proposi t ion 3. [10] Let A(s) G 3?rxr[s] as in (1) and let S°~ (w) be the local 
A(w) 

Smith form of A(w) at w = 0. Then: 

^(wW ='"^ SM-) (~) = d i a g [ 1
!

w ? 1 _ ? 2 . - - - ! w
? 1 _ ? t , w ? 1 _ ' f c + I , - - - , w " " ' ^ ] (11) 

and the infinite elementary divisors of the polynomial matrix A(s) are given by: 

w>i\j = 2,Z,...r (12) 

Hi =q1~qj>0, j = 2,3,...,k (13) 

fc=qi+qj > 0, j = k + l,k + 2,...r. (14) 

R e m a r k . We see that polynomial matrices have in general two kinds of IEDs. The 
first kind of IEDs that correspond to poles at s = oo of A(s) with orders q, < qi, 
j = 2,3,..., k. The second kind of IEDs correspond to poles and zeros at s = oo. 
Notice that the first kind of IEDs exist if pa = qi — qi > 0, j = 2 , 3 , . . . , k and that 
the second kind of IEDs exists only when A(s) has zeros at s = oo. The first kind 
of IEDs, i. e. the ones with degrees JJ,, = qi — qi > 0, j = 2,3 k we call "infinite 
pole IEDs". The second kind of IEDs, i.e. the ones with degrees fn = </i + q, > 0, 
j = k + 1, k + 2,.. .r we call "infinite zero IEDs". 

In a recent paper [10] a method was introduced which showed how to find infinite 
Jordan chains that correspond to the "infinite zero" IEDs of the polynomial matrix 
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A(s). Each infinite zero IED with degree w^>, jij = qx + qs, j = k + 1,.. .,r, form 
infinite Jordan chains of lenghts /_,, j = k + 1 , . . . , r. 

We define the matrix: 

Coo, =[xj0,xju...,x.~j_l}eW*^ j = k+l,...,r (15) 

which consists of those infinite Jordan chains. If we now find in a similar way the 
infinite Jordan chain to "infinite pole" IEDs of A(s) with degrees: w1*3', ya = qi —q>, 
i = 2 , 3 , . . . ,k we can define the matrix: 

Cc_i = [ari0, Xii,...,Xitll._1]z$tr*>'>', i = 2 , 3 . . . .,k. (16) 

The index i has starting value i = 2 because w^1 = 1 as we can see from (11) and 
no infinite Jordan chain is obtained from this infinite pole IED of A(s). Now from 
(15) and (16) we define the following matrix: 

Coo = [Coo2, Coo3, • • .,coo* | coo,4 + 1, Coo,fc+2, • • • , coor] £ -. (17) 
with 

k r k r 

lu = (k-l)q1~J^q, + (r-k)q1+ V" £ = (r - 1) qx - £ ? , + V" q,. (18) 
i=2 j=k + l i = 2 j = k + l 

Now to each infinite pole IED w^', fii = qi —qi, i = 2 , 3 , . . . , k corresponds a nilpotent 

matrix: Jooi G " ' ' . Similarly to each infinite zero IED wMj, ju, = qi + qj,j = 

k + 1,... ,r corresponds a nilpotent matrix: Jooi G 3f ' ' . Finally we define the 
matrix: 

Joo = blockdiag [joo2, Joo3, • • • , Joo* | Joo,_ + l , Joo,_ + 2, • • • , Joor] € --"""J (19) 

with n as in (18). 
In the sequel we shall present a method which shows how to reduce the degree of 

fi and make it minimal. If we take the ath power of Joo in (19), because of its block 
diagonal form, we shall also take the same powers of Jooi, i = 2, 3 , . . . , r. But the 
matrices Jooi, i = 2 , 3 , . . . , r are nilpotent, hence they shall have cr-zero rows in the 
end.Clearly the index of nilpotency of Joo is equal to the index of nilpotency of its 
maximum Jordan block i.e. equal to qi + q*. We consider again the form of Boo as 
given in (5): 

- i 

[ £ ] =[0_, Jr1] [ V 2 ] [0,0,...,0,I-f. (20) 

First of all we remark that J | J _ 1 ^ 0 because its index of nilpotency is qx +qT > 
q, — 1. Because of the block diagonal form of Joo we must take also the (qt — l)-power 
of Jooi, »' = 2 , 3 , . . . , k and (<?i — l)-power of the Jooi, j = k+1, ... ,r. The index of 
nilpotency of the Jordan blocks Jooi, i = 2 , 3 , . . . , k is clearly q, — qi, i = 2,3,..., k, 
i.e. J^,_?* 3 0 for i = 2 , 3 , . . .,k. But q, — 1 > q, — qt, i = 1, 2 , . . . k because 
qx > qi > ... > qk > 0. Hence 

J £ - 1 = 0, 1 = 1,2,...,*. (21) 
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If we take the (qi — l)-power of the Jordan blocks Jooj, j = k +1,... , r then each 
one shall have (<ji — l)-zero rows in the end. From the above analysis we have that 
if we take the (q\ — l)-power of Joo, then J°° has: 

k k 

m.=X>-gO = (*-l)g.-]r> (22) 
i = 2 i = 2 

zero-rows from the beginning because of the Jordan blocks J°°., t = 2 ,3 , . . . , k (see 
(21)) and 

m, = ( r - f c ) ( 9 l - l ) (23) 

zero-rows in the end of each block J°oj, j = k + 1,.. ., r ((r — k) is the number of the 
Jordan blocks Jo*;, j = k+ 1,.. . , r ) . From (22) and (23) it is clear that the (qi - 1)-
power of Joo has (mi + mi) zero-rows. Now from the definition of 5°° in (20) we have 

that the matrix [0*, J^f1] is multiplied with qi~2 [0, 0,.. ., 0, L] - which is 

nonsingular by definition - hence the product [0„ , J ^ _ 1 ] 9i7 [0, 0,. . . , 0, !>-] 

has also (mi + mi) zero-rows. Then from the above it is clear that the matrix B°° 

has always (mi + ms) zero-rows which are not useful and we can eliminate them. 

If from the matrix 73°° G $tfiXr with fi as in (18) we eliminate the appropriate zero-

rows( the mi zero-rows from the start and the ma zero-rows which correspond to the 

last zero rows of each Jordan block J°oj, j -= k + 1, . . . , r) we obtain a new matrix 

B G W*r with: 

џ = џ-(mi+m?) = (r-í)qi^2q,+^2 Qj~ 
«=2 j=k+i 

(k-l)qi^£qi + (r-k)(qг-l) 

(24) 

= (r-k)+ J2 ?j 
j=k+i 

rows. As we can easily see the value of/I (which is the value of fi after the elimination 
of the zero-rows) is equal to the order of a minimal realization of 7JPoi(s) [9]. 

Hence if we eliminate now from c°° the columns which correspond to the (mi + 

ma) zero-rows in Boo we shall obtain a matrix C°o 6 5ft . Similarly if we eliminate 
from Joo the columns and the rows which correspond to the (mi + m?) zero-rows 

in Boo we shall obtain a matrix J°o G Sft . From the above it is clear that there 

exists a triple of matrices C°= G 5ft , J~ G 5ft and B°o G 5ft such that 

Hpd(s) = Coo[sJoo — I~] Boo and p. = (r — k)+ Yl 9j> i s the least order among 
11 i=*+i 

all realizations of HP°\(s). Hence jl is the order of a minimal realization i.e. (C~, 
Joo, Boo) is a minimal realization of 7JPoi(s). We can now state the following: 
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Propos i t ion 5. Let A(s) £ & r[s] be a polynomial matrix as in (1) with Smith-
McMillan form at s = oo as in (2). Let also the infinite Jordan pair (C<*>,J°°) of 
A(s) with Co <= Sftrx*., j„ <= gf"x"j where p. is given by (see (18)): 

k r 

,, = (r - 1)91 - ;>> + J2 © (25) 
t=2 j = * + l 

and B» G S ^ " as this defined in (5)-(7). Let also A'^s) = #..»(«) + JTP..(s). 
Then: 

(i) The triple of matrices (C~, Zoo, So.) is a realization for the polynomial part 
# P . i ( s )of A - ^ s ) . 

(ii) From (C«., Joo, Boo ) we can find a triple of matrices (Co., Joo, Boo), with Cx> € 

3t*""\ Joo e SR"1"1 and £L e3{ ' X r where // is given by (see (24)) 

fi = (r-k)+ J^ %. (26) 
j=k+i 

Clearly p. < p. and the triple (C~, Joo, B=o) constitutes a minimal realization of 

the polynomial part i7P..(s) of A~1(s), i.e.: /JP.i(s) = C~[sJoo - /-] Boo and 

p = 8M[l/wA(l/w)]. 

3. AN APPLICATION 

The proposed method can be applied to the so-called realization theory of transfer 
function matrices of Linear Multivariate Systems [6], i.e. physical systems of the 
form ( £ ) : 

A(p)(3(t) = B(p)u(t) 

y(t) = C(p)P(t), 
where p := d/dt is the differential operator, A(p), B(p), C(p) are polynomial matri
ces and P(t), y(t), u(t) are respectively the pseudostate, the output and the input 
vectors of the system (£))• The transfer function matrix of QTJ) is (in frequency-
domain): G(s) = C(s)A~1(s)B(s) which is a rational matrix(not necessarily proper) 
in general. It would be interesting to find certain singular systems in generalized 
state-space form [1], i.e. physical systems of the form (J2i) '• 

Epx(t) = Ax(t) + Bu(t) 
' (28) 

y(t) = Cx(t), 

where E, A, B, C are constant matrices with appropriate dimensions and x(t), y(t), 
u(t) are respectively the generalized state,the output and the input vectors of the 
system Q d ) , which give rise to the transfer function matrix G(s). In other words the 
transfer function matrix of system Q3,) which is given by: d (s) = C[sE — A] B 
satisfies the following condition: &(s) = C[sE-A]" B = C(s)A~1(s) B(s) = G(s). 
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Definition 6. [2] Assume that Gi(s) G 3_rxr(s) is a rational matrix. If there 
exists a quadruple of matrices (E,A,B,C) such that: d ( s ) = C[sE - A] B -
where E, A G 5ftnxn, B G 3?n x r , C G 3? r x n are constant matrices with n G !V-{0}, 
then the generalized state-space system described by (___,) will be called a singular 
system realization of Gi (s), or simply a realization of Gi (s). Furthermore the system 
(____) is called a minimal realization of Gi(s) iff any other realization of Gi(s) has 
order greater than n, or equivalently iff the generalized state-space system (____) has 
the least number of generalized states (x(t)). 

Any rational matrix G(s) (not necessarily proper) may be represented as the 
sum of its strictly proper part H*P,(s) and its polynomial part HP„i(s), i.e. G(s) = 
H*p,(s) + Hp°i(s). We know that the inverse of a polynomial matrix F(s) G 3?rXr[s] is 
a rational matrix in general. If we now consider the case where F~1(s) := G(s) then 
the proposed method finds a minimal realization - as this defined in Definition 6 
- of a transfer function matrix (G(s)) of a system (___) which has the property its 
inverse to be a polynomial matrix.To be more precise let a system (_;_) which give 
rise to a transfer function matrix G(s) = C(s) A~l(s) B(s), (s) G 3? r x r , and assume 
that G(s) has the following property G(s)~1 := F(s) G 5? rxr[s]. Now Proposition 1 
states that we can find a triple of matrices C. G 3? r x n , / / G 3inxn, Bj G 3?n x r 

with n = deg|f ,(s)| , such that: H,P,(s) = Cj[sh - Jf] Bj, where H,P,(s) is 
the strictly proper part of G(s) = E_1(s) and the triple (CJ,JJ,BJ) is a minimal 
realization of H*P,(s). Also Proposition 5 states that we can find a triple of matrices 

(C~, J~,B-), with G~ e » p ^ , J - G St-*5**, 5 ~ G 3 ^ x r with /. = ( - - , . ) + <£ g 
_! j=k+l 

such that Hvoi(s) = C~[sJoo - I~] 5 = , where Hv°i(s) is the polynomial part of 
G(s) = F~x(s) and the triple (C~ , j ~ , B=) is a minimal realization of i?Poi(s). Let 
now define: 

E:=[I0 £ ] e t f * + W , , ( " + » (29) 

A : = [ ^ 7 ~ ] G 3 ? ( n + A ) X ( n + A ) (30) 

B : = [ l ] e ^ ^ (31) 

C : = [C/, C=] G 3 ? r x ( n + « . (32) 

We can now define the following generalized state-space system: 

Epx(t) = Ax(t) + Bu(t) 

y(t) = Cx(t). ( 3 3 ) 

It is easy to verify that: G(s) = H,P,(s) + __p„.(_) = C[sE - A]'1 B. Hence the 
system (33) determined by the matrices (29)-(32) is a realization of G(s). Further
more this realization is also a minimal one. 
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Definition 7. The order n of the minimal realization of the transfer function 
matrix G(s) defined by (29)-(32) is called the minimum generalized order of G(s). 
Furthermore n is the dimension of the generalized state-space system (33) and is 
equal to: r 

h = n + jl = deg\F(s)\ + (r-k)+ ~P g>, (34) 
j=k+i 

where q,, j = k + 1 , . . . , r denote the orders of the zeros at s = oo of the polynomial 
matrix F(s) which can be found using the Smith-McMillan form at s = oo [8]). 

We can now state the following: 

T h e o r e m 8. Let a linear multivariate system of the form (27) which give rise to 
a rational transfer function matrix G(s) 6 3ftrxr(s) and has the property to have 
a polynomial inverse F(s) £ K r x r[s] . Then we can find a generalized state-space 
system of the form (33) with [E, A,B,C] as in (29) - (32) and minimum generalized 
order h as in (34), such that the system (33) to be a minimal realization of the 
rational matrix G(s) (according to Definition 6). Furthermore since the two systems 
(27) and (33)give rise to the same transfer function matrix G(s) they have the same 
sets of finite and infinite transmission poles and zeros ([6,7]). 

4. EXAMPLE 

Let the following PMD: 

The transfer function matrix of the above PMD is given by: 
G(s) = C(s)A'' (s)B(s) => 

G(s)=[ji f ] = [ t f ] + [S ~\+1 ]=»•»(*)+*Ms) 

G(s) is a rational matrix which has the property G~1(s) = F(s)£ 3?2x2[s] where: 

F(s) = | t \ \, with s~(,)(s) = o - ' A fmite J o r d a n pa i r for F(s) 

can be found,with n — 1 : Ct ~ fl , JJ — [-1] and an infinite Jordan pair for 

F(s),, = 3,C^ = \-0
1 \ - 1 ] . ^ = 

0 1 0 " 
0 0 1 
0 0 0 
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Then we can find Bj and Boo as follows (according to equations (5)-(7)). 

[£]•«-•*• '[ ?] 
1 0 0 0 " " 1 - 1 1 - 1 " " 0 0 
0 0 1 0 0 0 1 0 0 0 
0 0 0 1 0 1 0 0 1 0 
0 0 0 0 0 0 0 - 1 0 1 

[0,,/, 

1 - 1 

0 0 
0 - 1 
0 0 

Bf 

Hence Bj = [ 1 - 1 ] and 5=o = 
" 0 0 

0 - 1 
0 0 

and therefore (Cj ,JJ,BJ) is a 

minimal realization of H*Pr(s) of G(s). The triple (Coo, Joo, Boo) is a realization of 
Hpoi(s) but not minimal. Applying the proposed method we have that there is only 
one block J002 in J°° and therefore mi = 0 and rm = 1. Hence if we eliminate the 
last row of B<*>, the last column of Coo , and the last row and column of Joo we shall 

obtain: C~ = | ~ 1 j 1, J - = | J J 1, B . = | J _^ 1 (with ji = 2) which is 

a minimal realization of HPoi(s) of G(s). Let now define: 

£ : = 
Һ 0 
0 J00 

1 0 0 
0 0 1 
0 0 0 

Ң ' ľг 

- 1 0 0 
0 1 0 
0 0 1 

•i" 
" 1 - 1 " 

0 0 
0 - 1 

C : = \Cj, Coo = 
1 - 1 1 
0 0 1 

The quadruple of matrices [E, A, B, C] give rise to the following generalized state-
space system 

1 0 0 
0 0 1 
0 0 0 

Ңt) = 

m 

- 1 0 0 
0 1 0 
0 0 1 

" 1 - 1 " 
x(t) + 0 0 

0 - 1 
u(í) 

1 - 1 1 
0 0 1 

which is a minimum realization of the matrix G(s) with minimum generalized order 
h = n + p. = 1 + 2 = 3, which represents also the dimension of the generalized state 
x(t). 

5. CONCLUSIONS 

In the first part of the present paper we investigated the problem of finding the 
minimal realization of the inverse of a given polynomial matrix by adopting the 
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not ions of finite and infinite J o r d a n pairs . In t he sequel we applied the proposed 
m e t h o d in order to find the generalized s ta te -space sys tem which has as t ransfer 
function m a t r i x t he inverse of a polynomial m a t r i x . We remark here t h a t the p rob lem 
of t r ans forming a linear mult ivar iable sys tem of t he form (27) to a generalized s t a t e 
space sys tem of the form (33) is called l inearizat ion and has been considered by 
m a n y researchers . In our pape r we s tudy a special case of l inearization ; t h a t is 
l inearizat ion for the class of transfer function mat r ices G(s) of sys tems (27) wi th the 
proper ty of hav ing a polynomial inverse, i .e. : 

V = {G(s) £ r x r ( s ) / G~l(a) e Wxr[s)} . 

T h e s t ruc tu r a l proper t ies of the e lements of t he class V as defined above, as well 

as, t he forms of t he mat r ices A(-), B(-), C(-) of the sys tem (]T}) it1 (27) which give 

rise t o a t ransfer function m a t r i x G(s)e V is a topic of further research. 
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