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KYBERNETIKA- VOLUME 17 (1981), NUMBER 5 

ASYMPTOTIC BEHAVIOUR OF THE LIKELIHOOD 
RATIO TEST UNDER PRESENCE OF DEVIATIONS 
OF THE MODEL 

JAN ÁMOS VÍŠEK 

Let us test a fixed simple hypothesis H: 9 = 9' against a fixed simple alternative A : 9 — 9" 
by means of the likelihood ratio test fn(x, 0{)!fn(x, 02) = c„, where 9' and 9" are assumed to 
belong to a neighbourhood of the points 9i and 92, respectively. In the first section of the present 
paper the asymptotic rate of the convergence of the error probabilities of this test is proved to 
be continuous in the parameter 9 under a condition which is fulfilled for many commonly used 
types of probability distributions. In the second part of this paper bounds of the above mentioned 
asymptotic rate are given for the case when there are deviations from the independence or from 
the type of dependence between the observations. 

1. INTRODUCTION 

Since the theory of testing statistical hypotheses began to be built up, statisticians 
have realized a practical need of testing composite hypotheses against composite 
alternatives. Many tests had been proposed for this purpose and their properties have 
been studied ([6], [9], [10]). As it is well known, the optimal (minimax) tests exist 
for this purpose only in special cases and thus, in the other cases, there was an ambi­
tion to prove the optimality of the tests in an asymptotic sense. However this caused 
the need to solve many problems, starting with the measurabilty of the "statistics" 
and continuing with deriving asymptotic distribution under the hypotheses and the 
alternatives ([1], [2], [6], [7]). How complicated studying these problems is may be 
proved by the fact that highly effective methods had to be developed in order 
to solve them. Moreover, the attempt to evaluate such statistics for given data has 
shown, that even the numerical issue of the problem is not easy. Besides that the justi­
fication of the demand of the minimax property of the tests for the whole, usually 
large, composite hypothesis or alternative is under question. In fact, there are cases 
in which, after having obtained data and taking into account goals of testing, one is 
able to restrict the hypothesis and the alternative to neighbourhoods of two suitable 
points of the parameter space. 
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All these above stated reasons lead us to an idea to use the likelihood ratio of 
a simple hypothesis and a simple alternative as a test statistic and to study the pro­
perties of it under assumption that the true value of the parameter lies in a neigh­
bourhood of the hypothesis or the alternative. This has been done in the first section 
of this paper. 

Recently simulation studies ([4]) showed a bad behaviour of some statistics in the 
case of dependent observations. Therefore, it has been interesting to study the 
asymptotic behaviour of the likelihood ratio in the cases in which "slight" violations 
of the independence (or the type of dependence) of the observed data have occurred. 
The bounds of deviations of the asymptotic rate of convergence of the error pro­
babilities for likelihood ratio test in such situations have been given in the second 
section of this paper. 

2. NOTATIONS 

Let 3C, endowed by a Borel u-algebra s/, and 0 be metric spaces and g be the metric 
of the latter one. We shall assume to have defined for every 0 e 0 a probability mea­
sure P„ being absolutely continuous with respect to a er-finite measure [i. Denote 
by f(x, 0) the Radon-Nikodym derivative of the measure Pg with respect to the 
measure /z. Let Jf denote the set of all positive integers and R the real line. Let, 

for any n e J/", 3Cn be the Cartesian product X 3C(l), where 3C(!) = 9C for every 
i = l 

i e ,/V and s4n be the minimal cr-algebra generated by X sd(i), s4(i) = stf. Let Ha(P, Q) 
; = i 

and H(P, Q) denote the a-entropy and the minimal a-entropy of a probability mea­
sure P with respect to a probability measure Q, respectively, i.e. 

and 

wfflgr* 
H(P, Q) = inf Ha(P, Q). 

0 < « < 1 

Let us define a(P, Q) to be equal to a e (0, 1) such that Ha(P, Q) = H(P, Q), if it 
exists, or let a(P, Q) = 0 or a(P, Q) = 1, if H(P, Q) = lira Ha(P, Q) or H(P, Q) = 

a - 0 + 

= lim Ha(P, Q), respectively. Let M„ denote for any ne J,r the product measure 
a-* 1 -

over (3Cn, s4n) generated by a measure M on (£*, sd) and put for every ne Jf and 

yeR 

^n,y{
pn' Qn) = {x e 3Cn, 6Pn < exp {ny} dQ„} . 
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For any A„ e sdm An will denote the complement of A„ with respect to _y„. Now let 
us write for A„ e s/„ and for measures P and Q 

e„(P„,A„) = £ dP„ 
J^n 

and 
e„(P„, <2„, A„) = e„(P„, A„) + e„(2„, A<). 

In the case when y = 0 we shall write Jfn(Pn, Qn) instead of Jif „ 0(P„, Qn). Moreover 
if P = P6l and g = P„2 for some 01; 02 e 0, we shall write Jf„,y(9u 02) instead 
of Xn>y((P9l)„, (Pfl2)„) and analogously Ha(0!, 02) and H(9U 02) instead of H_(Pfll, P6l) 
and H(P$1, P8l), respectively. Similar notation will be used for e„(P„, Q„, A„). Finally, 
we shall say that we use a test A„ (A„ e s4„), if we use A„ as a critical region (in the 9Cn). 

3. RESULTS 

1. DEVIATION FROM ASSUMED VALUE OF PARAMETERS 

Lemma 1. Let 9U 02 e 0 be such that PBl + P„. and y e R. Then 

(1) log H(0U 62) _S lira inf n~x log e„(0l5 02, Jfn,y(6u 62)) £ 

^ lim sup n" 1 log e„(0!, 02, tf„,y(Qu 02)) g log H(0 l5 02) + |y| . 

Proof. It is well known that 

e„(0j, 02, Jf „(0_, 02)) = min e„(9u 02, A) 
and A£St" 

lim n~x log en(0u 02, Jfn(9u 02)) = log H(BU 02) 

(see [3]). 
Therefore we have to prove only the last inequality in (l). Let 0 < a < 1. Then 

(2) lim sup n-l log e„(0x, 02, Xn,y(9u 02)) = 

= lim sup n - 1 log j f ft f(x» 0,) d^ + f f\ f(xt, 02) dii] 
n-oc. U ^ n . v C l . < - ) ' = ! J_"S,y(9 l .92) i= l J 

= lim sup n" 1 log {e""-J | f\ f^'fr, -_)/"(:.„ 02) d/z + 
" - < - (. J_-„ ,v(9 i ,92)»=l 

+ e*-1* f ft j 1 - ^ , , 0 t)r (x, 02) d/A g 
Jjfg,v(9i,82)i=l J 

^ lim sup n - 1 log e"W \\ f\ /'-'(x,, 9l)P(xi, 02) dA = log H1_„(01, 02) + |y| . 
U i=l J 

As (2) holds for any a e (0, 1), (1) is proved. • 

382 



Theorem 1. Let 01,92e0 and PBl + P02. Let us assume, that there exist y0 g 0, 
y. 2; 0, |y0| + |yj| > 0 such that for any y € (y0, y.) the exists <5y > 0 such that for 
any 0 e 0, Q(9, 0X) < .5,, and n e / w e have 

(3) Xu(0i, 02) e JrB,7(0, 62) • 

Let, moreover, H(0, 92) be a continuous function of 0 at the point 0.. Then for any 
e > 0 there exists <5E > 0 such that for any 0 e 0, Q(9, 0.) < <5£ we have 

log H(0U e2) - s ^ lim inf n'1 log e„(0, 02, Jfn(9, 02)) < 
n-K» 

< lim sup n" 1 log e„(0, 02, JT„(01; 02)) < log H(0„ 02) + e . 

Remark 2. Conditions under which H(9, 92) is a continuous function of 0 at the 
point 91 have been given in [8]. The sufficient condition for this continuity occurred 
to be, e.g., the continuity of the density f(x, 0) (as a function of 0) in the mean (with 
respect to the measure n) at the point 0.. 

Remark 3. The assertion of Theorem 1 based on the continuity of H(9, 02) 
at 0j enables us to claim the following statement: Having used the likelihood ratio 
test .5f „(01; 02) under the assumption that the true value of parameter 0 lies in a neigh­
bourhood of 0X (resp. 02) the asymptotic rate of convergence of the error probabilities 
will be only a little worse than in the case of using the best test Jfn(9, 02). 

Remark 4. It may be seen from the following proof of Theorem 1 that it is easy 
in practice to evaluate numerical relations between <5£ and B. In fact, verifying (3) one 
finds out 5y as a function of y (see Examples 1 and 2) and using H(0, 02) (as a function 
of 0) one can find out 3y = <5T(g/2) and <5fll = <5Sl(

s/2) f° r g i y e n 6 > ° (see t h e proof 
of Theorem 1) and then <5£ = min {<5y(e/2); <5fli(e/2)}. 

Proof of T h e o r e m 1. Let e > 0. Take y e (y0, y.), |y| g s/2 and find dy ac­
cording to the assumption of Theorem 1. Let <59l > 0 be chosen so that for all 0 e 
e 0 Q(9, 0J) < <5fll we have 

(4) |log H(9, 92) - log H(6V 02)| < e/2 . 

and denote by <5E = min {<59l, 5y). Now let 0' e 0 be such that Q(0', 9t) < <5£. From 
Lemma 1A we have 

lim sup n-1 log e„(0', 92, tfB(9u 92)) = 

= lim sup n'1 log max {en(9', jr„(0j, 92)), e„(92, X
c(9i, 92))} . 

Let us split the set of all positive integers into two subsets as follows: 

. ^ , = { « e . f : e„(0', Xn(0u 0»)) > en(92, Xc
n(9x, 02))} 
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and JT2 = JT \ JTU Then let us denote {n,}fm i and {nk}?= . the increasing sequences 

of positive integers contained in JTt and .N~2, respectively (i.e. {"(}"= 1 u {"«><=J ~ 

= .n 
Then 

lim sup n " 1 log max {en(0', X„(0U 02)), e„(02, X
c

n(Qu 02))} = 

= max {lim sup nf 1 log max {e„,(0', Xni(9u 62)), en,(02, X~c

ni(0u 62))} , 
1 - 0 0 

lim sup n;1 log max {e„k(0', X„k(9u 02)), e„k(02, Xc

nu(0u 02))}} • 
k-OO 

But 

lim sup n^ log max {e„k(0', X„k(Qu 02)), e„k(02, jt~ (6., B2))} -
k-00 

= lim sup n;/1 log e„k(02, Xc

n(6u 02)) = log H(0U 02) 
k-00 

and 

lim sup n - 1 log max {e„,(0', JT„,(0i, 02)), e„,(02, Xc

ni(6u 02))} = 
1 - 0 0 

= lim sup n;l log e„,(0', Xni(6u 02)) = lim sup nf ' log | f l /(*«• 0 ' ) d / X = 
l-oo l-oo J j f n | ( e i , 8 2 ) i = l 

< lim sup n~x log f f l /(*;> 0') d ^ = l i m »~* l o S en( e ' ' 02> ^ . v l 0 ' ' e-)) -
1-00 J j fnpVv 8 ' . 8 ! ) i = l "-00 

< log H(0', 02) + J7J ^ log H(0U 92) + e , 

where we used Lemma 1 and (4). On the other hand 

lim n~1 log e„(0', 02, Xn(0', 02)) = log H(0', 62) > log H(du 02) - e / 2 • 

П 

Example 1. Let 

0 = R , y > 0 , /(x, 0 ) = (2m)-1 exp {- i (x - 0)2} 

and 0 < 0 2 < 6U Then for 6 > 0 2 

and 

Jfj(«i. »2) - | x e if, : t x, < 2 (9, + 92)} 

X.„(8.8I)-fx6ir.:ix,<n?L±i!_lil}. 

At first let 0 > 0,. Then for any n e ^T and x e Jf.^.., 02) we have 

V v <r n .fl + fl ^ <r n 2 ? + °2 ~ 61 

kXi<2{6l + 6 2 ) < 2 e-e2 ' 
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i.e. xeJf„t7(d, 62). Now let 0X > 0 > max {0! - 2y/02, 02}. Then 

0 < 2y + 0(0 - Ox) 
and from it 

0(0i + 02) - 0t02 - 02 < 2y + 02 - 0 2 , 
i.e. 

0 + 0 < 2y ± °2^Jl 

and again from xe Cf„(Q\, 02) follows xeM"ny(0, 02). So we have proved that it 
suffices to put 

Sy = min J?- , 0. - 02} • 

Example 2. Let 

0 = R , y > 0 , j(x, 0) 
IT 1 + (X - 0) 2 

Put 

s2 = 1 - e x p { - y } _ 

exp{-y} 

Then for any 9U 82, 0e & such that |0 — 0,| < 57 and any n e / w e shall exhibit 
that 

(5) jr„(0 t , 02) c X„ , /0 , 02) . 

Let 
. . . , l + ( x - 0 ) 2 

To prove (5) we shall show at first that for any xe R 

(6) h(x)>-y. 

It is easy to verify that lim h(x) = 0 > - y . So we can find Ke R such that for any 

x e R , |x| > K we have /?(x) > — y. Now, putting the derivative equal zero, one 
can find the maximum and minimum of the continuous function h(x) on the closed 
interval [—K, K\. The minimum is attained for x = 0 and it is equal to 

log > log = - y . 
1 + (0 - 0 t)

2 1 + <52 

So (6) is proved. Then however 

• 1 + (x, - 0)2 
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Let xeXn(9u62),i.e. 

Һ 1 + (x; - 2f 

Then 

i log {1 + (x; - Of) > -ny + i log {1 + (xf - 92f) , 
; = i ; = i 

i.e., (5) is proved, too. 

Remark 5. As in both examples the parameter of the model was the location one, 
it is easy to verify that the condition of -the continuity of the minimal a-entropy 
H(6, 92) is fulfilled at any point 9X (see [8]). Therefore, having used the test Jf„(91, 62) 

for testing the composite hypothesis H : 9 e (S(9U Sj) ( = {9 e 0, Q(9, 0l)< <5X}) 
against the composite alternative A : 9 e (9(92, <52), the asymptotic rate of convergence 
of the error probabilities will be only a little less, depending on 8t (resp. 52), than the 
maximal possible rate. 

Remark 6. By a straightforward computation one can show that (3) may be fulfilled 
for many other families of distributions, e.g. for lognormal, Maxwell's,Rayleigh's, 
Pareto's, gamma (when only one parameter varies (i.e., e.g., exponential distribution)), 
Poisson's, binomial, geometric, etc. 

2. DEVIATION FROM INDEPENDENCE OR A TYPE OF DEPENDENCE 

Lemma 2. Let P„ and Qn be the product probability measures introduced above 
and P* a probability measure defined on the measurable space (3C„, stfn). Let for any 
n e J/" the measure P* be absolutely continuous with respect to the measure P„. 
Then for any e > 0 for which the inequality 

KdO T ( P l , Q l ) 

- s i dP„* = log H(Pt, Q,) + B 

holds, we have 

lim sup n'l log e„(P*, Q„, Xn(Pn, Qn)) = log H(PU Qx) + s . 

Remark 7. If a(Px, Qi) = 0 or a(P l 5 Q,) = 1, then in (7) and everywhere in the 
proof of Lemma 2 
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must be written instead of 

\\gr«-
P r o o f o f L e m m a 2 . A simple computation gives 

en{P*n, Qn, tfn{Pn, ft,)) = f dP„* + f dQn g 
J*APn,Qn) J*rnc(p„,Qn) 

-f r^r°'v*+f r^T"*"**-
J*.«..,t..>L4P.J J»-..,p.,o.>Ue.J 

sj[tr^*-j[tr"°"^ 

Then 

(8) en{P*n, Q„, Jfn{Pn, Q„)) ^ T"„ - vn + 

+ 

Let us denote 

and 

+ >mгшгм^ 
Let us define {nk}k»=1 = {n e Jf : xn g v„} and {«,}r=i <= Jr\{nk}k

x

=i. Then we 
have 

(9) lim sup n~k

 l log enk{P*„k, Q„k, XjP„k, Q„k)) g 

rrdE T ( P ' , s o r d o T - ^ ' - Q I ) 

*£:*rl08J[d [ £ ] d"— fl(p"fi'»-
Further for / e Jf let us write 

<\ ~ <\ = (TBI - v , ) ! ^ - ^ , - 1 ^ (T„, - vn,)na-> . 
j = i 
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From it we derive 

(10) lim sup n~ ' log {T"[ - v^} ^ lim sup {n~' + 1) log r„, ^ 
f-»0O ( - 0 0 

g l o g f l ( P l f G i ) + e 

as it follows from (7). Making use of (8), (9) and (10) one may easily conclude the 

proof of the Lemma 2. • 

Remark 8. Lemma 2 holds for P„ and Q„ not necessarily of the product type. It 

is sufficient to fulfil the conditions GC of [5]. The proof remains essentially the 

same. For the sake of simplicity of the notation used in the formulation of Lemma 2 

and in its proof the author of the present paper decided to state Lemma 2 in the 

simpler form. 

Lemma 3. Let P„ and Q„ be the product probability measures as above and P* 

a probability measure defined on the measurable space {9,'„, s&„) dominating probabil­

ity measures P„ and Q„ for every ne Jf. Let us denote by/„, gn and/*, the densities 

of probability measures Pn, Q„ and P* with respect to the measure fi„, respectively. 

Let us assume that there is a positive e, e < —log H{Pi, Qt) such that 

K
f*(.Pt,Q0 fll-*<Pi,Qi)-1 f«Pl,Ql) a l-a(P,,Q,) 

108 ̂ r - J wtojr^'-
Then 

lim inf tr1 log e„{P*„, Q„, Jf„{P*, Q„)) ^ log H{Pt, Qt) - « . 

Remark 9. It is again necessary to carry out the proper substitution in the cases 

having been described in Remark 7. 

To be able to prove Lemma 3 we need the following assertion (see [5], (1.7 p. 622)). 

Assertion 1. Let T„, S„, R„ be probability measures and for every ne JV let Rn 

be absolutely continuous with respect to T„ as well as to S„. Let us denote 

and 

Г H R 
Һ{R, T) = lim sup и " x log — " áR„ 

! — ^ j dГ„ 

C ńR 
Һ{R, S) = lim sup n~x log — - àRn. 

п-юo J dS„ 

Then 

lim inf n " 1 log en{T„, S„, Or„{Tn, S„)) ^ min {-h{R, T), -h{R, S)} . 
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Proof of Le mma 3. Let us define for any A e sd\. ( — •*&) 

"'w-i^J> ,'*''r"' ,* ,* , 

and let R„ be the product probability measure generated by Rv It is easy to verify 
that R„ is absolutely continuous with respect to P„ as well as to Q„ and moreover 
one may find out that 

log H(Py, Q.) = min {-h(R, P), -h(R, Q)} 

(see [5], Perez 1972, proof of Theorem 2.1). From it we have 

-h(R, Q) ^ log H(PUQ,). 

A reformulation of the assumption of Lemma 3 gives 

-h(R,P*) ^ log H(PU Qi) - e 

and from the assumption of the absolute continuity of P„ and Qn with respect to P* 
we deduce that Rn is absolutely continuous with respect to P*. Using Assertion 1 
we conclude 

lim inf n" 1 log en(P*, Q„, Jfn(P*, Qn)) ^ 

= min {- h(R, P*), - h(R, Q)} 2; log H(PU Q,) - e . Q 

Remark 10. Lemma 3 holds (analogously as Lemma 2) for P„ and Qn not necessarily 
of the product type, too. The reader, who would like to see it, should consult [5] to 
become familiar with the techniques used there. 

Theorem 2. Under the assumptions of Lemma 2 and Lemma 3 we have the following 
bounds for the asymptotic rate of convergence of the error probabilities 

log H(PU <2i) - e ^ lim inf n'1 log en(P*, Qn, X\(P*„, Qn)) ^ 

^ lim sup n~y log e„(P*, Qn, Jfn(P„, Q„)) g log H(PU Qt) + e . 

Proof. The middle inequality follows from the fact that $?n(P*, Q„) minimizes 
the sum of the error probabilities when testing P* against Q„. The other ones have 
been proved in Lemma 2 and Lemma 3, respectively. • 

In the rest of the paper we are going to give an example of a non-product type 
probability measure satisfying both conditions of Theorem 2. 

Example 3. Let XUX2,X3,... be a sequence of i.i.d. random variables. Let us 
define P„ and Q„ as probability measures generated by the random vector X„ = 
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= (XUX2, ...,X„) when X1 is distributed as N(0, a2) and N(fi, a2), respectively. 
Let A be the following (n x n) matrix 

1, 0, 0, . . . , 0 
-A, 1, 0, . . . , 0 

X2, — X, 1, . . . , 0 A = 

-A)"1 , (_A)<-2, ( - A ) - », > X J 
Now let P* be a probability measure generated by the random vector Y„, where 
Y„ = A . X„, when X„ is distributed according to P„. As det A = 1 and the inverse 
matrix of A has the form 

"1, 0, 0, . . . , 0" 
X, 1, 0, . . . , 0 
0, A, 1, . . . , 0 

A-1 -

we may find out that 
0, 0, 0, . . . , 1 

• Z ¥ І + I ] • f„*(xn) = (IKO2)-'2 exp - ~ [(1 + A2) Y. x2 + 2X 
I 2a i=i i 

It is easy to show that a(P l s <2i) = i (see [8], proof of Lemma 5). Then the straight­
forward computation gives H(PU Qt) = exp {-/I2/8(T2}. Substituting 

/„(x„) = (27r(T2)-»/2exp|-2L j > ? J , 

0 „ « = ( 2 T C ( T 2 ) - " ' 2 e x p | - ^ i ( x i - ^ 2 J 

and/*(*„) into the left hand side of the inequality (11) one obtains 

1 r " n n-l 
(12) lim sup — (2rc(T2)-n/2 [2X2 £ x? + 2/J V x; + 4A £ x,-xi + 1 - T^2] . 

n-co 4ncx 2 J i = l i = l i = l 

LŽLІ \ å X n = 

2a2 . exp -

= lim sup — \2X2n(a2 + y*) + np2 + l(n - l) /t2 - /I/I2] = 
n-*oo 4/1(T2 

= - L [2A
2((T2 + i/x-) + A/.2] . 

4(7 
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Let e > 0. Having solved the quadratic equation h„(X) = 0, where 

(13) hs(X) - X2(a2 + i/.2) + \X[L2 - 2ea2 , 

we get 

X - - ^ - V ( ^ + 3 2 £ a 2 ( a 2 + i/i2)) ^ _ - / r +.. /( .« + 3 2 . < - y + j/z2)) 

4 ( C T 2 + 1 . 2 ) 2 4(cT2+i/!2) 

Hence, owing to the convexity of the function he(X), we have for any e > 0 and X, 
A. „ A _a A_, n.(A) _S 0 and it implies (see (12) and (13)) that (11) is fulfilled (for 
P„, Q„ and P* as defined above). 

To find an analogous interval for X the inequality (7) holds in, one has to evaluate 
the limit 

(14) 

lira sup n" 1 log exp \ [(1 + X2) ^ x f - . X - . + . U } . x,xJ+_ + in/ i 2U dx„. 
n-a> J ( 2a2 i=l i=l i=l J 

Let us denote 1 — A . A' and /.' = (\x, /*,..., /t) and put 

r= . ! . . . 

Then we can rewrite (14) into the form 

lim sup n" J log \ exp 1 - - L [(x„ - -„)' I " a(x„ - t„) - t'„ £" 1<ll + i n/.2]t dx„ = 

= lim sup - i - (r„ I " !r„ - in/.2) = 

n-oo 2»(T2 

= lim sup —— (\n'In- inn2) = lim sup —— [l(Ap)' Aft- in.u2] . 
n-oo 2nCT n-oo 2n<r"' 

One may see that 

(An), = [1 - A + X2 - A3 + ... + (-A. - 1 ] . = ^ [ - . f f A* 
1 + A 

and 

n - ^ ^ ^ + A 2 ^ ^ 
/_ v _ v 11 - ( - A V V - + * 1 - A 2

 2 
(^ )^->&(-TT.rL ' ,)-~ T T A ^ "• 

So for A, \X\ g 1 we have found that (14) is equal 

_^ [_4(1 + A)2 ~ T 
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Now (7) may be written as follows: 

2a2L4(l+A)2 2 J = >V + 

This inequality holds for X ^ ^'(1 + U(a2jix2))~x - 1, if 0 < e < \(y.2\a2) and for 
any X, otherwise. (Let us remind that logH(P1 ; Qt) = — 1(/U2/V2) and hence the 
latter case is not interesting.) Finally, let 0 < £ < 4-(/.2/<x2). Then for any X, 

X e [max (Xu V(l + ^e(a2jn2))~x - l), min (X2, 1)] 

both the conditions of the Theorem 2 hold and so the asymptotic rates of the con­
vergence of the error probabilities lie within the bounds given by this theorem. 

4. APPENDIX 

Lemma 1A. Let {a„}"=1 and {b„}™=1 be sequences of nonnegative numbers and for 
every n e Jf we have max {a„, b„} > 0. Then 

lim sup n~x log (a„ + b„) = lim sup n~x log max {a„, 6„} 

and 
lim inf n~x log (a„ + b„) = lim inf n~x log max {a„, b„} . 

Proof. From 
max {a„, b„) < a„ + b„ < 2 max {a„, b„} , 

it follows that 

n~x log max {a„, b„) ^ n _ 1 log (a„ + b„) < n_1(log 2 + log max {a„, b„}) 

and finally 

lim sup n~x log max {a„, 6n} < lim sup n _ 1 log (a„ + b„), 

lim sup n~1 log (a„ + fr„) g lim sup n" x log max {a„, 6,,} . 

Similarly we can find 
lim inf n" x log max {a„, b„} < lim inf n~l log (a„ + b„) 

and 
lim inf n~1 log (a„ + bn) g lim inf n~x log max {a„, o„} . • 
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