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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 1 

SOLUTION TO THE OPTIMALITY EQUATION 
IN A CLASS OF MARKOV DECISION CHAINS 
WITH THE AVERAGE COST CRITERION* 

ROLANDO CAVAZOS-CADENA 

We consider average cost Markov Decision Chains with denumerable state space and discrete 
time parameter. The existence of a single stationary policy under which the state space is an 
irreducible and ergodic class is assumed. The cost function is unbounded and satisfies the follow­
ing structural condition: Given a real number, the cost always exceeds that number except at 
a finite set of states. Within this framework it is proved that the optimality equation has a solu­
tion that yields optimal stationary policies, and that the lim sup and lim inf average criteria are 
equivalent. 

1. INTRODUCTION 

We are concerned with Markov Decision Processes (MDP's) with denumerable 
state space and discrete time parameter. Besides standard continuity — compactness 
conditions, the class of models we consider in this note is determined by the follow­
ing assumptions: (i) There exists a single stationary policy under which (a) the state 
space is an irreducible and ergodic class and (b) the average cost is finite, and (ii) 
The cost function has a "penalized structure" in the following sense: Given a real 
number r, there exists a finite set of states, say G = G(r), such that, outside G the cost 
is larger than r; see Assumption 3.2. Within this framework (which is the same as 
in [5]) we obtain the following results: (l) The Average Cost Optimality Equation 
(ACOE) admits a solution that yields optimal stationary policies in "the standard 
way" ([14] or [11, Th. 6.17]); (2) we prove that the lim sup and lim inf average 
criteria are equivalent in the sense that they yield the same optimal value function; 
see Section 3 for a more precise description. These results are a solution to the 
problems posed in [5, Section 4]. 

The organization of the paper is as follows: Section 2 contains some notation 

* This research was supported in part by the Consejo Nacional de Ciencia y Technologia 
(CONACYT) under Grant PCEXCNA 050156 and by SEMAC under Grant 89-2/00ifn$. 
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and terminology while in Section 3 the model and the problems under consideration 
are formally described. Section 4 contains the preliminaries we need to prove that 
the ACOE admits a solution in Section 5. The equivalence of the lim sup and lim inf 
optimality criteria is proved in Section 6 and we conclude in Section 7 with some 
brief comments. 

2. NOTATION AND TERMINOLOGY 

As usual, U stands for the set of real numbers and i\j := {0, 1,2,.. .}. Given the 
sets A and B, their cartesian product is denoted by A x B; when A and B are topolo­
gical spaces, A x B is endowed with the product topology. If A is a metric space, 
MyA) is the corresponding Bore! a-iield, and P(A) is the class of all probability 
measures on (A, 08(A)). For metric spaces A and H, the class of all transition prob­
abilities on A given H is denoted by P(A \ H), i.e., n = n(- j •) e P(A j H) if and only 
if (i) For each /; e H, K(' j h) is a probability measure on (A, ;$(A\), and (ii) For 
each A' e M(A),K(A' | •): H -> [0, t] is measurable. On the other hand, if Y is 
a random vector, c(Y) is the cr-field generated by Yand, for an event W, the correspond­
ing indicator function is denoted byI[W] . Finally, (in)equalities involving conditional 
expectations are understood to hold true almost surely (a.s.) with respect to the 
underlying probability measure without including this statement explicitly. 

3. THE MODEL 

Let (S, A, C, p) be a Markov decision process, where the state space S is a non­
empty denumerable set endowed with the discrete topology and the action set A 
is assumed to be a compact metric space. The transition law is p and C: S x A —•> U 
is the cost function. This model represents a dynamical system evolving as follows: 
At each time t c M the state of the system is observed, say Xt = x e S. Then, an action 
At = aeAis chosen and, consequently (i) a cost C(x, a) is incurred and (ii) regardless 
of the states observed and actions applied prior to t, the state of the system at time 
t + 1 will be yeS with probability pxy(a); of course, £ pxy(a) = • £]?*>.(<*) = I-

yeS y 

Assumption 3.1. (i) The cost function C is nonnegative. 
(ii) For each x, y e S, the mappings 

a -> pxy(a) , a e A (3.t) 
and 

a —> C(x, a), a e A 

are lower semicontinuous. 

Remark 3.1. (i) In the usual description of an MDP it is supposed that (in general) 
not all the actions in A are available at each state x. Rather, the set of admissible 

24 



actions at the state x e S is assumed to be a nonempty set A(x) c A and the MDP 
can be represented as (S, A, {A(x)}, C, p); here, we are assuming that A(x) = A 
for all .v e S. However, as noted by Borkar [4], this condition does not imply any loss 
of generality; every MDP with denumerable state space for which the sets A(x) are 
not (necessarily) equal, can be transformed into an MDP for which all the sets A(x) 
are the same. 

(ii) Let .X, v e S be arbitrary but fixed. Using Theorems 2 and 4 in [1, Appendix 6], 
it is not difficult to see that Assumption 3.1 implies lower semicontinuity of the 
mapping a —> y pxz(a), a e A and then a -> pxy(a) = 1 — ]T px.z(<:/), a e / 1 is upper 

z + y " sr*y 

semicontinuous. Hence: The mappings in (3.1) are, in fact, continuous. 

Policies. For te M, let Ht be the set of possible histories up to time n, that is, 
H0 := S, and fif. := ( S x / l } ' x S for t ^ 1. A typical element of Hf is denoted by 
/;, = (x0, a0, ..., x,_ l9 flf_ls x.). A policy n = (7rJo 'S a sequence of conditional 
probabilities such that TT. e P(A \Ht), t e N; the class of all policies is denoted 
by yf. A policy n is randomized stationary if there exists y e T '.= P(A \ S) such that 
the equality nt(' \ Jit) = y(# | xt) always holds. We naturally identify F with the class 
of all randomized stationary policies. On the other hand, let F := JT A i.e., F is 

xeS 

the class of all functions / : S -> A; notice that F is compact metric in the product 
topology [9]. A policy TT is (deterministic) stationary if there exists je F satisfying 
the following: For all teN and h, e ff*, 7rf(* | ht) is the unit of mass concentrated 
at f(xt); the class of stationary policies is identified with F. With the above con­
ventions, F c r c .^. 

The state-action process {(X,, Af)) can be thought of as the coordinate sequence 
in Q := (S x A)00. Given the initial state X0 = x and the policy 7r being used, 
a unique probability measure is determined on (Q, M(Q)) [1, p. 109] or [7, p. 80]. 
This measure is denoted by P£ and E* stands for the corresponding expectation 
operator; of course, we always have P*[X0 = x] = 1. Finally we observe that, 
under the action of a policy y e F, the state process {Xt} is a Markov chain with 
stationary transition mechanism [7, 11]; the corresponding one-step transition 
probability matrix is denoted by P\ i.e., 

ply '• - iPxy(a) >'(da | x) , x, y e S . 

As usual, we (sometimes) identify P7 with the Markov chain determined by y. 

Optimality Criteria. To evaluate the performance of a policy we now introduce 
the lim sup and the lim inf average cost criteria. 

Definition 3.1. Let x e S and TZ e 2? be arbitrary but fixed. 

(i) The lim sup average cost at state x under policy n is 
n 

J.(A-, n) := iim sup E*[ £ C(Xt, Aj\l(n + 1), 
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and 
J+(x) := inf J+(x, n) 

is the optimal lim sup average cost at state x. 

(ii) the lim inf average cost at state x when policy n is used is defined by 
n 

J-(x, n) : = lim inf E*[ £ C(__",, A,)]/(n + 1) ; 
n t = 0 

J-(x) := inf J_(x, 7r) 

is the optimal lim inf average cost at state x. 

(iii) A policy 7r is lim sup (resp. lim inf) optimal if, for all x e S, 

J+(x, n) = J +(x) (resp. J-(x, n) = J-(x)) . 

Notice that, since C = 0, the above expectations are well defined (their value may 
be oo). 

Assumption 3.2. (i) (Penalized structure of the cost function). For each real number 
r, there exists a. finite set G = G(r) a S such that 

C(x, a) = r for all (x, a) e (5 - G) x A . 

(ii) (Communication/Finite average cost). There exist a (single) policy f*ef 
satisfying (a) and (b) below. 

(a) Under/*, the state process is an irreducible and ergodic Markov chain, and 

(b) If {qf*(x) | xeS] is the unique invariant distribution of the Markov chain 
induced b y / * [8, 11], 

9* '•= £_/*(*) C(x,f*(x)) < oo . 
X 

Remark 3.2. (i) It is well known that, with / * and g* as in Assumption 3.2, g* = 
= J+(x,/*) = J_(x, /*) for all xeS [8, 11]. Hence, from the definition of the 
optimal value functions J + and J_ it follows that 

oo > g* = J+(x) = J-(x) ^ 0 , xeS . 

(ii) Assumption 3.2 is satisfied in interesting queuing models [2, 10] for which 
S = Mk(k = 1, 2, ...) and C is a polynomial function (usually linear or quadratic) 
of the state. 

The problems. Under our assumptions, the existence of a lim sup optimal stationary 
policy was proved in [5]. Also, it was proved there that J+(m) is a constant function. 
However to obtain a solution to the ACOE (see (3.2) below) additional conditions 
were imposed. Our first problem concerns the existence of (appropriate) solutions 
to the ACOE under Assumptions 3.1 and 3.2 alone. 
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Problem 1. Let g = J+(x), x e S. Does h: S -* R exist such that (a) and (b) 
below are satisfied? 

(a) h is bounded below. 

(b) For all x e S, 

g + h(x) = min [C(x, a) + Jjp^a) h(y)] . (3.2) 
asA y 

Our second problem concerns the "equivalence" of the lim sup and lim inf average 
cost criteria: Given ne£P, the lim sup (lim inf) criterion represents the largest 
(smallest) limit points of the expected average costs over finite horizons under policy 
n. Since minimizing the smallest average cost is "more appealing" than minimizing 
the largest one, it is natural to ask if the lim sup and lim inf criteria are equivalent 
in the sense that they yield the same optimal value function. 

Problem 2. Is it true that J+(x) = J-(x) for all x e S? 

Our solution to problem 1 is along the ideas developed in [5], while problem 2 
is solved (essentiallly) by adapting results from [4] to our present framework. 

4. PRELIMINARIES 

In this section we recall the results from [5] which are needed to solve the first 
of the problems posed above; see Lemmas 4.1—4.3 below. We begin by introducing 
the discounted criterion: For a e [0,1), x e S and n e 0, the ^-discounted cost at state 
x under policy n is defined by 

co 

Va(x,n):= E j £ a ' C ( A ' , , i 4 Y ] , 
t=o 

while 
Va(x) : = inf Va(x, n) 

ne0> 

is the optimal (^-discounted cost at state x. A policy n is ^-discounted optimal if 
Va(x) = Va(x, n) for all xeS. 

Lamma 4.1 (cf. [5].) (i) Let a e [0, 1). For each x e S, Vjx) < co, and there 
exists an a-discounted optimal stationary policy fa e F. 

(ii) lim (1 — a) Va(x) =: g exists and does not depend on x e S. Moreover, 
5 t - + l -

(iii) J+(x) = g for all xe S, and 

(iv) There exist /?e [0, 1) and a, finite set G c S such that, for a e [/?, 1), Va(*) 
attains its minimum in G. In other words, given a e [/?, 1), there exists xae G such 
that 

Va(x)Z Va(xa), xeS. (4.1) 
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Now, let G be a nonempty subset of S. The stopping time TG is defined by 

TG := min{« > 0 I X„ e G] (4.2) 

where, by convention, the minimum of the empty set is oo. If G = {z} is a singleton 
we simply write T, instead of TG. Define h*: S x S -> R by 

h*(x,z) = Eii'fc(XtiAty]. 
r=o 

Lemma 4.2. (cf. [5].) Let x, z e S be arbitrary. Then 
(i) /?*(.\\ z) is finite, and 
(ii) Kfx) - Kz(r) = ft*(x, z). 

Throughout the paper x0 e S is arbitrary but fixed and for a e [0. 1), hy: S -> H3 
is defined by 

M » : = F«(*) - F«(*o). X<ES • (4-3) 

By Lemma 4.2 we have 

hjx) = M(x) : = h*(x, x0) < oo , x e 5 , a e [0, l) . (4.4) 

Now, let / G [0, 1) and the finite set G be as in Lemma 4.1 (iv) and define N by 

iV := max{/r(x c ,x) \ x e G] ; (4.5) 

notice that, since G is a finite set, Lemma 4.2 (i) implies that /Y is a. finite number. 
Let a G [& 1) and take xa e G satisfying (4.1). Then VjxQ) - K,(xa) = /Y (see Lemma 
4.2 (ii) and (4.5)) which implies hjx) = [Va(x) - Vjxx)] + [Va(xa) - Va(x0)] = -N 
for all x e S. Combining this with (4.4) wc obtain: 

- N = hjx) S_ M(x) , x e S, a e [& 1) . (4.6) 

Lemma 4.3. For x e [0, 1), let / a G f be a-discounted optimal, 
(i) For each sequence {«„} c: [/3, 1) converging to 1, there exists a subsequence 

{Pn} such that the following limits exist for all x e S: 

\imffin(x)=:f(x)eA (4.7) 

and 
lim hpJx) = : h(x) e [-N, M(x)] . (4.8) 

(ii) Let / G F and /?: 5 -t !R be determined by (4.7) and (4.8). Then, / is lim sup 
optimal and 

g + h(x) = C(x,f(x)) + ^pjf(x)) h(y), x e S . (4.9) 

(iii) Every pol icy/e f satisfying (4.9) is lim sup optimal. 

This is a slight variant of the results in [5, Section 3]. 
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5. THE OPTIMALITY EQUATION 

We now solve problem 1. Let {/?„} c [/J, l) be a. fixed sequence converging to 1 
so that the convergences in (4.7) and (4.8) hold true for all x e S. Taking a subsequence 
if necessary we can assume that 

/i„ increases to 1 as n -> oo . (5.1) 

Our solution to problem 1 is the following. 

Theorem 5.1. (i) The optimal lim sup average cost g and the function h in (4.8) 
satisfy the ACOE, that is 

g + h(x) = min [C(x, a) + J X ( a ) * M ] . x e s • (5-2) 
aeA y 

Moreover, 

(ii) The equality holds in (4.9) for all x e S, and 

(hi) L e t / e F be such that, for each x e S,/(x) is a minimizer of the term in brackets 
in (5.2). Then / i s lim sup optimal. 

Part (ii) of this Theorem follows immediately from part (i), and part (iii) can be 
obtained from Lemma 4.3 (iii). Thus, only part (i) needs to be proved. Since the proof 
is somewhat technical we first establish some preliminaries given in the form of 
Lemmas 5.1 and 5.2 below. 

Let G1 := G(g + 1) be the finite set guaranteed by Assumption 3.2 and, by 
notational convenience, write 

Tti-Tat; (5.3) 

see (4.2) for the definition of TGl. We recall that C(x, a) _• g + 1 whenever x §§ Gx. 
On the other hand, it is clear that [7\ > t] c [Xt $ G J , t e N - {0}. Therefore, 

C(Xt, At) £ g + 1 if 1 < r < T! . (5.4) 

Lemma 5.2. Let the policy / eF and # : 5 -* [0, oo) satisfy 

^ + fc(x) = C(x,/(x)) + 0(x) + ^Pxy(Kx))Hy)> x*s- (5-5) 
y 

Then, for each x e S, 

(i) h(x) > E i f f (C(Xt, At) + $(Xt) -g) + h(XTl)], and 
f = 0 

(ii) Ei[Tj < oo . 
Proof. First, we observe that a simple induction argument yields that 

(n + i)g + h(x) = E^ [ f (C (x f ,A f ) + #(x ()) + h(Xn+i)], neN, xeS. 
t=o 

Since the left hand side is finite and C + <P >_ 0, this immediately implies that 
Ei[fc(JQ] < oo for all n e N and x e S; recall that El

x[h(X0)~\ = h(x). Using that h 

29 



is bounded below we conclude that 

Ei[[/i(Z8)|] < oo , xeS, neN. (5.6) 

Let x e S be arbitrary but fixed. For t e N, (5.5) implies 

h(Xt) = (C(Xt, At) + $(Xt) -g) + K[h(Xt+1)\ #-J 

where SFt := <J(X0, ...,Xt); since [Tx > t] e#"(. the above equation implies that 

h(Xt)l[Tx >t] = (C(Xt, At) + 0(Xt) - g)t[Tx >t] + 

+ Ex[h(Xt+x)l[Tx>t]\^t], 

and, after writing l[Tx > t] = I[TX > t + 1] + I[TX = t + 1] in the conditional 
expectation, a transposition yields 

h(Xt)l[Tx >t]- El
x[h(Xt+x)I[Tx >t+l]\^t] = 

= (C(Xt, At) + 0(Xt) - g) I[TX >t] + El
x[h(Xt+x) I[TX = t + 1] | J^J . 

Take expectations in both sides of this equality to obtain 

El
x[h(Xt)l[Tx > t]] - El

x[h(Xt+x)I[Tx >t+l]] = 

= El
x(h(Xt)I[Tx >t]- El

x[h(Xt+x)I[T> t + 1] | #-J) = 

= El
x[(C(Xt, At) + $(Xt) - g)l[Tx > t]] + El

x[h(Xt+x)l[Tx = t + 1]] , 

and summing up from t = 0 to n we conclude: For all n e N, 

h(x)-El
x[h(Xn+x)l[Tx>n + l]] = 

= E i [ f (C(Xt,At) + &(Xt) - g)l[Tx > t]] + 
t = 0 

+ Ex[fih(Xt)l[T1 = t+l]]; (5.7) 
t = o 

notice that El
x[h(X0)l[Tx > 0]] = El

x[h(X0)] = h(x). Now observe that, since C 
and $ are nonnegative, (5.4) implies that — g < C(X0> ̂ o) + ^(-^o) ~~ 9 = 

n oo 

< £ (C(XU At) + $(Xt) - g) I[TX > t] s £ (C(Xt, At) + <P(Xt) - g) I[TX > t] = 
r = 0 f = 0 
Ti-1 

= £ (C(x„ At) + <P(Xt) — g). Therefore, the monotone convergence theorem 
t = o 

yields „ 
&* E*[ S (c(x<> A<) + *(*») ~ *)-L-i > t]] = 

n t = 0 

= ^[t\c(Xt, At) + <P(Xt) - g)] . (5.8) 
t = o 

On the other hand, since h > —N (see (4.8)), Fatou's Lemma implies 

lim inf El
x[ £ h(Xt+ x) I[TX = t + 1]] = lim inf El

x[h(XTl) I[TX < n + 1]] 
n t = 0 n 

> El
x[h(XTl)l[Tx < oo]] > -NPl

x[Tx < oo] . (5.9) 
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Also, it is clear that 

NPi[Ti = oo] = lim inf Ei[M[T1 > n + 1]] = 
n 

= lim inf Ei[-/i(Z„+1)I[T1 < n + 1]] . (5.10) 
n 

Taking lim inf as n -> oo in both sides of (5.7) and using (5.8) —(5.10) we immediately 
obtain 

h(x) + NPl
x[T, = oo] = K[l\c(Xt, At) + $(Xt) - g)1 + 

+ Ei[/i(J_ r i)J[T1<oo]]. ' ° (5.11) 

h(x) + NPi[T! = oo] = C(x, l(x)) + <P(x) - g + 

+ E i f l (C(Xt, At) + _•(__•,) - g)] - NPl
x[Tt < oo] = 

= C(x, /(x)) + *(x) - flf + Ei[ J 1] - NPi[Tx < oo] ; 

Hence: 

here, we have used that (a) $ ^ 0 together with (5.4), and (b) the last inequality 
in (5.9). From this we conclude that Ei[TJ = 1 + g + h(x) + N - _>(x) -
— C(x, l(x)) < oo which proves part (ii) of the Lemma. It also yields Pi[Ti < oo] = 
= 1 and then, part (i) follows from (5.11). Q 

Remark 5.1. The inequality (5.6) played an important role in the above proof, 
namely, it "legitimates" the arguments involving conditional expectations. 

Lemma 5.2. Let x e S b e arbitrary and assume that the policy /e F satisfies 

Ei[Tj < oo . (5.12) 
Then 

h(x) = El
x[t\c(Xt, At) -g) + /,(__-.)] . (5.13) 

f = 0 

Proof. Let a e [0, 1) and define the policy n as follows: For t < Tx,nt:= I and 
nt:= fa for t _ Tt. This definition of n and the Markov property together imply [11] 

Va(x, n) = Ei[ £ a' C(Xt, At) + aT> Va(XTl)] . (5.14) 
t = 0 

Now, define ga:= (1 — a) Va(x0). Straightforward computations yield 

^ o ) = - i [ Z ^Q* + «Tl v«(xo)]; 
t = 0 

combining this equality with (5.14) we obtain 

ha(x) = Va(x) - Va(x0) = Va(x, n) - Va(x0) = 

= Ei[ £ a\C(Xt, At) - ga) + aT> ha(XTi)] , 
r = o 
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and then, 

h(x) = K[ZAc(Xt, At) -g) + aTl ha(XTt)] + (g - ga) E.t[TJ. (5.15) 
t = 0 

Now, since /?„ / 1 as n -> oo, Lemma 4.2 (ii) and (5.12) together imply that 

(9 - 9 J EJ[TJ -> 0 as «->oo. (5.16) 

On the other hand, for all n e N, 

Iff' hdXr)\ = M < oo 

where M := max (|N|, |!Vf(x)|, x e GJ, see (4.6) and recall that XTl belongs to the 
finite set Gx. Using the bounded convergence theorem we obtain 

lim E'[/e hPn(XTl)] = Ei[%(JTTl)] . (5.17) 

Finally, it is clear that, as n —> oo 
Г i - l 

- g = C(X0, A0) - £ ^ Z fl.(C(X(, Af) - <?) / J] (C(Xt, At) - g) 
t = 0 r = 0 

(see (5.1) and (5.4)), and the monotone convergence theorem yields 

lim El
x[Y^n(C(Xt, At) - g)] = E [̂ £ (C(*(, Af) - gr)] . (5.18) 

n f = 0 t = 0 

To conclude, replace a by /j„ in (5.15) and take limit as n -> oo in both sides of the 
resulting inequality. Using (5.16) —(5.18) the desired result follows immediately. • 

After these lemmas we are ready to prove that g and h satisfy the ACOE. 
Proof of Theorem 5.1. As already noted, only part (i) needs to be proved. Using 

that h is bounded below, Assumption 3.1 implies that, for each x e S, the mapping 
a -* C(x, a) + Z PXy(a) h(y), a e A has a minimizer l(x) e A; see the proof of 

.V 

Theorem 2.1 (ii) in [5]. Then, 

h(x) + # = min [C(x, a) + %pxy h(y)] = C(x, l(x)) + £ Pxy(l(x)) h(y) 
aeA y y 

where the inequality is due to (4.9). Define <P: S -> R by 

<2>(x) : = h(x) + g - C(x, l(x)) - Y,pxy(l(x)) h(y) , xeS. 
y 

Notice that (5.2) is the same as <P(x) = 0 for all x e S and that <P = 0. Since the 
relation defining <P is equivalent to (5.5), Lemma 5.1 yields that for arbitrary x e S, 

h(x) = El
x[

l£(C(Xt, At) + <P(Xt) -g) + h(XTi)] (5.19) 
f = 0 

and E^[TJ < oo. Then Lemma 5.2 implies 

h(x)S£l
x[

Tli\c(Xt,At)-g) + h(XTi)], 

32 



and combining this inequality and (5.19) we immediately obtain 

o £ E<[7£ *(*.)] __ Ei[*(jr0)] = #(*) _, o, 
t = 0 

i.e., _»(x) = 0, and the result follows since x e 5 is arbitrary. • 

6. EQUIVALENCE OF AVERAGE OPTIMALITY CRITERIA 

We now prove that the optimal value functions corresponding to the lim sup and 
lim inf average criteria coincide. This result is a straightforward consequence of the 
following theorem which was proved in [4] under conditions on the transition law 
and the cost function which are substantially stronger than those we are assuming 
here. 

Theorem 6.1. For each x e S and n€0*t 

n 

lim inf £ C(Xt, At)l(n + \) ^ g P*-a.s. 
n t = 0 

Before giving a proof of this theorem, we point out the following. 

Corollary 6.1. For all x e S 

J + (x) = J.(x) 

Proof. Let x e S be fixed. For arbitrary n s 2?, we have 

J_(.x, n) = lim inf E*[ £ C(Xt, At)j(n + 1)] £ 
n t = 0 

£ E*[iim inf i C(Xt, At)l(n + 1)] ^ E*[q] - g 
n t = 0 

where we have used Fatou's Lemma and Theorem 6.1. The above inequality yields 
J_(x) ^ g (since n is arbitrary) and then the conclusion follows from g — J + (x) ^ 
^ J-(x); see Lemma 4.1 (iii) and Remark 3.2. • 

The proof of Theorem 6.1 is based on Lemmas 6.1 and 6.2 below. Let (Xt, At)T=o e 

eQ ( = (S x A)M) be a sample path and define vt e P(S x A), t e N by 

vt(L) : = i l[(Xt, At) e L\j(t + 1), Le %(S x A), t e N . (6-1) 
n = 0 

Throughout the remainder, x e S and n e 2P are arbitrary but fixed. 

Lemma 6.1. There exists Q' c Q such that 

(i) P$[Q'] = 1, and 

(ii) On Q' the following holds: Let {tk} c N be a sequence such that f* "* °° 
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as k -> oo and assume that {vffc} converges weakly to veP(SxA) [3]. Theny 

tiy) = H>(x)ply> yeS> (6-2) 
x 

where n e P(S) and y e E are defined by 

li(y):=v({y} x A), v e S (6.3) 

and, for A' e ®(A) , 

y(A' | x) := v({x} x A')M*) if (i(x) 4= 0 (6.4) 

:= zl(A') if /f(x) = 0 

where A e P(A) is arbitrary but fixed. 

This result can be proved along the lines in [4, Lemma 3.6]; in fact, just minor 
changes are need to adapt the discussion in [4] to our present framework. 

Lemma 6.2. Suppose that n e P(S) and y e E satisfy (6.2) and let Cy: S —:• U be 
given by 

Cy(x):= }C(x, a)y(da\x). (6.5) 

(Notice that, under the action of the policy y e E, Cy(x) is the conditional expecta­
tion of C(Xt, At) given Xt = x, where t e N is arbitrary.) 

Then, 

2X*) C 7W = 9 • 
X 

Proof. To begin with, recall that if x e S satisfies fj,(x) > 0 then x is Expositive 
recurrent [8, p. 41]. Let R(c= S) be a Expositive recurrence class and denote by 
QRe P(S) the corresponding invariant distribution; this means that (6.2) is satisfied 
with QR instead of JJ. and QR(x) > 0 if and only if x e R. It is well known that, for 
j ; e R [ 8 , 11] 

£QR(x) a(x) = lim E}[ £ Cy(Xt)-]l(n + 1) = 
x n t = 0 

= lim EJ[ t C(Xt, At)]l(n + 1) = J+(y, y) >, J+(v) , 
n r = 0 

and then, 

£QR(x) Cy(x) = g ; (6.6) 
X 

see Lemma 4.1 (iii). To conclude recall that any fi satisfying (6.2) can be written as 
[8, p. 41] 

H = I c*Q« (6.7) 

where 0t consists of all P'-positrve recurrence classes and cR : = ][] /f(x), Re &. 
xeR 

Using that £ cR = 1, the conclusion, immediately follows from (6.6) and (6.7). • 
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Proof of Theorem 6.1. Let Q' be as in Lemma 6.1. Take a sample path 
(Xt, At)fL 0 e Q' and define Se by 

n 

Se := lim inf £ C(__„ Af)/(n + 1) = lim inf J C(s, a) v„(d(s, a)) ; 
n f = 0 n 

see (6.1). Now, pick a subsequence {nk} _ N such that 

if = lim J C(s, a) v„fc(d(s, a)) 
k 

and consider the following cases. 

Case 1: {v„j£L0 <= P(S x A) is not tight [3, p. 37]. 

Since A is compact, there exists s > 0 and a subsequence {n^} of {nfc} such that, 
for each G _ S, G finite, 

liminfv„k,[(S - G) x A] > s (6.8) 
fe 

Then, for finite sets G _ S, 

_? = lim J C(_, a) v„fc,(d(s, a)) = lim inf J(S_G)xA C(s, a) v„fc,(d(s, a)) 
fe fc 

(c_o) 
and (6.8) immediately implies 

Se = Em(S - G) . (6.9) 

where m(S — G) := inf {C(x, a) I x e 5 — G, a e A}. Letting G increase to S in (6.9) 
and using Assumption 3.2 (i) we conclude that S£ = oo. 

Case 2: {v„J is tight [3]. 

In this case there exists a subsequence {n'k} of {nk} such that {v„fc,} converges 
weakly to v e P(S x A) [3, Ch. 1, Section 6]. For N e N define CN: S x A -> U 
by CJV(X, a) := min {C(x, a), N}, (x, a) e S x A. Clearly, 0 ^ CN :_ C and CN is 

lower semicontinuous [1, Appendix 6, Theorem 4]. Then, 

if = lim j C(s, a) v„fc,(d(s, a)) > lim inf J CN(s, a) v„fc,(d(s, a)) > 
fc fe 

_ J C^s, a) v(d(s, a)) 

(see [3, p. 17]). Using that CN /• C as N -> oo the monotone convergence theorem 
together with the last inequality imply 

Se ^ J C(s, a) v(d(s, a)) = J C(s, a) y(da\s) j_(ds) = 

= J^ ( s )^ds ) = ^ ( s ) C ^ ) 
s 

where ji and y and Cy are as in (6.3), (6.4) and (6.5) respectively. Since the sample 
path (Xt, At)?=0 belongs to Q', Lemma 6.1 (ii) implies that (6.2) is satisfied and then, 
Lemma 6.2 yields that S£ > ^ ( s ) Cy(x) = g. 
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In short: We have seen that for arbitrary (Xt, At)^=0 e Q', the inequality $e -_ 

= lim inf V C(Xt, At)/(n + l) 2: g holds true. This completes the proof since 
n ( = 0 

?*[-!'] = 1. • 

7. CONCLUDING REMARKS 

We have given sufficient conditions for the equivalence of average cost optimality 
criteria and for the existence of solutions to the ACOE yielding optimal stationary 
policies. Our conditions on the recurrence structure of the model (Assumption 
3.2 (ii)) are substantially weaker than those usually found in the MDP literature, e.g. 
the simultaneous Doeblin or the Lyapounov function condition; see [14] and the 
inner references. In contrast, we imposed a very special (and hence, restrictive) 
structure on the cost function, (Assumption 3.2(f)) which has played a central role 
in our argumentation. However, it should be noted that our assumptions hold true 
for importants models in applications [2, 10]. 

On the other hand, Sennott has proposed in [12, 13] a set of conditions guarantee­
ing the existence of lim sup optimal stationary policies. Indeed, among the (sufficient) 
conditions presently available to obtain that existence result, the conditions in [13] 
are, in certain sense, the weakest; see the example in [6]. It was proved in [5] that 
the conditions in [13] are valid under our Assumption 3.2. Thus, the following 
seems to be an interesting problem: What conditions (if any) should be added to 
the assumptions in [13] so that results similar to Theorem 5.1 and Corrolary 6.1 hold 
true? Research in this direction is presently in progress. 

(Received May 12, 1989.) 
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