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KYBERNETIKA CISLO 1. ROCNIK 3/1967

Quantification Method of Classification
Processes

Concept of Structural «-Entropy

JAN HAVRDA, FRANTISEK CHARVAT

The aim of this paper is to form a quantificatory theory of classificatory processes. A concept
of structural a-entropy is defined and its form is derived.

Definition 1. Let B be a non-empty set with a normed measure (it is a measure
defined on the set of all subsets of Bsuch that the measure of Bis 1). Let {#,},c, be
an indexed set of finite families .#°, of propositional functions on B (A", =
= {"p(, ..., "pn,}. where N, is a positive integer) such that

Ny

UMH) =B, M(A)AM(#)=0 for i+j, i,j=12..N,,

i=1
and for every ve.# where M(#',) = {x:xeB and "p{x)holds}. The family
{IM{#)}Y" the set B, and the family 7", are said classification, base of classification,
and classificatory criteria, respectively.

In the sequel we will denote the classification only by #(B) = {M,} because we
shall not distinguish among classificatory criteria. Let us discuss Definition 1 in more
detail: the classification was defined on the sets with normed measure and, conse-
qnetly, we have simultaneously introduced a quantification of the base of classi-
fication. However, it is purposeful to quantificative the classifications of given
base. According to this purpose we shall give some formal considerations and de-
notations: every element of %(B) we call element of classification: every element
M; € #(B) has a measure u(M}), i = 1, ..., N. The measures u(M;) will serve here
as foundation means for quantification of classification and therefore we shall write
the classification in the sequel as Z(B) = {M,,..., My, iy, ..., iy}, Where p; =
= p(M;).

In this paper we introduce axiomatically a real function of classifications, so called
structural a-entropy, which can serve as a quantitative measure of classification.
It will be shown, that there is an analogy between a-entropy and the usual entropy
from information theory.




Definition 2. Let £(B) = {M,,..., My, 1, .... iiy} be a classification. A function
Sty - . pty: @) will be said structural a-entropy if

a) Sty ... fty: @) is continuous in the region p; = 0. ;= 1, a > 0:

i=1
b) S(1ia) =0, S(5,4:a) = 1:

C) SUts oo iy Ou g e o i @) = S(Rys ol 1 By g <o Myt a)  forevery
i=1,2 ... N

d) S(Rys s o ts Vi Vigs fiv 1y oo B3 @) = S o B s B ars oo iy @)

Voo .
+ d;(’?S(J' s ;u) for every v;, +v;, = 4; >0 i= 1.2 ... N x>0.
0w

The meaning of axioms a)—c) is clear. What concerns axiom d), an increase of the
structural a-entropy provided that the classification is “refined” depends on the
parameter ¢ which will be said characteristic parameter.

Theorem 1. Axioms a) —d) determine the structural a-entropy unambiguously
by

21' 1 N
S(iye oo flys @) = e (t=Yu) for a>0, a=*l,
- i=1

N
Sty oo iy 1) = = 3 pylog p,

=1

where log is here and in the sequel taken to the base 2.
Proof of this theorem will be based on the following lemmas:

Lemma 1. « = 1.
Proof. According to d)

S(4, 3 a) = S(1; a) + 2S(4, k; a),

which immediately implies the desired assertion {cf. b)).

n
Lemma2. If v, 20, k=1,...mY v, =y >0, then
k=1
a v ¥ .
S(Hqs es By ga Vs eeos Vi Mis 15 oo lns @) = S(q, -y piys @) + 1S <7' e s a).
i Hi

Proof. To prove this Lemma we argue by induction. For n: = 2 the desired
statement holds (cf. d) and Lemma 1). Using Lemma 1, d) and the induction premise
we obtain the following result




3z S(Hys eos By g Vie oo Vgt ik 1s oo Uy3 @) =

= S(ftys oo o ts Vio s Bis1a <o HNS a) +

, N
LUl Sy @) + S <»—‘, —-»:a)»'r
I3 Hi i

=

where i = v, + ... + v,,,. One more application of the induction premise yiclds

s }‘L,,,,,‘zn,f,y,;(,):s ‘Ll,,k‘,,;[,j+<ﬂyg Y2 Ve )
1 Hi ; [T 1t/ i i )

and hence, in view of the preceding equality, the statement of Lemma 2 holds.
The following Lemma is an obvious consequence of Lemma 2.

m;

Lemma3. [f v, 20,j = 1,20 .omy, Yoo, =0 >000=1,2..n Yu=1,
iz i=1
then
SOV ta cos Vs w0 Vgo co oo Vi, @) =
. gt Vi
= S(ye oy a) + Y S a).
=1 Hi Hio )

If we replace in Lemma 3 m; by m and v;; by {/mn, i = L, ....n, j = 1,2,

L, m,
where m and n are positive integers, then we obtain the following

1 !
Lemma 4. If F(n,a) = 5(‘ Sy ey ;a>, then
n n n /

1 1
F(mn, a} = F(m, a) + ——~ F(n,a) = F(n,a) + —— F(m, a),
m*” n"

for every positive integers m, n.
This equality implies

Lemma 5. If a < 1, then F(n, a) = c(a)(1 — 1[n*" "), where ¢(a) is a function
of the characteristic parameter.

The tools are now at hand to prove Theorem 1. If n and ris are positive integers,

Z r; = n and if we put u; = rifn, i = 1,2, ..., m, then an application of Lemma 3
i=1
gives

! 1 1 1 n
S(——‘.---,V.»--»“-»-,* ; fl> = S(iy, cer M3 @) + 3, 448
n n n n i=1




or
F(noa) = S(ptys ..y iy a) + 3 08 F(ri, a)
i=1
this together with Lemma 5 for ¢ + 1 implies that

S(pys o tti @) = e{a) (L= 1/n""") = 3 (@) (L = 1{rf7") =
i=1

m

= c(a) (! i;#?)-

In view of axiom a), the later equality holds also for irrational yjs. Using axiom b)
we get
2:‘71

ofa) = —— ——.
=5

That is, for a # | we have obtained the desired result

a—1

2 X,
S(tys - fys a) = ;;’{i'; ¢ ”‘izllli) .
The equality

N
Sy oo fins 1) = = Z ;i log p;
i=1

is a consequence of the fact that the structural a-entropy is a continuous function of a.
Remark. It is to be noted that the validity of Theorem 1 does not depend ultimately
on the assumption of continuity of S in variable a. If this continuity is not required,
the proof of Theorem 1 remains unaltered if a # 1 and for @ = 1 it can be modified
by means of results of [1]. Consequently, the requirement of the continuity mentioned
above is not necessary (cf. axiom a)).
In the sequel we list some basic properties of the structural a-entropy.

Theorem 2. S(u,, ..., uy; a) is in the region ;2 0, i=1,2,.. N, Y py, =1

concave function achieving maximum for p; = I/N. i=1,2,...,N.

Proof. Concavity follows from the fact that the matrix of second derivatives of
S(itg, .-, py; @) is in the given region negative semidefinite. The proof of the second
assertion will be given in the following two steps:

1. Suppose first that @ & 1. As (27" . x))[(2°~" — 1) is for 0 £ x < | convex
fucntion, we can write for y; under consideration

2:1 -1 N 1 a 241 -1 N 1 "
e e

2711\ N 27— 1 &1 N

which yields the desired result.

33
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2. Letnow a = 1. As x log x is for 0 £ x £ 1 convex function, we can write

N N Ny
<=1, ) 1o ) = — u; log i,
<leN‘,) g(ig N#) 'ZlN‘u &4

i=

and the conclusion of the proof is clear.
The following property of the structural a-entropy seems to be useful for applica-
tions:
N
Theorem 3. If u; 2 0,j=1,..., N,Z;LJ =1, 0y < for i =2 ... Nandif
=1

0 <& < (p; ~ Mi-1)2, then

S(ptps oo by @) < S(fps ooy flioy 4 8 1y = & s iy ) ©

Proof. This Theorem obviously follows from Theorem 2.

In closing this paper let us note that the normed measure used in our considerations
does not need to be interpreted as a probability measure. The structural a-entropy
may be considered as a new generalization of the Shannon’s entropy which differs
from the generalization given by Rényi [2].

The authors thank for advices and suggestions given to them by Dr. Perez at the
consultation about this paper.
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Kvantifika¢ni metoda klasifika¢nich procesii

Pojem strukturalni a-entropie

JAN HAVRDA, FRANTISEK CHARVAT

Price je vénovdna vytvofeni jist¢ kvantifikaéni metody klasifika¢nich procesi,
piifemZ pojem klasifikace je zaveden v definici 1. Problém kvantifikace klasifikace
spo¢ivd v axiomatickém zavedeni jisté funkce, tzv. strukturdini a-entropie na mno-
ziné v8ech klasifikact dané mnoZiny s normovanou mirou.

Axiomatické zavedeni strukturdlni a-entropie uvedenym zptisobem vede k jedno-
znaénému urdéeni tvaru strukturdlni a-entropie. Dale jsou uvedeny zdkladni vlastnosti
strukturdlni g-entropie a ukdzdna moZnost pravdépodobnostni interpretace ziska-
nych vysledki, kterd vede k jistému zobecnéni Shannonovy entropie.

Jan Havrda, Frantisek Charvit, Katedra matematiky elekivotechnické fakulty CVUT, Praha 6,
Technickd 2/1902.
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