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KYBERNETIKA- VOLUME 24 (1988), NUMBER 5 

QUASI-NEWTON GRADIENT METHOD 
WITH ANALYTICAL DETERMINATION 
OF THE DIRECTION AND LENGTH OF STEP 

PETER HUDZOVIC 

The paper presents an algorithm of the gradient method generating a sequence of matrices 
approximating inverse of a Hessian matrix in such a way that not only the proper direction 
of the gradient but even the step-length is determined in every step. So no (time-consuming) 
one-dimensional search procedure is required during iteration steps and the total time for finding 
an extreme point is significantly reduced. 

1. INTRODUCTION 

Quasi-Newton gradient methods are proved to be very useful for solving nonlinear 
problems of multidimensional static optimization since they provide fast convergency 
of the iteration procedure. Basically, these methods are modifications of the well-
known Newton method, but (instead of inverting a Hessian matrix) they generate 
a sequence of matrices determining the proper direction of the gradient and approxi­
mating the inverse of the Hessian matrix. 

Comparing with the Newton method a class of quasi-Newton algorithms has the 
imperfection that no step-length in the desired direction is obtained. The step-length 
must be subsequently found by applying one-dimensional search procedure. 

In this paper a method for generating an approximating sequence of a Hessian 
matrix is suggested in such a way that the product of the elements of this sequence 
with the gradient determines not only the step-direction but also the step-length 
(in general, the step-length does not correspond to the distance of the local extreme). 

2. BASIC RELATIONS 

Let the objective function j(x) be a scalar function of a vector argument x e U" 
and let us assume existence of continuous derivatives of f(x) up to the second order. 
The gradient Vxj(x) and the Hessian VxVj/(x) of f(x) will be denoted by g(x) 
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and H(x) respectively. Let k be an integer denoting the iteration step. In order 
to abbreviate the notations the value of function f(xk), its gradient g(xk) and the 
Hessian H(xk) at xk will be denoted by fk, gk and Hk respectively. 

We shall assume a strict convexity of the objective function, so that 

(1) [xk + 1 - xkf . [gk+1 ~ gk] = rjyk > 0 

where 

(2) rk = xk+1 — xk 

(3) yk = 9k+i ~9k-

Let the function f(x) take its extreme at the point x*. Without loosing generality 
we can assume that the extreme is the minimum taking the value/(x*) = /* . 

Let us express the function f(xk + r) about the point xk by the quadratic approxi­
mation 

(4) f(xk + r)-fk + rTgk + irrHkr 

and let us search for such a point xk+1 = xk + rk at which the quadratic approxi­
mation reaches its extreme 

(5) VXk + rf(xk + r) = Vrf(xk + r) s gk + Hkrk = gk + Hk(xk+1 - xk) . 

This condition results directly in the Newtonian algorithm 

(6) xk+1 = xk - Hk
xgk 

requiring calculation of the inverse of theHessian matrix Hk. The advantage of the 
Newtonian algorithm (6) is a rapid convergency of the iteration process. In case 
of a quadratic objective function the extreme x* = xk+1 is obtained within a single 
step from an arbitrary point x0 = xk. 

In accordance with (4) the quadratic approximation of the function f(xk + 1 - r) 
about the point xk+1 yields 

(7) f(xk+1 - r) S*fk+1 - rrgk+1 + irTHk+1r 

with the gradient at the point xk = xk+1 — rk given by 

(8) gk = VXk + l-rf(xk+1 - r) = -VJ(xk+1 - r) s gk+l - Hk+lrk. 

Combining this relation with equation (3) the so-called quasi-Newton condition 
is obtained which is the basis of a whole group of gradient methods called ,,variable 
metric methods" 

(9) yk-Hk + lrk. 

Using the quasi-Newton methods the recurrent relation (6) is modified to 

(10) xk+l = xk - tkMkgk, 

thus the matrix Hk
x is substituted by a positively definite symmetric matrix tkMk 

which deflects the gradient gk to the required direction r. The step-size tk, however, 

379 



needs to be determined additionally by the one-dimensional search 

(H) A+i = mmf(xk - tMkgk) = f(xk - tkMkgk) = f(xk + rk) 

After the gradient gk+1 at the point xk + 1 has been calculated the following pro­
cedure in the quasi-Newton methods is to derive the matrix Mk+l from the Mk 

matrix by a procedure based on condition (9). And it is the nature of the formula re­
lating the matrices Mk and Mk+1 which differentiates respective methods of the 
variable metric from each other. We present three of these methods which are referred 
to most often. 

(12) Mk+1 = Mk+ ^k-M^r.-Mj^rl 
(rk ~ Mkyk)

T yk 

belongs to Broyden's method. 
The Davidon-Fletcher-Powell method (thereafter only the DFP method) follows 

with 

(13) M k + 1 ^ M k + r j d - ^ ^ . 
r
kyk ykMkyk 

Finally, there is the formula designed by Broyden, Fletcher and Shanno (abbreviated 
to the BFS method) 

(14) Mk+1 = 
r
kyd L rkykJ rk

lyk 

where / denotes the identity matrix. The given formulas conclude one step of the 
variable metric methods and the repetition begins with one-dimensional search. 

3. CONVERGENCE OF QUASI-NEWTON ALGORITHMS 

In case of the quadratic objective function f(x) the gradient (5) vanishes at the 
extreme x* = xk+1. Under this assumption the approximate relations (4) and (7) 
became equations. The Hessian Hk will be a constant matrix H, therefore (6) can 
be written in the following way 

(15) rk=-H'1gk. 

Substituting (15) into (4) we get 

(16) f*=fk-\9lH-lgk. 

Combining (4) with (10) and (11) and considering 

(17) r = -tMkgk 

yields 

(18) f(xk - tMkgk) =fk- tgr
kMkgk + \t2gT

kMkHMkgk . 

From the zero value of its derivation w.r.t. t the optimal step-length can be deter-
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mined 

(19) tk = _ / ^ l J L _ . 
V ' 9lMkHMkgk 

Substituting this formula into (18) and modifying it using (16) yields 

ftri\ f -f* + ±aTH-ia - 1 (^kSkY 
(20) Jk+i-J + 29k" 9k ~~Y~~--7~ • 

2 gT
kMkHMkgk 

Since in quasi-Newton methods the matrix H~l at xk+1 is substituted by the 
matrix tk+lMk+l, the quotient of (20) and (16) results in 

(2i) g > , ^ - - / * - , ! - <£«*? 
fk-f* 9TMk+lgkglMkMk+\Mkgk 

which may be considered as the iteration process convergence rate. Using (2) and 
(10) we get 

(22) Q=X O-jA-7-r*)-
V ' rlMk

lMk + ,Mk\rlMk:yrk-

The positive definite matrix Mk is expressed as the product 

(23) Mk = GJGk 

where the matrix Gk is called the square root of the matrix Mk. Moreover, we shall 
introduce the vector 

(24) w, = (G")-1rt = Gt-
Trfc. 

Employing (24), (22) can be written as 

(25) fe-1- T "̂f— 
wlRk

wkwkRk wk 

where Rk is a symmetric and positive definite matrix 

(26) Rk=Gk-
TMk+1Gk

1. 

Denoting the smallest and largest eigenvalue of this matrix Xmk and XMk respectively, 
then according to the Kantorovich lemma [ l ] , [3] it can be written 

(27) ft^l-4 Xmkmk = ( V ~ K~ 
{/•Mk + Xmk) \Xf,fk + Kr 

Substituting (27) into (21) the following inequality is obtained 

(28J A+ I ~ j < l XMk ~ X„ 
fk ~ f* K^-Mk ~ K. 

which can be expressed also by means of the condition number the matrix Rk 

(29) 1 = cond Rk - ^ S , 
X„,i. 
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hence 

fk-f* \condRk+lJ 

The convergence rate depends proportionally on the inverse value of cond Rk. 
In accordance to (26) the minimization of cond Rk requires to minimize the condition 
number change of the matrix Mk+1 with regard to the condition number of the matrix 
Mk. This was employed for improving the quasi-Newton methods so that in the rela­
tion binding the matrices Mk+1 and Mk a variable parameter was introduced the 
value of which was determined so as to ensure a minimum of condition number 
change of these two matrices. This also gave the name to the present procedure, 
thereafter referred to only as the "MCC method". 

4. MINIMUM CONDITIONALITY CHANGE METHOD 

In order to avoid the one-dimensional search procedure, the scalar t will not be 
explicitly introduced in the algorithm, but the inverse of the Hessian Hk

l will be sub­
stituted directly by the matrix Mk. Therefore, instead of (6) and (9) we use the equa­
tions 

(31) rk = -Mkgk 

(32) rk = Mk+1yk. 

Simultaneously,we shall assume that between the matrices Mk and Mk+1 the follow­
ing recurrent relation holds 

(33) Mk+1 = akMk + Ak 

where ak is a positive scalar and Ak is a symmetric matrix. Combination of the last 
two equation yields 

(34) rk = akMkyk + Akyk. 

For the sake of simplicity we begin with the matrix Ak of rank one 

(35) Ak = ukvl . 

Under the assumption that vectors vk and yk are not be orthogonal on substituting 
the matrix (35) into equation (34) the vector uk can be written as follows 

(36) «* - - - -— (h - akMkyk). 
vkyk 

Combination of (33), (35) and (36) gives the matrix 

(37) Mk+. = akMk + — (rk - akMkyk) vj 
vkyk 
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the symmetry of which can be provided by putting vk = rk — akMkyk which results in 

/ ,„\ . , ,^ (rk - akMkyk)(rk - akMkyk)
T 

(38) Mk+l = akMk + —* - —^ v / * — _ . 
(t_ - a t ^ y j A-

This is the formula which transforms to Broyden's relation (12) if ak = 1. For our 
purpose it will be more convenient to provide the symmetry of the matrix M„+ 1 

so that the following matrix will be added to the R.H.S. of equation (37) 

(39) Nk = — _ _ _ M i _ L T - 0* ~ akMkykY yk VkVT _ 
vjyk (vT

kyk)
2 

The matrix _V„ does not break the condition (32) because the product Nkyk is a zero 

, , _ », , ('•* - Q-Mtj't) uT ufc(rt - akMkyk)
T (rk - akMkyk)

T yk T 

Mk+1 = akMk H 1 ——— vkvk . 
vkyk vkyk (vkyk) 

If the rank of the matrix Ak is two, we must use either vk = rk, or vk = Mkyk. 
Since both the alternatives lead then to the same relations, we choose the first one. 
After some algebraic manipulation we get by (40) 

/ , . \ . , T.x MkykrT rkyTMk yTMkyk T~l j-,.rT 

(41) Mk+l = ak\Mk- _ * £ * - _ ___£___ + ^AlA rkrl \ + _AJ<. 
L Wk rkyk (rkyky J rky>k 

For further modification of this matrix a vector orthogonal to yk is used 

(42) /_ = 
Mkyk 

}>TkMkyk rT
kyk 

Hence condition (32) will not be infringed if the matrix of rank one (bkr"lyk — 
- atj'

TM„j/„) / t/
T is added to the R.H.S. of (41) where bk is a scalar parameter. 

The modification yields 

(43) 

M - AM - _ ^ * _ / | . V j r [ Mkyk rk 1 [ Mkyk _ j ^ T 
Mk+1 - ak \Mk — + —— + okrkyk -—- — —— 

L ykMkyk J rkyk \_ykMkyk r „ y J \_ykMkyk rkyk\ 
In accordance to (26) this formula is multiplied from the left by the matrix Gk

T 

and from the right by the matrix Gk
x. Moreover, we denote 

(44) __ = Gkyk. 

Then, using transformation (24) we obtain 

(45) Rk=ak\i--f-i+-_£-+_,*„*_o - - ^ i r # -4-)• 
L -_--J wl

kzk \zl
kzk wkzkJlzkzk w „ z j 

The matrix R4 being of dimension n x n has then eigenvalues /l„ = ak being 
of multiplicity rc — 2. To calculate the remaining two eigenvalues Xmk and XMk satisfy-
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ing the inequality Xmk _ ak _ XMk we employ the fact that the eigenvectors cor­
responding to Xmk and XMk must be linear combinations of vectors wk and zk 

(46) (aw, + Pzk) Xik = Rk(awk + fa) , i = m, M . 

To simplify what follows let us denote 

wjwk _ gT
kMkgk _ r\gk (47) 

wkzk rl
kyk rkyk 

A _ w*z* _ r ^ 
d" ~ 7í7" -zkzk ykMkyk 

Then the combination of (45) and (46) yields the following system of two linear 
equations 

(49) aXik = aak + ack + fi + abk(ck — dk), i = m,M , 

(50) $Xik = abkdk(dk - ck) - aakdk, i = m, M . 

Thus finding the eigenvalues Xmk and XMk results in a solution of the quadratic equation 

(51) 4 - [ak + ck + bk(ck - dk)\ Xik + dk[ak + bk(ck - dk)] = 0 . 

To receive the maximum possible convergence rate of the iteration process, para­
meters ak and bk will be selected so as to minimize the function x\ = xl(ak, bk) 
from the equation (27). For this purpose the quadratic equation (51) need not be 
solved because it is sufficient to know the product and the sum of the extreme eigen­
values. This leads to the conditions 

(52) fr^+ > fr l - 0 - S< = ̂ ' dsk [ak + ck + bk(ck - dk)\
2 

which result in a single relation binding the scalars ak and bk 

(53) ak = ck- bk(ck - dk). 

Substitution in (51) will yields this simple form 

(54) 4 - 2ckXik + ckdk = 0 , i = m,M. 

The combination of (27). (47) and (54) gives 

(55) ** ~J \ ~ 4 (i)7 V V ' i) =J\ ~ ~~tfe 
In accordance to the assumption (l) on the strict convexity of the objective function 
it holds r"lyk = w\zk > 0. Therefore, using the Schwarz inequality the expression 
under the square root sign can be considered non-negative which results in the 
relation 0 < dk < ck. 

Solving the equation (54) we obtain a pair of extreme eigenvalues of the matrix Rk 

(56) Xik = ck 1*1 ±J(l - ^ Y j = ck[\ ± Kk] 
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which, supposing the assumption (1) holds, will be positive. The same applies also 
to their converted values which correspond to the extreme eigenvalues of the matrix 

Rr1 

(57) 
1 1 

1 + 

xik 
dk 

i И ) И ^ 
Positive definiteness of the matrix Mk+l requires ak > 0, hence according to (53) 

the following relation must hold 

(58) ft, < _ £ - • _ ! 
c* - dk x£ 

Besides, if XMk and Xmk are the largest resp. smallest eigenvalues of the matrix Rk 

and the remaining n-2 eigenvalues equal Xk = ak, the following inequality holds 

(59) ck(l - xk) £ck- bk(ck - dk) Sck(l + xk) 

which in virtue of (58) yields an interval of feasible values of the parameter bk 

(60) - - ^ - U i ^ U - , 
K* *k 

Finally, substituting equation (53) into the matrix (43) and modifying it, we obtain 

(61) Mk+. = [ck - bk(ck - dk)] Mk + ck(bk - 1) M^^M" 
yíMkyi 

, MkykrT +rkyJMk ,, tS rkrl 
- h —^-Hw * + (** + 0 - p • 

The last two relations indicate that in general there is an infinite number of alterna­
tives for calculating the matrix Mk+1 from the matrix Mk. Anyhow, if the selection 
of the parameter bk will depends on the number of operations connected with the 
evaluation of formula (61), only a finite number of the following alternatives 

(62) Mk+1 = (Mk,rk,yk!bk) 

is to be considered. Due to the fact that the first element on the R.H.S. of equation 
(61) must be positive the first alternative of the MCC method will be the one in which 
the choice of bk = 1 leads to the zero value of the second element. After some alge­
braic manipulations we have 

(63) Mk+l = -A£ +-^&-\l - -£*-] w j j - # | -
'\yk ykMkyk L rkykj L t'tJ'J 

Comparing (63) with (14) it is clear that the BFS method is a special case of the first 
alternative of the MCC method. 

In the second alternative of the MCC method the third element on the R.H.S. 

385 



of (61) vanishes by choosing bk = 0 which results in the formula 

(64) M,+ 1 = ^ - ^ U - ^ I _ _ 1 . 
rkyk rT

kyk\_ ykMkyk J 

When compared to formula (13), it indicates that the DFP method is a special case 

of the second alternative of the MCC method. 

The vanishing last element on the R.H.S. of equation (61) corresponds to the third 

alternative of the MCC method where bk = — 1 

(65) Mk+. - 2 -*-* M^M* _ [2 __i + __!>__] M,c + ____1±____L» . 

Two additional alternatives of the MCC method could be utilized. In the fourth 

one bk = — \\xk, i.e. the smallest possible value from interval (60). With the help 

of(54)and(56)weget 

(66) ak = ck(\ + xk) = XMk 

therefore the matrix Rk will have only one eigenvalue Xmk different from Xk = ak. 

This means that the matrix Ak occurring in (33) will be of rank one. Formula (38) 

corresponds to this case if we substitute 

(67) 0 , _ - i _ r 1 + / ( 1 + __&LY] 
rkyk L N \ ngkykMkyk)\ 

which, in fact, is a generalized Broyden's method represented by (12). The same can 

be said about the fifth alternative of the MCC method in which the largest possible 

value bk = Y\xk from interval (60) is chosen. When substituted in (54) it yields 

ак--Щ\- /Л i _____ Y| 
гЪк L <V \ rr

kgky
T

kMkyJ] 
and this value is substituted in formula (38). 

Let us remark that in the fcth step the current metric is (x1Mk

lx)xl2 = 

= (xTGk

1Gk

Txy/2 _ (u T u) 1 / 2 , while in the step k + 1 we use the metric 

( * T M - + V ) l / 2 = (u-GkMk+\Gluy2 = (u'R-'uy2. 

The relevant aspect for the choice of the parameter bk from the interval (60) is 

the convergence rate of the iteration procedure from the probabilistic point of view. 

The convergence rate will be highest provided the equiscalar levels of the quadratic 

approximation of the objective function in the metric valid in the fcth step become 

hyperspheres in the (k + l)st step. This corresponds to the case when all the eigen­

values Xk

 l = ak * of the matrix Rk

 l are equal. A pair of the extreme eigenvalues 

X~k and XMl will, however, cause a flattening of the above mentioned equiscalar 

levels into hyperelipsoidal ones. Therefore, by a proper choice of the parameter bk 

we shall strive, above all, for the minimum "flattening" of these hyperelipsoids. 

In accordance with this reasoning the best results should be achieved with the 
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first alternative of the MCC method at which the matrix Rk
 x has n — 2 eigenvalues 

Xk
l = a::1 = d'1, while according to formula (57) the other two are located sym­

metrically with regard to it. In the remaining cases the above mentioned flattening 
is always higher, hence the probability of reaching the extremal point is smaller. 
This applies also to the second alternative of the MCC method in which the matrix 
Rk has n — 2 eigenvalues Xk = ak = ck and the two extreme values are in accordance 
to (56) located symmetrically with regard to ck which means that their reciprocal 
values with regard to a~1 = c'1 cannot be symmetrically located. As will be shown 
further, numerical results prove validity of these statements. 

5. ALGORITHM OF THE MCC METHOD 

Similarly as at the other iteration algorithms the most important as well as the 
most problematic step of the suggested method is the beginning of the iteration 
procedure with a heuristic choice of certain data, e.g. the position of the "support" 
point x0 and values of the initial matrix M0 elements. It is because the aforemen­
tioned data effect essentially the number of iteration cycles N and herewith also 
the overall time for searching the extreme T which can be considered the quality 
rate of specific algorithms. 

A key moment in the entire procedure is to determine the length of the first step 
t0 at the support point x0 in the direction of the antigradient — g0 for the objective 
function 
(69) cp(t) = f(x0 - tg0) . 

An optimal step-length t = t0 can be found by a one-dimensional search accord­
ing to the relation 

(70) [!,(,) = -9To9(xo ~ to9o) = -dl9i = 0. 
J (= to 

To obtain this optimum length it is advantageous to employ the procedure suggest­
ed by Davidon. This procedure is based on cubic extrapolation described e.g. in [5]. 

The first step for a gradual updating of value t0 which satisfies the condition 

(71) \gT
0g(x0 - to9o)\ <> 8 

where e is a given small positive constant, may correspond to a fixed value t, or it 
can be estimated in the following way 

V ' <P"(ta) cp'(ta) - <p'(t„) 

Ifta = 0, then obviously <p'(ta) = — g0g0. Furthermore, we shall assume that <p'(tb) = 

= 0, thus necessarily <p(ta) > <p(th). This justifies to put cp(ta) - q>(tb) = v|(i»(ra)| = 

= v | / ( xo) | = v | /o] ' where v > 0 and in the case of an objective function with non-
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negative function values v ^ 1. This leads to the value of the first step 

(73) t - v -M 

which starts up the procedure of one-dimensional search, the output of which is 
the step-length t0. If at the start of the iteration process an identity matrix J0 = I 
is chosen, then the inverse of the Hessian matrix is substituted by the first estimate 

(74) M0 = t0l. 

To finish the entire process of searching the extremal point the following condition 
is used 

(75) 0 ^ f e l l / H 1 ) ^ 

where rj is a preselected small positive constant determining the accuracy require­
ments on the locating of the extremal point x* s xk+1. 

The derivation of the MCC method is based on the assumption that the objective 
function satisfies condition (1) of a strict convexity. If, however, this assumption 
is not satisfied the matrix Mk + 1 looses the property of positive definiteness. In order 
to eliminate such a situation, if inequality r\yk > 0 doesn't hold, the entire cycle 
is cancelled by putting J0 = Mk. Then follows the turn to the beginning of the 
algorithm together with the search for the optimum step-length t0 at x0 = xk. 

The determination of the position of an extreme in accordance with the MCC 
method has the following steps: 

1. Starting points are: determination of the matrix J0 = / , heuristic determination 
of the parameters e, v and q, as well as the choice of the support point x0 in which 
the function value / 0 and gradient g0 are calculated. 

2. The determination of the step-length t0 follows using a cubic extrapolation 
which begins either with a fixed chosen value t, or formula (73) can be used for 
this purpose. It stops by satisfying the condition (71). The matrix M0 is determined 
according to (74). 

3. Next step is the calculation of the point 

(76) xk+1=xk- Mkgk 

in which the function value fk+x and the gradient gk+1 are calculated. 
4. This is followed by testing the condition for stopping the iteration process (75). 

If this condition is satisfied, the process stops with the result x* = xk+1. If not, 
step No. 5 is continued. 

5. A pair of vectors rk and yk is calculated in accordance with (2) resp. (3). 
6. The condition of a strict convexity of the objective function (l) is verified. 

If this condition is not fulfilled the cycle is cancelled by putting at the same time 
J0 = Mk (preferably choose J0 = I — the identity matrix) and x0 = xk, and the 
return to the second step is accomplished. In case of a strict convex objective function 
the next step follows. 



7. One of the alternatives of the MCC method is chosen and we calculate 

(77) Mk+1=F(Mk,rk,yk). 

We recommend to use the first alternative. The entire cycle is concluded by the 
return to the third step after the variable k was increased by one. 

1 Choosing the parameters' values £, K\ and V, or t 

Choosing the i n i t i a l value of support point x 

Evaluation of f and g 

1 k = 0 1 

1 

S080 

1 

Fig. 1. Flow chart 
diagram of the MCC 
method. 

Fig. 1. shows a flow chart diagram of the algorithm for the first alternative of the 
MCC method using (63). 
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6. EXAMPLES 

The properties of individual alternatives of the MCC method were compared 
to the BFS and DFP methods, at first on the case of traditional testing Rosenbrock's 
"banana" function 
(78) f(xt, x2) = 100 (x2 - x2)

2 + (*. - l )2 

the minimum of which is at the point x* = (l, 1)T. Moreover, it is necessary to note 
that this function does not satisfy the requirement of strict convexity. Since its 
function values are non-negative, v ^ 1. We choose v = 0 1 and besides, £ = 10~6 

and also r] = 10"6. 
The calculations for all five alternatives of the MCC method were done using 

a pocket minicalculator SHARP PC 1500 A, as well as for the BFS and DFP methods 
in nine positions of the support point x0. Table 1 shows the results, where the T 
line indicates the calculation of time T, N line the number of steps JV. 

Position of support point x0 

XЪ2 
xoг 

1 1 1 2 2 2 3 3 33 
1 2 3 1 2 3 1 2 3 

Г 27 479 40 28 32 27 49 34 27 743 
DFP N 4 46 8 4 5 4 8 6 5 90 

i 1 3 1 1 1 1 2 1 1 y* 
x i 

T 27 106 37 29 50 38 40 31 30 388 
BFS N 4 16 7 4 6 7 7 5 5 61 

i 1 3 1 1 3 1 1 1 1 r* 
xi 

T 18 15 38 18 12 15 16 16 24 172 
M C C l N 6 6 24 8 4 7 6 6 15 82 

ì 1 1 1 1 1 1 1 1 1 v* 
xi 

T 18 17 35 20 19 17 17 16 20 179 
MCC2 N 

i 
6 
1 

7 
1 

21 
1 

9 
1 

9 
1 

8 
1 

7 
1 

5 
1 

11 
1 

83 
v* 
xi 

In the second example, for the same values of constants e, v and t] and again 
from nine support points positions the extremization of Eason and Fenton function 
[5] was done using the BFS and DFP methods and the first two alternatives of the 
MCC method 

with the following four local minima: x* = (1-74345, 2.02969)T, x* = (1-74345, 
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-2-02969)T, x* = (-1-74345, 2-02969)T and x* = (-1-74345, -2-02969)1'. Results 
are given in Table 2, which in addition to Tand N contain also a minimum's index 
to which the process converged. 

BFS 

Position of support point x0 

xaì - 4 - 4 
x02 - 4 0 

- 4 0 

4 - 4 

0 4 

4 - 4 

317 
34 

309 
34 

M C C l 
T 11 34 10 30 31 20 11 19 16 182 

M C C l N 5 15 4 18 12 10 5 9 9 77 

MCC2 
T 10 39 10 34 28 20 12 23 17 193 

MCC2 N 4 13 4 22 11 8 5 12 9 88 

Ext reme ì 1 1 2 1 3 2 4 4 3 4 

The third objective function used to compare properties of the first two alternatives 
of the MCC method with the BFS and DFP methods is the function designed by 
Himmelblau [5] 
(80) f(xt, x2) = (xl + x 2 - \ \f + (xt + x \ - If . 

This function also has four minima at the points: x* = (-3-77931, -3-28319)T, 
x* = (-2-80512, 3-13131)T, x* = (3, 2)T and x* = (3-58443, -1-84813)T The 
same as above applies to this example with the only exception: in accordance with 
all four methods the iteration process led from one support point to the same extreme 
point. That is why Table 3 differs in this sense from Table 2. 

7. EVALUATION OF RESULTS AND CONCLUSION 

Since it is impossible to make any generalizing conclusions on the basis of 27 
examples and their numerical results, consequently, the properties of the MCC 
method compared to the BFS and DFP methods cannot be evaluated objectively, 
either. 

But the results presented indicate certain relations between the calculation time T 
and number of iteration cycles JV for individual algorithms. Though in comparison 
with the BFS and DFP methods the MCC method shows approximately a double 
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Method 

*01 

-v02 

Position of support point x0 

2 - 1 -1-2 - 1 -1-2 - 1 1 T o t a l 

2 1 1 1 - 2 1-2 1-1 

(13) 
106 

13 
146 

19 
159 171 1130 
20 20 142 

85 

11 

BFS 

(14) 
T 
N 

92 

12 

98 

13 

85 

11 

73 133 

9 19 

144 

20 

139 

19 

143 

20 

136 

19 

1043 

142 

M C C 1 

(63) 
T 
N 

40 

36 

43 

39 

35 

27 

30 64 

25 55 

62 

50 

68 

56 

70 

57 

70 

64 

482 

409 

M C C 2 

(64) 
T 
N 

43 

38 

39 

33 

35 

25 

35 80 

29 72 

109 

100 

77 

70 

81 

75 

62 

53 

561 

495 

M C C З 

(65) 
T 
N 

53 

47 

52 

42 

39 

32 

41 72 

28 65 

128 

106 

86 

73 

71 

58 

81 

74 

623 

525 

M C C 4 

(12)+ (67) 
T 
N 

44 

36 

51 

42 

38 

29 

26 78 

19 68 

75 

63 

85 

72 

68 

57 

66 

55 

559 

441 

( 1 2 ) + (68) 
73 81 
53 63 

561 
433 

amount of iteration cycles, it is important that the overall calculation time is reduced 

even to a half. 

The first of the five alternatives of the MCC methods proves to have the best 

properties. The second one follows with some distance and then the remaining 

alternative follows not only from the point of view of calculations requirements 

but also from the viewpoint of the overall number of steps and last but not least 

from aspect of the smallest sensitivity to the parameter v value. 

Finally, it is useful to remark that if the one-dimensional search begins with 

a fixed choice of the parameter t so that formula (73) is omitted, then with an analyti­

cally specified gradient of the objective function the MCC method in course of the 

entire iteration process does not require the evaluation of the objective function. 

(Received January 23, 1987.) 
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