
Kybernetika

Jan Schier
Inverse updated systolic RLS algorithm with regularized exponential forgetting

Kybernetika, Vol. 32 (1996), No. 3, 209--234

Persistent URL: http://dml.cz/dmlcz/125514

Terms of use:
© Institute of Information Theory and Automation AS CR, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125514
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 32 (1 9 9 6) , N U M B E R 3 , P A G E S 2 0 9 - 2 3 4

INVERSE UPDATED SYSTOLIC RLS ALGORITHM
WITH REGULARIZED EXPONENTIAL FORGETTING1

J A N S C H I E R

A systolic algorithm for the Recursive Least Squares identification with covariance up
date, using the block-accumulated regularization mechanism to increase numerical stability
of the algorithm with respect to weakly informative data, is presented. The advantages
over standard sequential implementation are that the sampling period of estimator is sig
nificantly reduced even with the robustifying modification of algorithm and that it is made
independent of order of the identified system.

1. INTRODUCTION

Adaptive identification finds its use in many applications of both signal process
ing (channel equalisation, adaptive antenna array beamforming etc.) and adaptive
control.

This paper focuses on the problem of increasing stability of the Recursive Least
Squares (RLS) identification algorithm with update of the inverse factor of data-
covariance-matrix (also referred to as the Inverse Updated RLS algorithm) for weak
ly informative da ta samples. It combines the inverse updated systolic RLS algo
r i thm with covariance update , designed in [6, 9] (parallel version of the LDFIL
algorithm [11]) with the block-accumulated regularized exponential forgetting, pro
posed in [3]. It should be mentioned that the inverse updated algorithm directly
provides weighting coefficients of the regression model on its output . This property
makes it at tractive for use in adaptive control.

The reasoning for use of the parallel systolic version of the algorithm is that some
applications have computat ional requirements (high sampling rate and/or large or
der of model required for proper description) which cannot be satisfied by usual
sequential implementation of the estimator. These requirements yet increase if the
regularization is used, because it increases the computational complexity of algo
r i thm in an order of magnitude. As will be explained in the text, systolic version of
an algorithm reduces the sampling period partly by introducing parallel processing,
partly by using da ta pipelining.

1 The research was partly supported by the Grant Agency of the Czech Republic under Grants
No. 102/95/1614 and 102/95/0926.

210 J. SCHIER

NOTATIONAL CONVENTIONS

x,y

a,b

A,D

I

a', A'

dx = n, dA = n x n

k

p.d.f.

c.p.d.f.

PE

á(l ,*)

X

X

X

X

/V(0,(7)

p(a\b)

p(y(k)\k-l;u(k))

E[a]

ў(k\к-l;u(к))

scalars

column vectors

matrices

unit matrix

a, A transpose

dimension of a vector or matrix

discrete time, time index of a sampling period; the
observation of a process starts at k = 1

probability density function

conditional p.d.f.

processing element

set of input-output data since the beginning of ob
servation till the time k

x before the data update

x after the data update and before the time update

x after the time update

x after the data update and exponential forgetting,
but before the addition of regularizing value

normal (Gaussian) distribution with a zero mean val

ue and a constant dispersion a

c.p.d.f. of argument a, conditioned on b

abbreviation for

p(y(k)\y(l,k-l),u(l,k-l),u(k))

(conditioning including the data history)

expected (mean) value of a random variable a

abbreviation for the expected value

E[y(kMl,k-l)tu(hk-l)M*)]

2. IDENTIFICATION OF THE SYSTEM MODEL

Linear regression model

Let us suppose the system to be described by a linear regression model

y(k) = 0'(k)<p(k) + e(k) (1)

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 211

where

y(k) denotes the current system output,

<p(k) is the data vector,

0(k) is the vector of regression parameters, 80 = n, and

e(k) is a scalar jV(0, c) white noise.

Under these assumptions, the p.d.f. of the system output is described by a normal
distribution.

Gauss—Wishart distribution of the system parameters

Let the apriori c.p.d.f. of the system parameters have the self-reproducing form of
the Gauss-inverse-Wishart distribution

v(k\k-l) + n-2

p((k),а(k)\k-l) = p(V,u)<т(ky

1
•exp 2аr(k)

Je(k\k-1)

J (k\k-1) =
- (k)

1
V(k\k-1)

- (k)

1

(2)

(3)

where

p(0(k), a(k)\k — 1) is the p.d.f. of parameters 0(k) in the ib-step of identification,
conditioned on the data d(0, k — 1).

Je(k\k—1) is a cost function of parameters 0(k), conditioned on the datad(0, k — 1)
[3]. For the GiW-distribution, it determines the shape of the distribution.

V(fc|fc — 1) is a positive-definite symmetric extended information matrix. This
matrix accumulates the information contained in the data measurements. For
later use, it is useful to introduce the following sub-matrices

V = V*

ч>y

'Ч>У , ÔV = (n + l) x (n + l) , (4)

where

Vtp is an information matrix, dV^ = n x n,

'ч>y is a vectoг, дvmy = n, and

vy is scalar.

u(k\k — 1) is a number of degrees of freedom of the GiW-distribution. It charac
terizes the number of data effectively accumulated in the information matrix,

u(k\k-l) > 0,

p(V,v) is a normalization constant [10].

212 J. SCHIER

Sufficient statistics of the GiW-distribution

The parameters V and u fully determine sufficient statistics of the GiW-distribu-
tion [10].

Parameter estimate is given by the relation

0(k + l\k) = V~l(k + l\k) Vipy(k + l\k). (5)

The sufficient statistics may be expressed also in an inverse form, which is used
in the Least Squares (LS) methods [5, 10]:

P (* | * - l) = V-l(k\k-l) (6)

A (* | * - l) = vy(k\k-l)-v'^y(k\k-l)P(k\k-l)v¥>y(k\k-l) (7)

Recursive adaptive identification

Recursive identification consists of two steps: of the data update, when the par
ameters of the sufficient statistics are updated using new information gathered from
the system, and of the time update, when the time evolution of the system is modeled
using some forgetting method. Both steps will be described now.

R e m a r k on notation . The 'hat' symbol (•) denotes the estimates of parameters.
Because only the estimates are used in the following text, the 'hat' symbol will not
be used, to simplify the data and time update relations.

Where appropriate to simplify the text, the following symbols will be used to
refer to the particular phases of update: the tilde symbol (•) will be used to refer to
the value of a variable before the data update, stacked bar and tilde symbol (•) to
refer to the value after the data update, and the bar symbol (•) for the value after
the forgetting step (will be formulated in the next section).

Data Update

Using the information matrix (4), data update is expressed by

V(k\k) = V(k\k - 1) +
<p(k)

У(*)

cp(к)

m (9)

Using the covariance matrix P (6), it is expressed by the formulae of the recursive
least squares (RLS) identification

C = <P'P<P, (io)

K = (l+()-lP<p, (11)

e = y-0<p, (12)

0 = 0 + KE, (13)

P = P - (l + " <) « * ' , (14)

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 213

where K denotes the Kalman gain vector, e the prediction error and £ is an auxiliary
variable.

Since the estimates are independent of the remainder after the RLS estimation
A, we do not actually have to evaluate it.

Time Update — Regularized Exponential Forgetting

To approximate the time update of the cost function J©, regularized exponential
forgetting can be used, described by the formula

j = Aj + (l - A) J , (15)

where 0 < A < 1 (which may be time variable), is the exponential forgetting factor,
which is used to weight the cost function J© with an alternative value J 0 .

The "alternative cost function" J 0 is a value to which the cost function converges
in the case of non-informative input data. Introducing "alternative parameters"
V* = (P *) - 1 and 0*, specified by user, the additional term J 0 may be expressed
in the same way as the cost function J© (3)

Je=[- *] '(P*) - 1[- 0*] + Л* =
-

V*
-

1 1
(16)

Since the estimate 0 is independent of evolution of A, also the alternative A* is a
'don't care' term.

Using the alternative parameters, the time update formulae for V = P " 1 and 0
are given by

= - 1
P = [AP + (1 - A) (P *)

1

* \ - i i - i
j

i

J + (- - l) P (P *) - 1 A =

0 = A0 + (I-A)0\

(17)

(18)

(19)

where A is an auxiliary matrix introduced to simplify the update formula for 0, or
by

'ч>y

= Av¥> + (i -A)v; = ғ¥> + (i-A)v;J

= Xvщ + (1 - A) v%y = Xv^y + (1 - A) v ; <

= * w + (i -A)v ;в*,

= V *VУ

(20)

(21)

(22)

Remark. In the limit case of V* —* 0 (non-informative probability distribution),
regularization forgetting degrades to 'standard' exponential forgetting.

To illustrate the process, evolution of the cost function J© (3) during one step of
the regularized identification is plotted in Figure 1. A two dimensional parameter

214 J. SCHIER

vector 0 = [Gi Q2] is considered, the vertical axis of the graph represents the cost
function J©. The placement of 0* does not represent the situation when it follows
the regularized estimate, it is rather chosen so that the evolution of 0 during data
update and regularization is better shown. Also the value of P* is chosen so that
the changes of P during update are shown.

1: Data update 2: Exponential forgetting 3: Regularization

Fig. 1. One period of regularized identification.

The elliptical paraboloids represent the cost function in the successive step of the
identification period. Their cross-section reflects the shape of the covariance matrix
P (6, 14, 17), their placement is determined by the value of parameter estimate 0
(5, 13, 19) in the respective steps of update.

The arrows in the figure denote the successive phases of the identification step:

1. data update: P -> P, 0 -* 0,

2. exponential forgetting: P = jP, 0 = 0,

3. regularization addition of the alternative parameters:

P = {P~1 + {l-\){P*)-1)-\

A = [/ + (! _ A) P (P ') - 1] - 1 ,

0 = A0 + {l-A)0*.

Selection of regularizing parameters

The alternative information matrix V* = (P *) - 1 is a symmetric positive definite
matrix. Its role is to prevent the covariance matrix P from exponential growth (i.e.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 215

V from losing rank) if the estimator is not sufficiently excited. It should be small
enough to allow the algorithm to adapt to parameter changes and to come into effect
only when the data does not have sufficient information.

A suitable general-purpose choice for V; is \il, 0 < /i < 1, J is a unit matrix [12,
13]. If matrix P is available from the preliminary analysis of the system, it may be
used with advantage.

0* is a value, to which the parameter estimates converge in the case of non-
informative data. It is possible either to require that 0 preserves the value identified
from informative data — in that case 0* should follow the development of estimate,
or to require that 0 takes the value obtained in preliminary system analysis. A
suitable choice in the first case is to assign 0* the last regularized estimate

0*(k) :=0(k-l). (23)

Block-Accumulated Regularization

Regularized exponential forgetting in the standard form, as described in (17-19)
or (20-22), is not suitable for systolic implementation (the principles of which will
be described later). Instead, the block-accumulated regularization is used, proposed
in [3, 4], which preserves data pipelining in the systolic array.

The idea of this method is the following: Let us keep the alternative parameters
V; and 0* constant over N > n periods of identification (i.e. over processing of N
data samples), where n = d0

v; = v;(k) = v;(k + i) = ... = v;(k + N-i),

0* = 0*(k) = 0*(k + l) = ... = 0*(k + N - 1).

The regularized forgetting (20) may be seen also as consequent steps of exponential
forgetting

V = XV, (25)

(where V denotes the value after the data update and exponential forgetting) and
of addition of regularizing parameters

Vv = Vp + (l-\)V;, (26)

Vyy = v^y + (l-X)V;0*. (27)

Hence, it is possible to perform only the exponential forgetting over the N steps,
then to interrupt temporarily data processing and to perform all additions of the
regularizing parameters at once in this interruption, weighted by an accumulated
forgetting factor. As will be shown later, this addition takes n periods. In this way,
the data pipelining is preserved.

This mechanism is described by the following algorithm (because time relations
over several periods of identification are shown, it is necessary to use time indexing
again. To simplify the indexing, time k — 1 is 'subtracted' in all indices, e. g., instead
of k, 1 is written)

216 J. SCHIER

1. Data update with standard exponential forgetting over N periods

V:-=V(1|0) , XN :=l a)

<p(І)

У(г)
b)

c)

d)

(28)

2. Accumulated regularization in the Nth period

v* :=V* *
V У ч>

v(py(N + l\N):=v^y+XNv*jy

0(N + 1|N) := V~\N + 1|N) vvy(N + 1|N)

a)

b)

c)

<-)

(29)

0 < AJV < 1 is an accumulated forgetting factor.

Using the block-accumulated regularization, the last regularized estimate is N
periods old. Hence, (23) is replaced by

*(k) := (k-N). (30)

To give better idea of the mechanism, a comparison of evolution of parameter
estimates with both the standard and the block-accumulated regularization is given
in the graph in Figure 2. For the block-regularized identification, it shows also the
evolution of the cost function J© (16).

The graph is drawn for regularization applied after a block of three data samples.

The letters of the Latin alphabet denote the trajectory resulting from the standard
regularization; the lower-case letters are used to refer to the position of parameter
estimates after the data update (9), the upper-case letters are used to refer to that
after the regularization (20-22).

The Greek letters denote the tracking trajectory resulting from the block-regu
larized identification; the arrows show the development of the covariance matrix P
through one block of the block-regularized identification — number 1 denotes the
data update (9), number 2 the exponential forgetting (1 + 2 = (28 e)), number 3
denotes the addition of the alternative parameters (29b-c).

Both trajectories start at the point a = a and end at the point D = e.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 217

1: Data update 2: Exponential forgetting 3: Accumulated regularization

Fig. 2. Comparison of standard and block-accumulated regularization.

3. SQUARE-ROOT IMPLEMENTATION OF THE RLS ALGORITHM

In practice, the square-root version of the estimator is used, because it guarantees
symmetry and positive definiteness of the covariance/information matrix and can be
implemented on a systolic array.

Square-root Decomposition of the RLS Algorithm

Let us introduce the triangular square-root decomposition of the covariance matrix
by the formula

P = RR', (31)

where R is an upper triangular matrix.
Applying the decomposition in the formulae (10,11,14), we get:

(32)

(33)

(34)

C = (p'RR (p

RR' = RR'-(1 + ()KK'

K. = (l + ()-lRR'(p

It is possible to update directly the square-root factor R. The formulae of
RLS identification (10)-(14) then transform into two steps:

1. matrix-vector multiplication

(35)
а

є
=

Ř' 0

' 1 У

and

218 J. SCHIER

2. inverse update

S2 S 2 / Î

0 R GÍ2Q

' 1 o

a ~ /
R

£
~ i

(36)

Q =

ФІ =

ÍÌ

G =

фn ф2фl,

cos фi sin фi

I

—S\П фi cos фi

(l/VЛ)Inxn

-є/y/І 1

(37)

(38)

(39)

(40)

where Q is an orthogonal matrix given as a product of elementary rotations
<Pn • • - # i with rotation matrix 4*j zeroing the fth element of vector a with
respect to the first element of the same column in the composed matrix (the
rotation matrix has sines and cosines of the rotation angle in intersections of
the first and the ith row and column); ft is a weighting matrix and matrix G
is used to update the parameters.

Regularization as Input of Alternative Data

It is important for the systolic implementation of regularization that the addition of
alternative parameters may be considered an input of some alternative data, which
is processed in the estimator in the same way as the data samples from the identified
system.

Using the partitioning (4), it is possible to introduce triangular square root de
composition of matrix V* and to express V* as a sum of data dyads (• represents
a scalar don't care term)

(v*)'
Ч>У

Ч>У

vl

U* u*

0 •*

U* u*

0 •* =£
i = l

U* uî u:
(41)

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 219

where

i / ; ith row of the matrix
U* u*

0 •*
(42)

In a similar way, a square-root decomposition of V may be defined.
Using the above decomposition, the addition of the regularizing matrix V* to the

information matrix V (29) may be expressed in a recursive form

u* :=U* * a)

for i = 1 to n

V := V +ҳ /AJV u* «î V^N
. U i

b) (43)

end

V(*+1|JЬ) := V 0
where the first formula (43a) results from (41) and (5).

The relation for addition of the regularizing "data" (43 b) has the same form as
the formula of exponential update (28 b), with the only difference that instead of
the information matrix, the input data is weighted by the forgetting factor.

Result:

1. Regularization may be implemented in the same way as data update - by enter
ing recursively a vector of the "Active data" (42). Each such vector contains
one row of a triangular factor of the regularizing information matrix (42).

The element of u*, which is used in this vector, is given as product u* = U* 0*.
Since &* is assigned the last regularized estimate, it is possible to prepare this
product while computing the exponential updates (i.e. before processing the
regularizing input).

Then, efficient pipelining of computation of u* with processing of the input
data is possible.

2. Entering the same data, the evolution of both the information matrix (if using
the information filter [3]) and of the covariance matrix (if using the algorithm
with inverse updates [9, 9]) is exactly the same (up to inversion):

V(1|0) = c-^iio)

V (N + 1 | N) = C _ 1 (N + 1 | N) .

After processing the same "regularizing data", it must hold:

V (N + 1 | N) = C " 1 (N + 1|N)

220 J. SCHIER

4. A SYSTOLIC IDENTIFICATION ALGORITHM

In this section, the basic ideas of systolic array will be explained and the systolic
implementation of the covariance update RLS algorithm [6, 9] will be described.

Systolic array

By a systolic array we understand a regular network of processing elements (PEs),
connected to the outside world. The network has some regular shape (e.g. row,
triangle, square or trapezoid). Unlike the processors in standard computer, the PEs
in the systolic array do not use any global bus. Instead, the neighbouring PEs are
connected by point-to-point links.

Algorithm decomposition . All PEs in the array work synchronously. For im
plementation in a systolic array, the algorithm must be decomposed to elementary
operations (e. g. multiplication of individual elements in vector-matrix multiplica
tion). Each this operation is performed in one PE, its result is sent to the input of
the neighbouring processor and there used in the next period.

Data pipelining. The data flow through the array in a pipelined fashion. They
pass through the array in consecutive "waves", each of them being composed of one
data vector. In each step, there are several "waves" passing through the array.

A formal definition of the systolic array is given in [1].

A simple example of a systolic array. Let us describe now the systolic matrix-
vector multiplication, a = —R'ip (35) as a trivial example of a systolic array (actu
ally, R is used, but it is unimportant for this purpose).

The elements of a are scalar products of the rows of R with the vector (p. The
ith element, a,-, is given by:

i jfc-i

a. = -_*_] R'ijfj = di_ -] V R'{j ipj, n = d(p,i=l...n (44)
;=i i= i

t

Oi_ = -Y^R'i^, (45)
j-k

where the underlined index k denotes number of elements R'ijfj, accumulated in a
partial result.

For systolic implementation of this computation, a triangular array may be used.
Each PE has an internal register to store HL, two inputs and two outputs, the first
pair to pass a,-*, the second pair to pass ipj. Its function is described in Figure 3.

Let an infinite sequence of vectors

M l) , v(2), . . . , ¥ < *) , •••}

(k is a discrete time index) be multiplied, one vector after the other.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 221

Using systolic array, <p(k + 1) may be entered as soon as <p(k) has been processed
in the diagonal PEs and passed to the first sub-diagonal. The intermediate results
then propagate through the array in subsequent waves.

The process is shown in Figure 4, which traces motion of vectors through the
systolic array over several steps of the pipelined multiplication. The boxes in the
figure represent individual processors of the array, each storing one element of matr ix
R.

<Pj
I I/O assignment:

] ai{ := 0
D/ -«— aij + l
nii Cell functionality:

aü

I Ofj = R'irfj + aiHi

<Pj

Fig. 3 . Function scheme of PE for multiplication.

S c h e m a t i c chart o f t h e array, t i m e skew of i n p u t / o u t p u t v e c t o r s . In prac
tice, usually only a simple schematic chart combined with the cell descriptions is used
to describe the array.

This chart shows the contour of the array, the directions of input and output and
(eventually) t ime skew of the entering/exiting vectors (since the elements of input
(output) vector often enter (emerge from) the array not all at once, but one after
another, each element also entering (emerging from) a different PE) .

A schematic chart of our array for multiplication is given in Figure 6. The reader
should notice, how the t ime skew of the output vector a (cf. Figure 4) is represented.

5. PARALLEL IMPLEMENTATION OF T H E ESTIMATOR

Having explained the function principles of the systolic array, it is possible to describe
the systolic implementation of the RLS algorithm with update of the covariance
matr ix. As described above, this update consists of two steps, in the first of which
is a vector-matrix multiplication performed and in the second the covariance and
parameter estimates are updated. Here, both steps will be first described separately
and then, their merging into one array will be treated.

S y s t o l i c i m p l e m e n t a t i o n of t h e f i rs t s t e p of u p d a t e

The transposed factor of the covariance matr ix R' (31) and the vector of parameters
0 (13) are stored in an (n + 1 x n -f 1) dimension lower triangular systolic array. R'
is stored in the upper part of the array, 0 in the bot tom row. The scheme of the
array is in Figure 6 — cf. (35), function of the cells was described in Figure 3.

Systo l i c i m p l e m e n t a t i o n of t h e s e c o n d s t e p of u p d a t e

The scheme of the array implementing the second step of inverse update (36) is
drawn in Figure 7. The auxiliary vector a enters the array from left; it is used

222 J. SCHIER

to compute the rotations in the left column. The rotations are computed from
top down, beginning with c o s ^ i , s i n ^ i , using scalar equal to 1 when entered and
propagating through the array from top downwards — cf. (36). They are propagated
rightwards through the array.

The zero vector from the top of composed matr ix on the right-hand side of (36),
which is used to accumulate the Kalman gain K, is entered through the diagonal of
the array and propagated in the vertical direction.

-¥>i(2)

-pi(-k

чà-v^ 2)

-<Ѓ2(1)

X JL o

k = i

ttц(l

- ¥ * (- .

k = 2

« i

-<^i(4)

- V i (3) \

i(l)M2)rL|Xq\ i
" \ - ^ 2 (4)

- V i (5)

-V i (4) - N

«ii(2) a„(3) - L ^ o \
řJ~^\-^(5)

\ \ - V i (3) 1 ^ (4)

« 2 i (l) a 2 i (2) _ L | a 2 2 (3

-V»i(2) - v 2 (3 j

fc = 4

a n = a i , c-21 = a 2

Fig. 4. Tracing of matrix-vector multiplication.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 223

F ig . 5. Schematic chart of an array for multiplication
of a triangular matrix with data vector.

F ig . 6. Implementation of the first step of data update.

F ig . 7. Systolic implementation of the RLS update.

For completeness, PEs used in upper part of the array are described in Figure 8.
Description of PEs in the bo t tom row is not given, but may easily be derived. Here,

224 J. SCHIER

'tilde' and 'bar' symbols are not used here in the sense of the variable before data
update and after regularization; 'tilde' symbol is rather used to refer to the value of
variable on the input of PE and 'bar' symbol to refer to the value on the output of
PE.

Left Column Triangular Pari

11

I/O assignment:

N: top element: 1

other elements: v £

S: VI
W: a,

E: cos <f>i, sin (j>,

Cell fun

COS(f>i

sin <f>i

tionality:

= Vš/y/s + a?

= ať/Vš + a?
y/š : = y/š cos <j> + a, sin (f>

11
Rij

T
I/O assignment:

N: diagonal elements: 0
other elements: v$k3

S: y/Ekj

W: cos<p,, sin <p,
E: cos (fit, sin <p,

Cell functionality:

Cj, := cos </>i, S<f, := sin <j>,
yskj := Cj, yskj + S^ Rij
RtJ := (l/^/X^-St \ZI~kj + CV R,j

Fig. 8. Description of the processors in the left column of the update array.

Implementation of both steps in one array

Our aim to perform both steps of data update — the multiplication (35) and the
inverse update (36) — simultaneously in one composed array, as in Figure 9. Howev
er, merging simply both the above described arrays together, the following problem
would arise: since the partially computed products a,-*, and the rotations <f>i pass
through the array in opposite directions, for the multiplication the elements of R
would be used, that have not yet been updated in the previous recursion.

Update array

Multiplication
array

F i g . 9. Merging both steps of u p d a t e in one array.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 225

The solution of this problem was described in [6, 7, 9] and is the following: the

respective elements of the d a t a vector ip are multiplied by the old, non-updated

elements of the factor of covariance matr ix R, but before the product is passed to

the next P E , it is rotated with an added correction. This correction is performed in

each cell, resulting in correct final product. For proper time-space synchronization

of the values propagating through the array, delay is added into the horizontal links.

Applying the '2-slowing lemma', used in the systolic algorithm design [8], the delay

may be introduced by running only half of PEs in each step (Figure 10).

D H
ИD DH
DHD HDH
HDHD DHDH
DHDHD HDHDH

Active cells at time

2k 2k + 1

D inactive PE -3 a ctive PE

Fig. 10. Switching of active and inactive cells in RLS array.

T h e resulting array is sketched in Figure 11, ct is an auxiliary vector. Its first

element is number 1 entering the computations of rotations, zeros on the subsequent

positions are the corrections, rotated as the vector passes through the array. The

zero vector 0 is used for computat ion of s?K.

F ig . 1 1 . Scheme of pipelined array for the RLS estimator.

T h e function of PEs in the array is described by the following equations (a denotes

a after the matrix-vector multiplication, but before the update itself):

226 J. SCHIER

Upper part (R'):

First column cells:

а i • — C ч - Řii<pi

Sф — sin фi := l

cos фi := Ł

ч/ҳ/õcl + а]

Cф =

sin фi := l

cos фi := Ł Һ/yàj + а]

ßl ã i 1 0 Cф Sф ßl ã i

Rц 0 o i/Vл —Sф Cф Rц щ

Internal cells:

Һ

ã i := õ i jгьţ j (pj

1 0 Cф Sф ßi &i

KІJ ñi o ì/Vл —Sф Cф KІJ ãi

The cells in the bo t tom row are updated in a similar way.

6. SYSTOLIC IMPLEMENTATION OF T H E BLOCK REGULARIZATION

This section contains the most important part of this paper — the implementation
of the block-regularization in the systolic inverse-updated RLS algorithm will be
described here.

Summarizing the above given description of the block-regularized forgetting, we
find tha t the following mechanisms must be implemented:

• Multiplication of n rows of matr ix U* (41,42) by 0* (43 a)

• Switching between the data samples from the identified system and the regu
larizing "data"

• Computat ion of the accumulated forgetting factor AJV (28 c, d)

• Switching on and off of the exponential forgetting (when processing the regu
larizing data, the exponential forgetting is not used — cf. (28b) and (29b, c)).

• Storing of 0* during multiplication with U* (n vectors U* are multiplied with
0* consecutively), writing of new 0* to the storage.

It will be supposed for simplicity that the forgetting factor A is constant. Then, XN
and the product y/X^U* may be computed in advance.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 227

Remark on notation

In the following text, Ux* will be used to refer the product,

Ux* = y/X^U*.

Similar notat ion will be used also for y/Xpju*

,/X^u* = yfX^U*0*. .л*

(46)

(47)

The rows of Ux* will be referred to as Ux* and the elements of ux* as ux*.

S e l e c t i o n a n d s tor ing o f 0*

For implementation reasons (simplicity of mechanism to control writing 0* to the

storage), an assignment

0*(k) :=0(k-n) (48)

will be used for 0*, instead of (30), if N > n — if the data block is longer than

is the dimension of 0 (this may be the case if using the regularized estimator for

adaptive control [12]).

Hence, if N > n, only exponential forgetting is applied on the last regularized

est imate 0 during the N — n steps before it is stored in the 0* storage. In result,

N may be longer than n only to t h a t degree that 0 does not lose stability at the

beginning of the d a t a block for the given quality of input data.

For multiplication by the rows of matr ix U*, 0* is stored where it has been

computed — in the b o t t o m row of the array.

Load ing o f Ux* i n t o t h e array a n d i t s m u l t i p l i c a t i o n by 0*

The m a t r i x U* is entered into the array through the bot tom row of the array, skewed

in t ime. In the b o t t o m row, it is also multiplied by 0* (Figure 12).

E L I ^ J;
[Î . . . Ü]

Fig. 12. Loading of the regularizing information matrix into the array and

its multiplication with regularizing parameter estimates.

228 J. SCHIER

From the bo t tom row, the elements of Ux* are shifted up through the array to
the diagonal and there processed as the alternative data .

For proper pipelining of Ux* with the da ta samples (so that Ux* arrives to the
diagonal jus t after the last sample in the da ta block has been processed), £!*,_ (the
upper left element of the matrix) must clearly be entered to the bot tom row of the
array n steps before the end of the da ta block.

Because of switching of active PEs in the array (Figure 10), the rows of Ux* must
be entered only every second tact period of the array.

C o n t r o l S i g n a l

To synchronize all mechanisms in the array, a control signal is used. This signal,
aligned with Ux*, is propagated through the array, first upwards (Figure 13) - it
is used in the bo t tom row to switch on and off writing of the 0 estimates to the
storage of 0* and, when it reaches the diagonal of the array, to switch the array
entries between the da ta samples and the regularizing vectors. In the upper left P E
it is "bounced" and propagated through the array to switch on and off the forgetting.
Complete pa th of the control signal through the array is sketched in Figure 14.

Finally, Figure 15 shows time alignment of the control matr ix and regularizing
da ta with the da t a samples rom the identified system.

In the cell descriptions (Figures 1 6 - 1 9) , the control signal is referred to as Ctrl i
when shifted upwards and as Ctr l 2 when propagated downwards.

0* storage

Control

matrix

ГT^

Input 1

x i ' Input 2
i

Control

signal

(Ctrl.)

II

if Ctrl = Ident. then

x := Input 1

else

x := Input 2

end

Fig . 13. Switching of the of regularizing parameters storage and of the data entries.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 229

Control signal resent
back to the array
to switch the forgetting

Control signal
propagated
upwards

Fig . 14. Propagation of control signal through the array.

Interruption of data flow during
processing of regularizing data

Blocks of data samples

Regularizing data

Control matrix:

Data processing

Regularization

Fig . 15. Alignment of control matrix with the data samples.

230 J. SCHIER

Лt. N2 N3 N4 Лľ5 JV6

l l l l t t
< - £ i

— > ß 2

Ru - * * E 3 I/O assignment:
' N\ top element: <p\

other elements: X\ lllltt
N\ top element: <p\

other elements: X\
5 i S 2 S3 5̂ 4 S 5 S 6 N2 top element: ã i = 1

other elements: ã i

Cell functionality: Nз top element: ß\ = 0

Top cell: other elements: ß\
Ctrl2 := Ctrli N4 top element: not used
if CtrЦ = 1 then other elements: CtrЬ

x\ :=<p\ S4: Ctrl 2

else S5: Ctrli

X\ := Ut* S6:
TT*
uil

end E\: top element: 0
All cells: other elements: щ

aux := ãj + Rux\ E2: top element: not used

Cф := cos фi := ã i / (ã 2 + aux2)ã other elements: фi

Sф := sinф := aux/(ã2 + aux2) Eз: top element: not used

ß\ := Cфß\ + Sф Ru other elements: CtrЬ

ã\ := Cф ã\ + Sф aux
R\І := — Sф ß\ + Cф Ru
if Ctrl 2 = 1 then

Řu := (l/A)B l t

end

Fig . 16. Processing cell in the left column of the upper part of array.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 231

Лt i Лt3 Лtз Лt4 Лt5

ШJJ
Wx <— <—E

w2 —»>

W3 — >
RJІ

—*• E-

—*- E.

U l í t
Si SQ S3 St S5

Cell functionality:
Diagonal cells:

if Ctrli = 1 then Xj := (pj
else Xj := Uh* end

All cells:
dp := cos <f>i
S$:= sin <f>i
aux := hi + RjiXj
0j '•= C<j, flj + S(j, Rji
ctj := C,!, &j + S<j, aux
Rji '•= —S^fij + C<p Rji
ai := —S<f> oci + Ct, aux
if Ctrl2 = 1 then

Rji '•= (l /A)R j .
a, := (1/A)a.

end

I/O assignment:
Ni: diagonal elements: <pj

other elements: Xj
N2: diagonal elements: 6cj = 0

other elements: ay
N3: diagonal elements: /?y = 0

other elements: (3j
N4: diagonal elements: not used

other elements: Ctrli
N5: diagonal elements: not used

other elements: Uh*
Xi

Otj

ßi
Ctrli
DA*
V*}

Si
5*2

S3
5 4

Wn ai

W2: fc
W3: Ctrl2

E\: diagonal elements: 0
other elements: 5j

E2: diagonal elements: not used
other elements: fa

E3: Ctrl2

Fig. 17. Processing cell in an internal column of the upper part of array.

232 J. SCHIER

First cell

Л t i Л t 2 Лtэ Лľ4 JV5 ЛГ6

Internai cells

Nx N2 N3 N4 N5

m t t
* - J Б . * — J S i

— > Б з —>• £<2
J ©! ; .

— > Б э — • JЗЗ

ł t t 1 t ł
Si Sз Sз 5i 5г 5з

1/0 assignment: 1/0 assiдnment:
ЛГ-: xi Ni: XІ

N2: a\ N2: c

N3: ßi Nз: #
N4: Ctrl2 N4: CtrH
N5: Ctrli N5: Ц*
Nб: Ufc Sv Єj
S\: Є\ S2: Щ*
S2: tjД* S3: Ctrli
5 3 : Ctrli Wx: є
E\: є\ W2: ш

E2:ш Wз:Et;ІOaГ .
Eз: UA* * Ei: £

Oe/7 fчnctionality: E* c e l l s - • • • »-- : w

a u x ^ ê x + xX! cell n : not used
ы : = - м x / a i « * £І = 1 UД* *(*)

І := шß\ + ^ Celł fчnctionality:
if CtrЦ = 1 then вj : = j + шßj

î := І £":=£ + jXJ + wвj
else ifCtrli = 1 then

Eз : = fjД* * * := Єj

^ else
E3:=W3 + ř7/>* *

end

F ig . 18. Processing cells in the bottom row of array.

Inverse Updated Systolic RLS Algorithm with Regularized Exponential Forgetting 233

W,

W2

JVi

1
JVi

1 1/0 assignment:
Ni: У
W2: U?* *

1/0 assignment:
Ni: У
W2: U?* *

1 Si: Ctrli
CeII functionality:

ł
5!

if CtrЦ = 1 then Wx ł
5!

else Wi := - U ^ *
end

:= -У

Fig. 19. Last processing cell in the bottom row of the array.

B u f f e r i n g of i n p u t d a t a

Regularization interrupts processing of the input data for n periods every N periods

(that is, during N + n periods only N d a t a samples are processed). Because of that ,

it is necessary to sample the identified system at a slower rate than the systolic

est imator runs and to buffer the data samples. The ratio of the system sampling

rate to the input rate of the estimator is equal to N/N + n, i.e. ranges from 1/2

(worst case, for N = n) to 1 (limit case for exponential forgetting, i.e. N —• oo).

D e s c r i p t i o n of P E s i n t h e a r r a y w i t h t h e b l o c k - r e g u l a r i z e d f o r g e t t i n g

In this section, the resulting PEs implementing the block-regularized forgetting will

be described.

Let us recall that , for better understandability, the control signal, when shifted

upwards through the array, is referred to as Ctrl i and when 'bounced' and prop

agated down- and rightwards through the array, as Ctrl2, though it is the same

signal.

The description of the cells is given in Figure 16-19 .

7. CONCLUSIONS

T h e paper describes implementation of the block-regularized exponential forgetting

in the systolic algorithm for the Recursive Least Squares (RLS) identification with

update of the covariance matr ix (so called inverse-updated RLS algorithm). It is, to

our knowledge, first a t t e m p t to increase robustness of the systolic implementation

of the covariance filter to the non-informative data .

T h e paper introduces the reader into the principle of the regularization and of

the block-accumulated regularization.

It treats the problems connected with systolic implementation of the block-regu

larized forgetting in the inverse-updated RLS estimator and finally gives a cell-level

description of the resulting algorithm.

T h e regularized forgetting prevents the covariance matr ix from unlimited growth

in the conditions of poor excitation. The regularizing matr ix may be an arbitrary

234 J- SCHIER

symmetric positive definite matrix, the choice depends on the user's needs. As
an example, the use of the matr ix obtained from the preliminary analysis of the
estimated system may be given. The advantage of the method is that it is capable
to preserve the value of parameter estimates, identified from informative data , in
the conditions of poor excitation.

Using only the connections between the neighbouring processors, the proposed
implementation of the block-regularized forgetting preserves compactness of the sys
tolic est imator with exponential forgetting. The throughput of the resulting algo
r i thm is reduced only to one half, compared with that of algorithm with exponential
forgetting.

(Received December 12, 1993.)

R E F E R E N C E S

[1] D. D. Baer and J. Paradeans: A formal definition for systolic systems. In: Parallel
Algorithms and Architectures (A. Albrecht, H. Jung and K. Mehlhorn, eds.), Lecture
Notes in Computer Science, Springer-Verlag, Berlin 1987.

[2] L.D.J . Eggermont et al. (eds.): VLSI Signal Processing VI. In: Proceedings of the
IEEE Signal Processing Society Workshop. IEEE Press, Veldhoven 1993.

[3] J. Kadlec: The cell-level description of systolic block regularised QR filter. In: Pro
ceedings of the IEEE Signal Processing Society Workshop (Eggermont et al., eds.),
Veldhoven 1993, pp. 298-306.

[4] J. Kadlec, F. M. F. Gaston and G. W. Irwin: Systolic implementation of the regularised
parameter estimator. In: VLSI Signal Processing V (K. Yao et al., eds.), IEEE Press,
New York 1992, pp. 520-529.

[5] M. Karny et al.: Design of linear quadratic adaptive control: Theory and algorithms
for practice. Kybernetika 21 (1985), Supplement.

[6] J.G. McWhirter: Systolic array for recursive least squares by inverse iterations. In:
Proceedings of the IEEE Signal Processing Society Workshop (Eggermont et al., eds.),
Veldhoven 1993, pp. 435-443.

[7] J.G. McWhirter: A systolic array for recursive least squares estimation by inverse
updates. In: International Conference on Control '94, IEE, London 1994.

[8] G. M. Megson: An Introduction to Systolic Array Design. Oxford University Press,
Oxford 1992.

[9] M. Moonen and J. G. McWhirter: A systolic array for recursive least squares by inverse
updating. Electronics Letters 29 (1993), 13, 1217-1218.

[10] V. Peterka: Bayesian approach to system identification. In: Trends and Progress in
System Identification (P. Eykhoff, ed.), IFAC Series for Graduates, Research Workers
and Practising Engineers, Chapter 8. Pergamon Press, Oxford 1981.

[11] V. Peterka: Control of uncertain processes: Applied theory and algorithms. Kyber
netika 22 (1986), Supplement.

[12] J. Schier: Parallel Algorithms for Robust Adaptive Identification and Square-root
LQG Control. Ph.D. Thesis, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University, Prague 1994.

[13] J. Schier: A Systolic Algorithm for the Block-regularized RLS Identification. Research
Report No. 1807, Institute of Information Theory and Automation, Prague 1994.

Ing. Jan Schier, CSc. Ustav teorie informace a automatizace AV CR (Institute of In
formation Theory and Automation - Academy of Sciences of the Czech Republic), Pod
voddrenskou vezi 4, 182 08 Praha 8. Czech Republic.

		webmaster@dml.cz
	2012-06-06T06:28:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

