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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 4 

On the Set of Optimal Controls 
for Markov Chains with Rewards 

KAREL SLADKÝ 

On the base of a recurrence formula for the expected reward of a finite Markov chain (that is 
an extension of Laurent expansion for expected discounted reward obtained in [6], [9] as well 
as the recurrence relation for expected non-discounted reward inferred in [5], [7]) necessary and 
sufficient optimality conditions for controlled Markov chains with sensitive discounted and sensi­
tive averaging criteria are established. Employing the obtained optimality conditions criterion 
equivalence between these two types of optimality criteria is shown. 

0. INTRODUCTION AND NOTATIONS 

In a fundamental paper on finite state controlled Markov chains Blackwell [1] 
defines an optimal policy (control) as /? optimal for discount factor /? sufficiently 
near 1 and establishes (nonconstructively) the existence of a stationary optimal policy. 
In [ l ] Blackwell also introduces a nearly optimal policy (control) as that for which 
the difference betweeen the total expected discounted reward for that policy and /? 
optimal policy tends to 0 as ft —> 1 and gives an algorithm that in special cases enables 
to find a nearly optimal policy. A general form of the algorithm for finding a nearly 
optimal policy was found by Veinott in [8]. 

In [6] Miller and Veinott gave a constructive proof of the existence and an 
algorithm for finding an optimal policy. Their approach is based on the Laurent 
expansion for expected discounted reward for ft near 1. A similar approach was 
also used by Veinott in [9] for investigating sensitive discounted optimal policies. 

Necessary and sufficient optimality conditions for Markov chains were derived 
in [3] for the case with discounting and in [5], [7] for the long range average reward 
of Markov chains. In [2] Denardo and Miller verified Veinott's conjecture on the 
existence of a stationary average overtaking optimal policy and established necessary 
and sufficient optimality conditions for that optimality criterion (another form of 
these optimality conditions was inferred in [7]). 



In the present paper we shall investigate necessary and sufficient optimality con­
ditions for sensitive discounted and sensitive averaging optimality criteria. First 
(compare Theorem 1.7 and Corollary 1.8) we shall infer a recurrence formula for the 
expected reward of a controlled Markov chain for an arbitrary control (policy). This 
formula is an extension of Laurent expansion for expected discounted reward obtained 
in [6], [9] as well as the recurrence relation for expected non-discounted reward 
inferred in [5], [7] (compare Remark 1.10 and Corollary 1.5). Using the obtained 
recurrence formula we shall establish (see Theorem 2.2 and 2.4) the necessary and 
sufficient optimality conditions for sensitive discounted optimality criteria. The 
(sufficient) optimality conditions obtained in [6] for optimal policy and in [9] for 
optimal policies with sensitive discounted optimality criteria immediately follow 
from Theorem 2.2 and 2.4. 

In the last paragraph of the paper we shall infer necessary and sufficient optimality 
conditions for sensitive averaging optimal controls (policies) (compare Theorem 
3.5). This part of the paper extends some author's results obtained in [7] and also 
establishes a criterion equivalence (compare Theorem 3.6) between sensitive discount­
ed and sensitive averaging optimality criteria. Only a partial result in this direction 
was obtained by Lippman [4] concerning the criterion equivalence between nearly 
optimal and average overtaking optimal policies. 

Throughout the paper notations and terminology used in [5], [7] will be followed 
as close as possible. 

We shall consider a controlled Markov chain with state space I = {l, 2, ..., r} 
and the set of control parameter values (actions) z e J = {1, 2 , . . . , s} in any of the 
state. Choosing control parameter value z e J in state j e I state k e I will be reached 
in the next transition with given probability p(j, k; z), and one stage reward c(j, k; z) 
will be obtained from such a transition. The values p(j, k; z), c(j, k; z) are supposed 
to be known for any pair j , k e I and any ze J. For the sake of brevity we shall 
introduce the expected one stage reward c(j;z) in state j if the control parameter 
value takes value z. Obviously, c(j; z) = £ p(j, k; z) . c(j, k; z). A control (policy) co 

kel 

of the chain is given by a sequence of control parameter values (actions) z e J chosen 
with respect to the complete history of the chain. So we write co = {z„(j0,ju ..., j„), 
n — 0, 1,...} where z„(j0,ju ...,j„) is the control parameter value (action) chosen 
at the o-th transition following the occurrence of states j0,ji, •••5j„- co is called 
a Markovian(memoryless)control (policy)if z„(j0,jr, ...,;'„) = z„(/„)forrc = 0, 1,.... 
A Markovian control is called homogeneous if z„(jn) = z(j„). A Markovian homo­
geneous control will be called stationary. For stationary control we write co ~ z(j). 

Denoting X„ (for n = 0, 1, ...) the random state of the considered Markov chain 
at the n-th transition the probability distribution of a sequence {X„; n = 0, 1, ...} 
is determined by the chosen control co and the initial state j el (of course, X0 = j). 
The symbol EJ is used for mathematical expectation with respect to this probability 
distribution. For shortening we shall often delete the arguments X0,XU ...,Xk and 



Jo>Jit •••>Jk it1 zk(--) e-8- we shall write z2 instead of z2(X0, Xu X2) or instead of 
ZiUoJiJz)-

The (random) /J-discounted reward up to the N following transitions CN(fi) is 
J Y - l 

given by CN(p) = £ P" • c(X„, Xn+l; z„) (we set C0(p) = 0). Here p e <0, 1) is 
n = 0 

a given discount factor and Q = (l — /?)//? > 0 denotes the associated rate of interest. 
Obviously, for any control to ~ z 

where X0 = j and 

EJcN(p) = YP"-Erc(xn;zn) 
n = 0 

£7 C(P) = lira EJ Cw(/?) < oo 

always exists. 

Following Veinott (compare [9]) a control to, will be called /-discount optimal 
(for/ = - 1 , 0 , 1 , . . . ) if 

linitf^iy'lE? C(P) - EJ C(/?)] S: 0 

for any control co and all j e I. Note that in the terminology introduced by Blackwell 
[ l ] 0-discount optimal control is a nearly optimal one and an optimal control is 
/-discount optimal for / = co. 

For the investigation of sensitive averaging controls we shall introduce the concept 
of /-order average reward optimal controls. If control co ~ z„ is used, for the expected 
value of the (random) undiscounted reward up to the N following transitions CN 

N-l 

obviously holds Ef CN = £ Ef c(Xn; zn). Let us set v0
N\j; co) = E"- CN and let us 

n = 0 JV - 1 

for / = 0, 1, ... define the values v\N
+\(j; co) = £ v\"\j; co) (obviously, v0°\j; co) = 

= v[°\j; co) = #> ( / ; » ) = . . . = „<°>(j; co) =7\l\j; co) = ... = v\'\j; co) = 0). 
A control to, will be called /-order average reward optimal (for / = 0, 1, ...) if for 
any other control co and all j el 

lim i n f - 1 - [v\N\j; <&,) - v\N\j; co)] = 0 . 
W-oo JV — / 

Note that any average reward optimal control is 0-order average reward optimal 
and 1-order average reward optimal control is usually called an average overtaking 
optimal control. 



1. RECURRENCE RELATION FOR EXPECTED 
DISCOUNTED REWARD 

In this paragraph a recurrence formula for expected discounted reward will be 
inferred. This recurrence formula will be very useful for investigating expected 
discounted reward in case that the discount factor fi (resp. the interest rate Q) is 
near 1 (resp. 0). 

First, we shall need some preliminary lemmas. Let for a stationary control co ~ z(j) 

g = \\gj\\J=1 , c* = \\c(j; z(j))\r
j=1 , um = \\umJ'j=1 (m = 0, 1, ...) 

be column vectors and let us denote by n(j, k; co) the limit probability of transition 
probability matrix Pm = \\p(j, k; z(j))\\r

JJl=l defined as 

n* = H ; , k; «s)||'M=1 = hm — L - £ (p*y 
rn-^o. m + 1 n = 0 

(note that (Pw)° = / where / is (r x r) unit matrix). 

1.1. Lemma. For any stationary control a> ~ z(j) there exists a (unique) solution 
(denoted gm, u0) of equations 

O-l) g = Pag, 

(1.2) u0 + g = ca + P& . u0 , 

(1.2') n«.u0=o. 

Proof. The existence of a unique ga satisfying (IT), (1.2) immediately follows 
after multiplying (1.2) by 77s (using the equality P . 77 = II we obtain n& . g& — 
- IIa . c& as rank (/ - P) + rank II = r). Then from (1.2), (1.2') immediately 
follows the existence of a unique solution u0 (compare also [ l ] § 3). • 

1.2. Lemma. Let co ~ z(j) be a stationary control and let u0 be the solution to 
(IT), (1.2), (1.2'). Then there exists a sequence {um,m = 1,2,...} where um is 
determined from um_x as a (unique) solution of the equations 

(1-3) u„, + < _ , = Ps' . um , 

(\.y) na.um = o. 

Proof. As rank (/ - P) + rank II — r the existence of a (unique) solution to 
(1.3), (1.3') is obvious. • 

Introducing the fundamental matrix Z = (I ~ P + 77)_1 (that always exists, 
see e.g. [1]) from (1.1), (1.2), (1.2') we obtain 

(1.4) < = Z%ca - ga) 



354 where 

(1.4') g& = n*. ca. 

Similarly, from (1.3), (1.3') we have for m = 1, 2, . . . 

(1-5) u% = -Za .uZ-i. 

In virtue of (1.4), (1.4') and (1.5) we have for m = 0, 1, 2, ... 

(1.6) u£ = - ( - Z ' 5 ) m + 1 (/ - 17 s) . c s . 

1.3. Remark. At most r vectors u% can be linearly independent. Moreover, if the 
vectors ua , uf, ..., uf (where L g r - 1) are linearly independent and uf+1 is their 
linear combination using (1.5) we can easily verify by induction that for any m > L 
ujjj must be a linear combination of u%, u", ...,u"[ (resp. of u™, ..., uf, uf + 1 ) and that 
any L + 1 vectors u^i( u™2, ..., u™L + i must be linearly dependent. 

Let us denote 

0-7) r_l(j;z)=YJv(j,k;z).gt - g* , 

kel 

(1-8) •AoO'; z) = S 0 ; z) + Z Kf fc^ z) • "o,t - " o j - 0; 

and for m = 1,2,... 

(i.9) 4>l(h z) = - « 2 _ i j + 1 K j f e ; z ) • < * - < , • • 
kel 

We shall denote by J%j) (for m = — 1, 0, 1, ...) the set of all control parameter 

values in state j for which ip°Li(j; z) = ipo(j; z) = .. . = i/C(j; z) = 0- Of course, 

4 0 ) c -C- iO) <= ••• c - l-iO) c •! f o r any j e l . 
Now we shall try to find a Laurent expansion of an arbitrary control m ~ z„. 

The partial form of this expansion brings 

1.4. Lemma. Let & ~ z(j) be a stationary control. Then for an arbitrary control 
co ~ z„ and all j el; N = 0, 1,2, . . . 

(1.10) 

E?CN(p) = (1 - Z?)"1 [(1 - p"). g* +l(P" + 1 - PN). EJ r-,(X„; z„)] + 

П- < ; - /?" . £J < x „ +Л,Z/?" • Щ Фt(xn; z„) -
L/? п=o 

— r — • -- l3 • £ ; "*.-- • 
/? „=0 



Proof. Using (1.7), (1.8) for the expected discounted reward up to the N following 355 
transitions we can write 

(1.11) Ef CN(ji) = i V . EJ c(Xn; z„) = 
n = 0 

= £ P" • E? ̂ t(Xn, z„) + X /T. EJg*n - £ / ? " . EJ(ut,Xn+t - < X J . 
n=0 n=0 n=0 

For the second term on the righthand side of (1.11) we have (as X0 = j) 

(1A2) x V • E<° g%n = "i F . Ej[gt + "£(.&.•. ~ *xj] = 
11 = 0 n=0 m=0 

= iVlfffo +"l-7 *-i(*.; *J] = T ^ •'* + 

„ = 0 m = 0 1 — /? 

1 — p n = 0 

For the last term on the righthand side of (1.11) we can write 

(1.13) - i V • £7(«OA+, - <xJ = «oj - f • -7<x» -
„ = o 

-(i-)?fiV-£>oA+l. 
n = 0 

Setting (1.12), (1.13) into (1.11) we obtain (1.10). Q 

1.5. Corollary. As 

(1 - /J)'- . [(1 - ^ ) • 0? + l V + 1 - n • EJ ̂ (X„; -J] = 
n = 0 

N-l N-2 JV-1 

= ^ S / 5 " + S I F".E?il,t1(X.;zn) 
n=0 n=U m=n+l 

letting ft -* 1 jro/n (1A0) we obtain 

(1.14) E; CjV = N . a? + £ [(N - 1 - n) . EJ ^ ( X , , ; z j + 
n = 0 

+ E; ^(X„; z„)] + wo5,,- - £?<*» . 

Recurrence relation (1.14) was more directly inferred in [7]. 
Now we shall try to find a series in the powers of Q — (l — /?)//? for the last term 

on the righthand side of (1.10). Using (1.9) we can infer 



356 1.6. Lemma. Let to ~ z(j) be a stationary control. Then for an arbitrary control 
co ~ z„ and all m, N = 1, 2, ... it holds 

0-15) "'I V-£?«,„-,.xn - - I < , + r + "'£T<xw + m -
n = 0 /S 

N + m - 1 i _ o N + m 

- i F . EJ ^(xn; _„) + i—e x /?». E? < -„ . 
n = 0 p n = 0 

Proof. We can write 

(i-i6) X r . E; «•_,,x„ = - ' X /*" • Ef y%x.\ zn) + 
n = 0 n = 0 

+ '+ f pn.Ey(ut<Xn+l - < r J -
n = 0 

On the other hand 

(1.17) X /3" • Ey(«2jr. + 1 - < x j = - < . + /9W + " • -7 <-„ + m + 
n = 0 

+ (l- /^)-A +X V . £ 7 < „ „ + , -= - ^ " r a j + 
„ = o jS 

+ /r*+<"_7 < , N + m + 1=-? X > • £•' < , „ • 
fi n = 0 

Setting (1.17) into (1.16) we obtain (1A5). D 

From Lemma 1.4 and Lemma 1.6 we can derive a general form of a Laurent ex­
pansion for the expected discounted reward. 

1.7. Theorem. Let to ~ z(j) be a stationary control. Then for an arbitrary control 
co ~ znandalljeI;M,N = 0 ,1 ,2 , . . . ; M £ N holds 

(1.18) 

E? CM = (-f^^lnr'9f + J o ( / ? " " r _ 1 ) •£; ̂ i(z-; Zn)]+ 

N + m-1 -I / I _ fl\M JV + Af -1 

+ Xo p". EJ rm(xn; -jj - ( - y - j xo r • £7«_ A • 

Proof. The proof immediately follows if we set (1.15) into (LAO). Q 



1.8. Corollary. For N -> oo from (1.18) we obtain 

(1.19) Erc(ll)-^-JlJ'-[~t)f + ll,..E^tt(X,;,,)] + 

+I(^)"[^I^«H+ 

-{^Jr •*"<*•• 
1.9. Remark. As from (1.19) 

ffii'-*** 
and 

[1-20') (L_ßY f г . £»„* A _. o(l _ ø)* 
\ ř / "=° 

(a function f(fi) is said to be o(\ - fi)L if lim [/(/?)]/(! - jS)L = 0) we can write 
0^1-

(1-21) 

E? coo = £• C(/J) + | o r [ Y ( i 7 i ) ^ £? ^(x- ; z-)]+ <l - W2 • 
oo M - l 

Note that in (1.19), (1.21) the interchange of £ £ is justified as all Ef i/'m(X„; z„) 
are uniformly bounded and 

co M - l / i _ o \m 

z z H V <» 
„ = o »«- i v Z3 / 

for any ft e (0, l). 

1.10. Remark. Setting EJ C(/>) = v(j; /,; to) and introducing a (column) vector 
v(fi; u>) = \\v(j; fi; Q))|j=i from (1.20) we can write for a stationary control a> ~ z(/) 

+ ^ 



358 Setting from (1.4'), (1.6) into (1.22) and introducing the interest rate g = (l - p)\fi 
instead of the discount factor /? we obtain for Q < IZ""!-1 (where \Z\ is the norm of 
Z = |UyJ. j=i defined as \Z\ = max £ |zy|) letting M -> co 

;e/ /.r 

(1.23) v(£; d>) = (. + l) . [ e " 1 . J T . c a - J e - ( - Z * ) " + 1 . (I - / T ) . e*] . 
m = 0 

As (/ - 77)m = / - II (1.23) can be also written as 

(1.23') v(P; &) = (e+l).[e-i.n*.c*-t e«>(-Hy+* c*] 
m = 0 

where 
Ha = z™(/ - n&). 

(1.23') is the Laurent expansion for a stationary control found by Miller and Veinott 
in [6]. 

2. NECESSARY AND SUFFICIENT /-DISCOUNT OPTIMALITY 
CONDITIONS 

In this paragraph the recurrence formula for expected discounted reward inferred 
in Theorem 1.7 will be employed for establishing necessary and sufficient optimality 
conditions if /-discount optimality criteria are considered. 

First, we shall investigate the optimality conditions in the class of stationary con­
trols. We shall prove the following lemma. 

2.1. Lemma. There exists a stationary control co* ~ z*(/') such that for all 

(2.1) <A-*(/; z) _ 0 for any z e J 

and 

(2.r) c*(fz) = ° f°r any 2 e Jm'-iO); m = 0, 1, 2, ... 

Proof. Setting from (1.5) into (1.9) we can write for m = 1, 2 , . . . and any station­
ary control to ~ z(j) 

(2.2) C ( j ; zj » I [pC/. k; z) - p(/, fc; z(j)) + n(j, k; co)] . < * . 

As the vectors u™ for m > r are linear combinations of _?, ..., u™ (compare Remark 
1.3) if t/C(j; z) = 0 for m = 1, 2, ..., r then also i/CO"; z) = 0 for any m > r. So 
z e J? => z e J™ and (as J™_, => J") J™ = J " for any m > r. 



Thus it is sufficient to show the existence of a stationary control co* ~ z*(j) for 359 
which (2.1), (2.F) will hold for m = 0, 1, ..., r. The proof can be performed by 
control (policy) iteration method. 

Let a)1 be an arbitrary stationary control. If conditions (2.1), (2.1') for m = 
= 0, 1, ..., r are not fulfilled for all j el let us construct a stationary control co2 ~ 
~ z'0") in such a way that for any j el the first non-zero element (if exists) of the 
sequence {ip°L\(j; z'(j)), rpo'(j'> z'0))> • • •> $T(i\ z '0))} I S positive. So for ft sufficiently 
near 1 and any j el 

%i(
L'/jrmij;ZW-° 

and a strict inequality holds at least for one j el. Setting co2, cot into (1.21) we have 
for M = r + 2 

(2.3) Ef C(ß) - EŢ C(ß) ш __ ß" 
f\ --^EŢФT(Xn;z'(xĄ + 

+ 0(1 - ny * jzt (Ljiyrm>(j-,z'0)) + o(i - ft. 

From (2.3) for j? sufficiently near 1 EJ2 C(^) - Ef1 C(0) = o(l - ft a n d a s t r i c t 

inequality is fulfilled at least for one j e /. Using the above procedure we can construct 
a sequence of stationary controls {cou co2, ...} the terms of which cannot recur. 
As there exists only a finite number of stationary controls repeating the above 
procedure a stationary control co* must be found. • 

Now we are in a position to formulate necessary and sufficient /-discount optimality 
conditions. 

2.2. Theorem. A control cot ~ z,„ is l-discount optimal (for I = —1,0, 1, ...) 
if and only if for all j el and any n = 0, 1, ... the following conditions are fulfilled 

(2.4) Ef K'(X„; z,,„) = 0 for m = - 1 , 0, ..., / 

and 

(2.5) lira ( l = i ) I F . E- WU(Xn; z,,„) = 0 . 

Proof. For any control co ~ z„ and any M = — 1 , 0,. . . it holds (compare (1.21)) 

(2.6) Ef C(p) - Ef C(P) = 

-£/[J_. (1y^"-7«^-;--)] + °(i - ̂ r_1 • 



360 Let us suppose that 

(2.7) EJ ipm*(Xn; z„) = 0 for any m < m0 and all n = 0, 1, ... 

and 

(2.7') EJ \j/m*(X„; z„) < 0 for certain n = n0 . 

(Note that under conditions (2.7) it cannot happen Ef ij/m*J{X„; z„) > 0 and that there 
exists hmo<0 such that hmo. E^fa + i(X„; z„) ^ E^fa(Xn; z„) for any n.) If 
(2.7), (2.7') hold then from (2.6) we obtain for any 1 > p > hmJ(l + hmo) 

(2.8) EJ C(B) - Ef C(B) = lj j ^ f (^JEj tf(X„; z„)J + 

+ o(i - py~ < r (-~j-J°El < f e -n0) + o(l - PT" • 

1. Necessity. Let condition (2.4) not hold for certain m = m0 <. I, n = n0 and 
let m0, n0 be chosen such that conditions (2.7), (2.7') are fulfilled (we set a> = to,). 
Then from (2.8) we obtain 

(1 — R\~m° 
- — L j [£?' C(P) - Ef C(P)] < Ef W*0(X,10; z,,„0) < 0 

and co, cannot be m0-discount optimal (and even /-discount optimal). So condition 
(2.4) must be fulfilled for any /-discount optimal control. 

Let condition (2.4) be fulfilled but (2.5) let not hold. Then (as under condition 
(L^Ej^fAX^z^^SO) 

(2.10) lim inf (^—^) t F • Ef <Pfi(X„; z,,„) < 0 

and from equation (2.6) for co = coh M = I + 1 we obtain 

(2-11) (~f
iy'[EfC(P)-EfC(p)] = 

= ( ^ ) | / n • ET *£-(*« -^ + (L7 i)"'°(1"py' 
Setting (2.10) into (2.11) we obtain 

(2.12) lim inf (h^J.\ [Ef C(P) - Ef C(p)~\ < 0 
0-1- \ p J 

and the control to, cannot be /-discount optimal. So conditions (2.4) and (2.5) must 
be fulfilled for any /-discount optimal control. 



2. Sufficiency. As for any control a> ~ z„, any n = 0, 1, . . . and all j el the first 361 
non-zero element (if exists) of a finite sequence 

-y-),+1.87*K.(^;-J 

must be negative using the expansion (2.6) for EJ* C(/5) — Ef C(ji), M = I + 1 
we can easily see that 

(2.13) lim inf (^>j '[Ef Ctf) - EJ C(/?)] 1 0 . 

Using the expansion (2.6) for Ef C(fi) — Ef C(0), M = I + 1 under conditions 
(2.4), (2.5) we obtain 

(2.i4) m_ (~J'iEr c(p) - Ef cm = 0 . 

From (2.13), (2.14) immediately follows 

(2.15) lim inf (L^l)~'[Ef C(fi) - EJ C(p)] 2: 0 

for any j e I and any control a> ~ z„. 

So any control co, fulfilling conditions (2.4) and (2.5) must be /-discount optimal. • 

2.3. Corollary. Let condition (2.4) hold. Then (2.5) is fulfilled if and only if 

(2.5') lim — i - £ Ef * £ . ( * . ; zh„) = 0 . 
/v-oo N + I „=o 

Proof. As under condition (2.4) Ef fpfi(^n', zt,n) = 0 f ° r aH j e I ar>d a n v » = 
= 0, 1, . . . then in virtue of Hardy-Littlewood theorem (compare [10] Theorem 97) 

(2A6) lim _ L - £ E7 <Ar+\(x„; z;,„) = 

W ôo JV + 1 „ = o 

= I™ 0 -*»)! p-.EfWl^X^z.J 
P-+1- n = 0 

if at least one of the limit exists. 

So (2.5) (resp. (2.5')) together with (2.16) immediately imply (2.5') (resp. (2.5)). • 

In case that / ^ r for /-discount optimal controls the following theorem is valid. 



2.4. Theorem. A control co ~ z„ is r-discount optimal if (2.4) is fulfilled for 
m = — 1, 0, 1, ..., r. For I > r a control a>, is l-discount optimal if and only if it is 
r-discount optimal. 

Proof. In Theorem 2.2 it was established that condition (2.4) for m = 
= — 1, 0, 1, ..., r must be fulfilled for any r-discount optimal control. 

As for m > r the vectors u™* are linear combinations of u™*, ..., u™* and (compare 
the proof of Lemma 2.1) if </C*(/; z) = 0 for m = 1,2, ..., r then also t̂ ™*(j; z) = 0 
for any m > r if condition (2.4) is fulfilled for m = — 1, 0, ..., r then for any / > r 
and any n = 0, 1, ... also EJ \p™*(Xn; z„) = 0 (and, of course, 

lim —L- iE^f(Xn;zn) = 0). • 
iV->00 N + 1 71 = 0 / 

From Theorem 2.2 and Theorem 2.4 we obtain an important corollary concerning 
the existence of a stationary /-discount optimal control. 

2.5. Corollary. Any stationary control co* (for / = —1,0,1 , . . . ) fulfilling con­
ditions (2.1), (2.1') for m = / + 1 is /-discount optimal. If a stationary control co* 
is r-discount optimal then it is also /-discount optimal for / > r. 

3. EQUIVALENCE BETWEEN DISCOUNTED AND AVERAGE 
REWARD OPTIMALITY CRITERIA 

In this paragraph we shall investigate average reward type optimality criteria 
corresponding to the concept of /-discount optimal control. 

First, using the results of Corollary 1.5 and Lemma 1.6 (compare (1.14), (1.15)) we 
shall infer a recurrence formula for the difference v\N)(j; co) — v\N)(j; co*) where 
co ~ z„ is an arbitrary control and the stationary control co* ~ z*(j) fulfils conditions 
(2.1) and (2.1') (the values v\N\j; co) for / = 0, 1 , . . . are given by a recurrence relation 

v\l\(j; ©) = £ v\n\j; co) where t-^Ci; co) = EJ CN and v(
0°\j; co) = 0). It holds 

« = o 

3.1. Lemma. For any I = 0, 1, ...; N = 0, 1, 2 , . . . 

(3.1) v\N\j; co) - v\N\j; co*) = <P\N\j; co) + EJ'U?;XN - E?»?Xl( 

where 

(3.2) #$*>(/; co) =Nt\(N - l - n ) . E j ^Z\(XU', z„) + Ef K(Xn; -„)] 
n = 0 

and 

(3.2') 4>\N
+\(j; co) = Z[4>?\j; co) + EJ ^ + \ ( X „ ; -.)] . 



Proof. By induction with respect to /. For / = 0 (3.1) holds (compare (1.14)). 363 
Let (3.1) hold for certain I = 0. Summing (3.1) for JV = 0, 1, ..., M - 1 we obtain 

M - l 

(3.3) v\M\(j; _) - tftK/; _•) = £ [v\N\j; _) - v™(j; co*)] = 
N = 0 

M - l M - l 

= £<>(;; co) + i(_r-r-_--7«r_J-
JV = 0 N = 0 

But from Lemma 1.6 (compare (1.15)) we have 

(3-4) I (ET<x» - EXxJ = 
JV = 0 

M - l 

= Z £ 7 «. ?+I(XN1 ZN) + i-J*-f+i,„_ ~ £>™. i,x„ • 
N = 0 

Setting (3.4) into (3.3) and using (3.2') we immediately obtain 

i>ffi(j; co) - v\M\(j; w*) = <P\M[(j; co) + Efuf+UXM - £ > r + \ . _ M • • 

For the investigation of the optimality properties of /-order average reward optimal 
controls the following lemma will be very useful. 

3.2. Lemma. Let for a given parameter m = — 1, 0, 1, . . . {am(n), n = 0, 1, ...,} 
(where am(n) = Hm < co) be a given sequence with the following properties: 

For given integers m0 2: — 1, n0 _ 0 and real h < 0 

i) am(n) = 0 for all m = — 1, 0, ..., m0 — 1 and any n = 0, 1, . . . ; 

ii) amo(n) = 0 for any n < n0; amo(n0) < 0 and amo(n) g 0 for any n > n0; 

" 0 am0(n) S h.. amo+1(n) for any n. 

Let us denote for m = 0, 1, . . . 

(3-5) Am+1(N) = Z[Am(n) + am+1(n)] 
n = o 

where 

(3.5') A0(N) = i\(N - l - n ) a..(n) + _„(„)] . 
« = o 

Then it holds 

(3.6) lim sup Amo+1(N) = amo(n0) < 0 
N-K N — tn0 — I 

and 

(3.7) lim sup Am(N) = - oo /or any m > ni0 + 1 . 
iv-oo N — m 



Proof. As 

Amo+1(N) = £ [fajn) + amo+1(M)] = £ [(JV - 1 - n) . am(n) + amo + 1(n)] 
M = 0 n = 0 n = 0 

from i), ii), iii) we obtain 

(3.8) Amo+1(N) S(N-l-n0). amo(n0) + amo+1(n0) + 

+ £ l(N - 1 - n). amo(n) + a„,0 + i(n)] . Xmo+1(n) < 

n = n 0 + l 

< (N - 1 - n 0) . amo(n0) + 

J V - l 

" + amo + 1(n0) + Y.+ l(N ~ 1 - n) . h + l] . amo+i(n) . X,„0 + 1(n) 

where Xm(n) = 0 (resp. = l) if am(n) ^ 0 (resp. am(n) > 0). As for any n < N - 1 + 
+ ft"1 = n', [(N-l-n).h + l]. amo+l(n) . Xmo+1(n) <, 0 

(3.9) l i m s u p ^ Y [(N-l-n).h + l].amo+1(n).Xmo+i(n)^0. 
JV-co N n = n0+l 

From (3.8) and (3.9) immediately follows (3.6). 
In virtue of (3.6) and the boundeness of am(n) lim sup [A,„0+i(n) + a„,0 + 2(n)] = 

= — oo. Then from (3.5) immediately follows (3.7) for m = m0 + 2. 
Repeating the above procedure we can establish (3.7) for any m > m0 + 1. • 

3.3. Remark. As the set J of control parameter values is finite if for an arbitrary 
control a> ~ z„ EJ \pm*(X„; z„) = 0 for m = — 1, 0 , . . . , m0 — 1; n = 0 , 1 , . . . and 
EJ \pm*o(X„0; z„o) < 0 then there exists hmo < 0 such that for any n—0,1,... 
hmo. EJ iPT0 + i(Xn; z„) > Ef rml(X„, z„). Obviously, E'° ^'(Xn; z„) < Hm < oo. 
Setting am(«) = EJ i/C*6Y„; Z„) and choosing «0 such that E™ i/>mo(Z„; z„) = 0 for 
any n < n0, EJ \j/m*0(X„0; z„0) < 0 it can be easily seen that the values am(n) satisfy 
the assumptions of Lemma 3.2. 

The optimality properties of the control a>* (fulfilling conditions (2.1), (2.1')) are 
contained in the next lemma. 

3.4. Lemma. The control at* ~ z*(j) is l-order average reward optimal for 

I = 0 , 1 

Proof. In virtue of the recurrence formula obtained in Lemma 3.1 (compare 
(3.1)) we have for any control a> ~ z„ 

(3.10) lim i n f - i - [v\N\j; a>*) - v\N\j; oo)] = 
N-co N — I 



= - lim sup — — \v\N\j;co) - v\N\j;m*)] = - lim sup — — <P\N\j; co). 
JV-oo N — I JV-oo N — I 

As the values am(n) = EJ \l/m*(X„; z„) satisfy the assumptions of Lemma 3.2 (compare 
Remark 3.3) using the results of Lemma 3.2 (compare (3.5) and (3.2')) 

lim sup —^— <P\N\j; co) <. 0 . 
JV-oo N — / 

So for any control co ~ z„ and all j el 

(3.11) lim inf — — [v(»\j- ^ _ .,(«(,-; „ ) ] :> 0 
JV-oo AT - / 

and the control co* must be /-order average reward optimal for any I. • 

Now we are in a position to formulate the main result of this paragraph. 

3.5. Theorem. A control col ~ z,,„ is l-order average reward optimal (for I = 
= 0, 1, ...) if and only if the following conditions are fulfilled for any m = — 1, 0, 
1, . . . , / — 1 and any n = 0, 1, ... 

(3A2) E? W(X„; z,,„) = 0 

and 

(3.13) lim I £ Ef W\X„; zhn) = 0 . 
JV-oo iV n = 0 

Proof. Note (compare Remark 3.3) that for any control co ~ z„ and all j el 
am(n) = EJ ipm*(X„; z„) satisfy the assumptions of Lemma 3.2. 

1. Necessity. Let condition (3.12) not hold for certain m = m0 and n = n0 and 
let m0, n0 be chosen such that Ej' K*(X„l zi,n) — 0 for any n < n0 and 
Ej' tPm*(^,n zi,n) = 0 f ° r a n y n a r |d m < mo- Using the recurrence formula inferred 
in Lemma 3.1 we have 

(3A4) O f ««) - -H/ ; "•) = £/*<*» - £?<*» + <>(f°>.) • 

From Lemma 3.2 immediately follows for any m > m0 

(3.14') lim sup — — <P„N\j; co,) <. Ej< ̂ Z*0(X„0; z,,„0) < 0 . 
JV-OO N — m 

So from (3.14), (3.14') 

(3.15) lim inf—1— [v\N\j; co,) - v\N\j; co*)] < lim sup — i - *{*>(/; co,) < 0 
JV-oo jV — / JV-oo JV — / 



366 and the control col cannot be /-order average reward optimal. Under condition (3.12) 
recurrence formula (3.1) reads 

(3.16) v\N)(j; co) - v\N)(j; co*) = EfufXN - E?ufXri + * £ E? *f(Xtt; z,,„). 

n = 0 

As under condition (3.12) Ef ipf(Xn; z,,„) ^ 0 

, N - l 

lim sup - £ ET Vf(Xn; z , , ) | 0 
JV-oo JV n = 0 

and if (3+3) does not hold then from (3.16) 

(3A6') lim inf -±1. [v\N\j; cot) - v\N)(j; co*)] = 
JV-OO JV — I 

i N - l 

= lim inf - £ £<?' i/rf(X„; z,,„) < 0 
JV-oo JV n = 0 

and the control cot cannot be /-order average reward optimal. 

2. Sufficiency. Let conditions (3.12), (3.13) be fulfilled. Then from (3.1), (3.16) we 
obtain 

(3.17) lim - J - [v\N)(j; co,) - v\N)(j; co*)] = 0 . 
JV^oo JV — / 

But in Lemma 3.4 we have shown that cu* is /-order average reward optimal. So for 
an arbitrary control co ~ z„ and any j el, I = 0 , 1 , . . . 

(3.18) lim inf - J - [>« ( ; ; co*) - - f t y ; co)] = 0 . 
N^o; JV — / 

Combining (3.17), (3.18) we obtain 

(3.19) lim inf—?— [tf>(/; co() - v\N)(j; co)] ^ 0 . 

So any control co, fulfilling conditions (3.12), (3.13) must be /-order average reward 
optimal. • 

Comparing the necessary and sufficient optimality conditions for /-discount optimal 
and /-order average reward optimal controls we can derive the following theorem. 

3.6. Theorem. A control cot is l-order average reward optimal (for I = 0, 1, ...) 
if and only if it is (I — \)-discount optimal. 



Proof. The proof trivially follows from the results of Theorem 2.2 and Theorem 367 

3.5 and Corollary 2.3 (using Corollary 2.3 the necessary and sufficient optimality 

conditions are the same in both of the Theorems). • 

3.7. Remark. A partial form of Theorem 3.5 (for / = l) was obtained by Lippman 

[4] by a slightly different approach. Lippman's approach uses well known Abelian 

theorems and rests on the existence of 1-order average reward optimal control 

(called average overtaking optimal policy) established in [2] . 

(Received February 6, 1974.) 
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