
Kybernetika

Evžen Kindler
Generalization of pattern recognition method in experiment analysis

Kybernetika, Vol. 8 (1972), No. 5, (384)--394

Persistent URL: http://dml.cz/dmlcz/125704

Terms of use:
© Institute of Information Theory and Automation AS CR, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125704
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 5

Generalization of Pattern Recognition Method
in Experiment Analysis

EVZEN KlNDLER

A computer method is described for an automatic approximation of experimental data by
a sum of exponential functions one of which is negative and the other positive, under conditions
of their initial values (the value and the derivative for the argument equal to zero) and under
conditions that the exponential functions composing the sum are in their absolute values decreas
ing. The description of the corresponding method is given in SIMULA 67. The method has been
implemented and tested in the Biophysical Institute of Charles University at the computer
ODRA 1013 (programmed In a symbolic language).

1. FORMULATION OF THE PROBLEM

In the paper [l] a method has been presented which automatically approximates
a set of experimental data by a sum of positive exponential functions

(o m-itf*
where gt > 0 and /c; < 0 for all i, so that neither m nor any gt and kt are known
a priori. At one hand, that problem is a relatively easy one, because one can have
use of the fact that for t ^ 0 the function (l) and its second derivative are positive
while the first derivative is negative; at the other hand, that problem is a central one
in the class of exponential analysis applied in the research of behaviour of linear
systems. Namely in biophysics, nuclear medicine and radiology, which is the field
which has implied the method presented here both the method presented in [l] , the
function (l) characterizes the clearing of a substance which has been put into a studied
organism during a short moment (see [2], [3]).

Nevertheless the more detailed studying of components which compose the entier
system, described ordinarily by the function (1), leads to more complicated problems.
One of them is to approximate a set of experimental data by a positive sum of expo
nential functions so that in the initial time argument the first derivative is equal to

zero. Such a sum cannot be received by an algorithm published in [1], as then it 385

would be

(2) j'(0) = t 9ikt < 0 .
i = l

Generally, some components would have to be positive while the other (one or
more) negative. The non-computer-oriented investigators in the applying branches
usually express their wish to determine the sum — if possible — so that only one
component might be negative. This wish reflects the tendency of biomedical investi
gators to describe also the subsystems rather globally and uniformly.

Thus a problem has risen to determine a function

(3) f(t) = t 9^" + aek' > 0
i = l

which approximates a set of experimental data so that j(0) > 0 is exactly given,
/'(0) = 0, f'(t) < 0 for all I > 0, g-, > 0, kt < 0 for all i = 1, ..., m, k < 0, g < 0,
if neither g{ and g nor fc; and k are known, but also about m one knows only that
it is a positive integer.

2. ANALYSIS OF THE TARGET FUNCTION

The negative component of (3) is determined by the initial conditions:

t 9iki
І = I

(4) g=f(0)-Z9i, k =
i = l 9

because = J fl; + « and j'(0) = £ gtk, + gk.
i = l i = l

Similarly as in [1] we can suppose that fc, <| k2 -4 • • • -4 km < 0 because from the
commutativity of addition the ordering A', < k2 < ••• < km < 0 follows and if
some fc; were very near to ki+l, one could put (gt + gi + 1) . e

1"' instead of gfik>t +
+ a i + 1e'" + " and thus join the components not well distinguishable.

From the statements that f'(0) = 0 and j'(0) < 0 for all t > 0 a new statement
follows that there is number d > 0 so that for all t e (0, d) the second derivative
f"(t) is negative. Moreover: if we subtract one or more positive components fromj,
the new function will have in the same interval (0, d) its second derivative negative,
because the subtracted components have their second derivatives positive (i.e. gik

2
it

kit).

Let us define the function F(t) = In (j(t)). Its two derivatives are

(5) F ' - ~ and F" =f"}f~"^
Ѓ

The sign of F" is the same as the sign of j"j — j ' 2 ; evidently for t e (0, d) there is
F"(t) < 0. One cannot determine generally whether the last relation holds for all
positive t, as it will be illustrated in the appendix 1.

Finally, let us suppose that /(0) is not too small. It is a suitable statement as other
wise the recognition of the exact forms in experimental data would not have meaning.

For our purpose, we can express it as a hypothesis j(0) > £ # , (1 L) =
'=i V kJ

— ~\ gfii. As fc, < k2 < ... < km, a relation holds that 0 = Cj < c2 < ... < cm <
i = i

< 1, so thatj(O) must be greater than a sum of certain positive fractions of g2, ..., gm.
From this statement it follows:

(6) j>,(l -^)-/(°)<°.

£*{l---r)-Ao)
(7) i=L_V—h i < 0 ,

i - i kx

k,\ , . ™ ki fзifi-^V-дo) + Ьi
І = I V kj І = I (8) — ^ - — ^ < 1 ,

V ki

1-1 fct

(9) '--i í = 1 * ' --i k l < 1 ,
v ki L9t~

i = l fe,

< 1,
Z 9i-f(0)

(Ю)

Iř.f
І = I fe,

v ki

(11) Jžl í__ > 1 ,

Ž 0.-/(0)
І = I

- Ž ^ilc;
(12) > - * - ,

I 0.-/(0)
i = l

(13) - fc > - f c , ,

(14) fc < fc. .

Notes. The inverse relation (l l) can be formed from (10), because the left hand
term in (10) is not equal to zero; otherwise the whole target of the presented pattern
recognition method would not have meaning, as the only one negative components
would degenerate to zero. The transformation of (12) to (13) has been done according
to (4).

From the relation (14) a possibility follows that we can join fc to the ordered se
quence of all k{. fc < fcj < k2 < ••• < km < 0. This ordering enables to use the
"peeling" method, used already in [l] : an exponential function gfiki' with fcy < 0,
added to similar exponential function gfik" or to a sum of such exponential functions,
so that fc,- < kj, has the greatest influence to the sum for greater argument /, while
for smaller arguments it can be neglected. For the logarithm of such a sum it holds
that the values of it are nearer to a straight line with its first derivative equal kj for
arguments rather greater.

Let us mention that the formulation of the relation (6) is typical for heuristical
recognition of forms; that relation cannot be tested before the algorithm because
it needs the values determined during the algorithm run. The test whether the algo
rithm had recognized suitable forms is given only at its end: if fc < kt the relation
(6) has been satisfied and the results are suitable; if fc 2: fc, the function (3) determined
by the algorithm would not be a suitable approximation of the experimental data;
simultaneously, the relation fc >. kv is a signalization that the experimental data are
not a good material for the recognition of the forms to which the presented algorithm
has been designed. It would be the same situation as if an algorithm for recognizing
of flying patterns were applied in other fields or if an algorithm for reading manuscripts
in Latin letters were applied to read e.g. Arabian letters.

3. BASIC PRINCIPLES OF THE ALGORITHM

The mathematical properties mentioned in the preceding paragraph have given
the following principle of the algorithm:

3.1. A pair of straight lines is generated so that one of them approximates the
set of points obtained from the experimental data </l5 y\)>, ..., </„, y„> by transforma
tion In y'j —> y}, the other one approximates the same set of points with the exception
of the first one.

3.2. A certain game is performed between the straight lines (see below). If the
game is successful for the first line, that line is transfoimed to an exponential function
and fixed as a component of the target sum and its values are subtracted from the
experimental results.

3.3. If at least two results after the subtraction are positive the array of further
points for the algorithm run is dilated to the only pairs with positive yj and the algo-

rithm is iterated from the point 3.1. If one or no results are positive the negative
component is formed according to the formulas (4) and the run of the algorithm
is finished.

3.4. If in the game mentioned in point 3.2 the first straight line does not win the
point with minimal ^-coordinate is released from the consideration and the game is
repeated.

The game is a net of much aspects (see its exact description in the following para
graph) but its main principle is that the first straight line must have at least once
its first derivative less than that of the second straight line and at least one must then
hold an inverse relation between both the derivatives.

The determination of the straight line is performed according to the same formulas
as in the method [1] (see there the paragraph 3, page 204).

The operator can influence manually the game from the terminal and he can let
print the information about the algorithm run. He does it by the same buttons as
in [l] (paragraph 4.1, page 204 and 205). The function of the buttons is the same
as there mentioned. Also the form of input data is the same as in [l] (paragraph 4.2,
page 205 and 206), including an eventual input of gh kt which are known before the
algorithm run. After the printing of results one can manually modify the results
by the same way as in [l] , paragraph 4.2, page 206.

4. EXACT DESCRIPTION OF THE ALGORITHM

The algorithm is described in the same language SIMULA 67 [4] which has been
used for the description of its predecessor in [l] . The reasons are the same, i.e. that
language has suitable facilities for describing quasiparallel systems which are really
formed during the algorithm run. Moreover, the reader can compare both the algo
rithms because in the present paper only the necessary modification of the algorithm
presented in [l] have been done. All which is common for both the algorithms is
written by equivalent SIMULA texts in both the papers. Nevertheless there is a lot
of differences between both the algorithms so that it would not be readable to mention
here only the modifications of the SIMULA text regarding to that or [l] . Special
procedures for inputs, prints and buttons which have not been built into [4] have the
same semantics as described in [l] , paragraph 5, pages 209 and 210.

SIMSET begin
link class pair; begin real lower, upper; end;
set class sequence;
begin
ref (link) procedure order (n); value n; integer n;
begin integer i; ref (link) X; X: = first;

for i: = 2 step 1 until n do X : = X. sue;
order := X

end order;

real procedure func (z, b); value z, 6; real z; boolean b; 389
if empty then /««c : = 0 else
begin ref (link) X; real Y; Y\= 0;

for X : = if b then ./frst else progress, last,
X. sue while Jf 4= none do
Y\= Y + X. lower x exp (X. upper x z);

func:= Y\
end;

end sequence;

ref (sequence) A, B, C, R; ref (pair) P, Q, NEG; ref (criterion) progress;
switch £: = constant step, variable step, data inside, known components, results, new action,

derivative;
real .v, y, der; integer K;
pair class component;
begin detach; G \K\= K + 1\
if abs (I -- C . orrfer (K)). upper < bound go to G\
begin real R, S, T, U, V\ R\= S\= T\= U \= V := 0;

for Q \ = C . order (K), Q . sue while Q + none do
if Q . upper > bound then begin

y : = Ijln (Q . upper); T: = T + 1; S : = S + Q . lower; V: = V + y,
R:= R + Q. lower X y\ U\= U + Q . lower f 2 x y end;

v : = R t 2 — (7 X V; if R = 0 v y = 0 then go to O;
wp/>er : = (r X JV — V X S)/>s bieer : = exp ((5 — t/ X upper)JR)\
if button (3) then begin

Printline (from); print (K)\ text (to); print (C . cardinal);
if button (2) then begin print (lower); print (upper) end

end;
if button (1) then display (false);
E : resume (progress); go to G;
D \ Printline (I have no exact values for the further approximation);
lower ;= prec . lower; upper \ = prec . upper, go to £

end
end component;

boolean procedure button (n); value n; integer n;
begin <see the explications in the text of this paper) end;
procedure graph (b); boolean b;
begin ncwline; texliter (if b then <fc = > else < — > , 65);

R \ = if 6 then A else C; y : = 60/R . first. upper,
for P : = R . first, P . sue while P + none do cycle:
begin newline; printspace (abc (entier (P . upper X y)))\
if b then text (*) else text (+); carriage return;
printspace (abs (entier (B .func (P . lower, b) X y)));
if b then text (•) else text (0) end cyc/e;

end graph;

procedure tabulate (b); value 6; boolean 6;
begin newline; R : = if b then /i else C;

for P \= R . first, P . sue while P + none do cycle:
begin real z; newline; print (P . upper);
z \ = S . /itfic (P . lower, b)\ print (z); print (P . upper — z)\ end cycle

end tabulate;

procedure display (b); value b; boolean b;
begin if button (9) then graph (b);

if button (10) then tabulate (b);
end display;
set class criterion;
begin procedure inform;

begin if button (5) then begin Printline
(new fixed component:);
print (first . lower); print (first . upper) end;
display (true)

end inform;
detach;
new component . into (this set);
E: if C . cardinal £ K + 1 then rra«///<? (this SIMSET);
M: new component. into (this jer); S: resume (last);
PR EG A ME: go to if C . cardinal •£ K + I then £ else S;
if /or/. upper < first. upper then

if button (6) then go to black else begin resume (last); go to PREGAME end;

Gy.M£:
go to if first. upper < last . upper A last . upper < 0 then black else white;
white: if o«?/on (4) then

if /?«•/ . upper = last . upper then Printline
(put out button 4)

else begin Printline
(I want to prolongate due to button 4);

go to black end;
inform; if button (4) then go to black;

fix: for P : = C • first, P . sue while P +- none do

P . upper : = P . upper — /?/\s/ . /onvr X exp (first . upper X P . lower);
first. into (B); if button (8) then
begin E: inspect C . order (K) when link do
begin o«J; go to E end;
£: inspect C . /o.s/ when //«/: do if upper < bound

then begin out; go to F end
otherwise ra«me (this SIMSET);
inspect C . to/. pred when ///iA do if upper < bound then
begin out; C. last, out; go to F end
otherwise resume (this SIMSET)

end button 8;
K:=0;%otoM;

black: if button (6) then begin Printline
(I want to fix due to button 6); go to/?x end;
if C . cardinal <i K + 1 then
begin if button (4) then Printline

(/ cannot reflect the button 4); Printline
(the input curve is too short); go to fix

end;
first. lower : = last. lower; first. upper : — last. upper;
resume (last); go to GAME;

disturb: Printline 391
(/ try to fix the approximation from);
input (K); K: = K- I;

new component. into (this set); new component . into (this j'<?/);
resume (first);
last. upper : = /irs/ . upper; last . lower : = first . lower;
go to if button (6) then black else 5
end criterion;
A : = new sequence; B : = new sequence; C : — new sequence; der : = 0;
constant step : read (y);
for x : — 0, x + y while A is sequence do
begin />: = new pair; P . lower : = x; read (P . upper); Q : = new pair; Q . lower := P . lower;

Q . upper := P . upper; P . into (A); Q . into (C)
end;
derivative: read (der); go to constant step;
variable step: P := new pair; read (P . lower); read (P . upper);
Q : = new pair; Q . lower : = P . lower; Q . upper : = P . upper;
P. into (A); Q . into (C); go to variable step;
known components: P :— new pair;
read (P . lower); read (P . upper); P . into (B);
for Q : = C . first, Q . sue while Q 4= none do

Q . upper : = Q . upper — P . lower X exp (P . upper X Q . lower);
go to known components;
data inside: K : = 1;

• analyzer: progress := new criterion; resume (progress);
if last . upper > 0 then Printline

(no more better results);
if button (7) then stop;
results: x := A .first . lower; y := der; inspect B when sequence do
begin for P : = first, P . sac while P #= none do

begin newline; print (P . lower); print (P . upper);
x : == x — P . lower; y : = v — P . lower X P . upper

end;
NEG . lower : = .v; NEG . upper : = yjx; NEG . into (B); display (true) end:
NEG . out; stop;
begin comment: the following statements permit eventual modification of the results;
M: input (K); inspect B when sequence do

begin if K = 0 then
begin new pair . into (B); K : = cardinal end;
input (order (K) . lower); input (order (K) . upper); go to M end

end of modifications;
new action: P':— C . first;
for Q : = A . first, Q . sue while Q =t= none do

begin P . upper : = Q . upper — func (Q . lower, true); P : — P . sue end;
K :—• 0; go to analyzer
end program;

Note. The presented algorithm has been programmed in a machine dependent
symbolic language for the same small drum-memory computer ODRA 1013, as the
algorithm presented in [l] (see [5], [6]). The duration of all the programmed algo-

rithm runs have been very approximately to n minutes if n input data have been
processed. If we have use of the computer small core memory (256 words) the runs
have given the results always in one minute (prints excluded, as they can prolongate
the computation dependency on the button-formulated demands of the user).
Similarly as in [l] , the size of the quasi-constant bound, empirically determined as
10" '8 , has given suitable results.

APPENDIX 1

In the paragraph 2 the course of the function F has been partially studied (see the
equations (5)). It has been proved the -e that there is a positive d so that for all t e (0, d)
the second derivative of F is negative.

(i) The statement that there exists a function F so that its second derivative is
negative for all positive t is a consequence of the following theorem:

If m = 1 then the second derivative of F is negative always if k + kxand naturally
if g < 0, g{ > 0 and the function f has the course defined at the end of paragraph 1.

Proof. Let us write without indices E(i) = ln(oek t + hect) where k, c, h < 0
and g > 0. Naturally gekt + hect must be positive for all t > 0; this is satisfied if
k > c and g > —h. Then it holds

sgn (E") = sgn (gk2ekt + hc2ect) (gekt + hect) - (gkekt - hcect)2

the left hand side can be algebraically modified by the following way:

g2k2e2kt + ghk2e(k + c)t + ghc2e(k+c)t + h2c2e2ct - g2k2e2kt - 2ghcke(k + c)t -

- c2h2e2ct

which is equal to

e(k+c)t. gh(k - c)2 .

The last expression is negative while the factor h is negative and all the other factors
are positive.

(ii) The statement that there is a pattern of the function E so that its second deriva
tive is positive for a certain value t0 > 0 can be proved: we present an example of a
function E so that E" is positive for all t greater than certain t; the example of such
a function E is

F(t) = In/(f) where f(t) = e" f + e~2t - e - 3 f .

The function satisfies all the necessary properties formulated in the paragraph 1.
Namely:

E(0) = I , f'(0) = 0 and f(t) > 0 for all t £ 0 .

Moreover, f'(t) < 0 for all t > 0 because /'(*) = - e - ' - 2e 2t + 3e 3f =
= - e - ' + e

- 3 ' - 2 e - 2 ' + 2 e - 3 ' = - e (l - e"2 ') - 2e(l - e - t) and for t > 0
both 1 - e - 2 ' and 1 - e - f are positive.

sgn(E"(r)) = sgn(r (0 . j (t) - j ' 2 (t)) =

= sgn [(e - f + 4 e - 2 ' - 9e - 3 ') (e - ' + e - 2 ' - e - 3 ') - (e - ' + 2 e - 2 ' - 3e - 3 ') 2] =

= sgn (e - 2 f + e - 3 f - e - 4 f + 4e - 3 f + 4e - 4 f - 4e - 5 f - 9e - 4 f - 9e - 5 f + 9e - 6 f -

- e - 2 ' - 4 e - 4 ' - 9 e - 6 ' - 4 e - 3 ' + 6e" 4 ' + 12e-5 ') = s g n (e - 3 ' - 4 e - 4 ' - e - 5 ') .

The argument of the sgn can be written as a product of a positive factor e - 3 ' with
a factor 1 — 4 e - ' — e - 2 ' . The last factor is positive for t ^ 3 because then

1 _ 4 e - f - 2 e - 2 ' ^ l - - 4 - - I > l - 4 - - L = l - l > 0 .
e3 e6 8 64 2 64

APPENDIX 2

We have got the statement that there is a positive d so that for all t e (0, d) the
second derivative of F is negative, from the other properties of the function/, namely
from the statement that j'(0) = 0. We can generalize the described algorithm so
that it is valid for all the functions / of given form but independently on their value
/ ' (0) so that the natural logarithm of j must have its second derivative positive for t
from a certain non-empty interval (0, d). This property need not be immediately
tested at the beginning of the algorithm run but it is tested at the end by the quality
of the approximation. For this reason the algorithm has been generalized so that
before or after all the data the value of the derivation of the target function for
t = 0 can be read, preceded by the signal 7 followed by the mark (compare with the
paragraph 4.2 in [l]) . If the value is not read it is automatically assigned as zero.
This facility is completely reflected in the SIMULA text in the paragraph 4: the
switch by the sentinel 7 is reflected in the switch declaration of the identifier L by the
identifier derivative. This label performs that the value prepared in the input unit is
assigned for the identifier der which has been before that action assigned by zero.

(Received August 10, 1971.)

REFERENCES

[1] E. Kindler: Simple use of pattern recognition in expsriment analysis. Kybernetika 5, (1969)
3 , 2 0 1 - 2 1 1 .

[2] A. Rescigno, G. Segre: La cinetica dei farmaci e dei traccianti radioattivi. Edizioni universi-
tarie, Boringheri, Torino 1961.

[31 C. W. Sheppard: Basic principles of the tracer method. Introduction to mathematical tracer
kinetics. J. Wiley & Son, N. York- London 1962.

[4] O.-J. Dahl, K. Nygaard: SIMULA 67 common base definition. Norwegian computing centre.
Oslo 1967.

[5] Automatic computer ODRA 1013 — General description (in Czech). Kancelářské stroje,
n. p., Hradec Králové 1966.

[6] V. Černý, J. Pйr: Programmers manual on automatic computer ODRA 1013 (in Czech).

Kancelářské stroje, n. p., Hradec Králové 1967.

Zobecnění metody rozpoznávání forem v analýze pokusů

EVŽEN KINDLER

V práci je popsána metoda pro strojové proložení součtu exponenciálních funkcí
naměřenými hodnotami, jsou-li požadovány předem tyto vlastnosti: jeden člen součtu
exponenciel musí být záporný, ostatní kladné, všechny členy musí být v absolutní
hodnotě klesající funkce, proložený součet musí probíhat naměřenou hodnotou pro
argument rovný nule a pro tentýž argument musí mít proložený součet danou hod
notu derivace. Metoda je jistým zobecněním metody použité při řešení jednoduššího
problému v [1].

PhDr. RNDr. Evžen Kindler, CSc, Biofysikálni ústav fakulty všeobecného lékařství Karlovy
university (Biophysical Institute, Charles University), Salmovská 3, Praha 2.

		webmaster@dml.cz
	2012-06-04T22:29:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

