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K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 5 

Generalization of Pattern Recognition Method 
in Experiment Analysis 

EVZEN KlNDLER 

A computer method is described for an automatic approximation of experimental data by 
a sum of exponential functions one of which is negative and the other positive, under conditions 
of their initial values (the value and the derivative for the argument equal to zero) and under 
conditions that the exponential functions composing the sum are in their absolute values decreas
ing. The description of the corresponding method is given in SIMULA 67. The method has been 
implemented and tested in the Biophysical Institute of Charles University at the computer 
ODRA 1013 (programmed In a symbolic language). 

1. FORMULATION OF THE PROBLEM 

In the paper [ l ] a method has been presented which automatically approximates 
a set of experimental data by a sum of positive exponential functions 

(o m-itf* 
where gt > 0 and /c; < 0 for all i, so that neither m nor any gt and kt are known 
a priori. At one hand, that problem is a relatively easy one, because one can have 
use of the fact that for t ^ 0 the function (l) and its second derivative are positive 
while the first derivative is negative; at the other hand, that problem is a central one 
in the class of exponential analysis applied in the research of behaviour of linear 
systems. Namely in biophysics, nuclear medicine and radiology, which is the field 
which has implied the method presented here both the method presented in [ l ] , the 
function (l) characterizes the clearing of a substance which has been put into a studied 
organism during a short moment (see [2], [3]). 

Nevertheless the more detailed studying of components which compose the entier 
system, described ordinarily by the function (1), leads to more complicated problems. 
One of them is to approximate a set of experimental data by a positive sum of expo
nential functions so that in the initial time argument the first derivative is equal to 



zero. Such a sum cannot be received by an algorithm published in [1], as then it 385 

would be 

(2) j'(0) = t 9ikt < 0 . 
i = l 

Generally, some components would have to be positive while the other (one or 
more) negative. The non-computer-oriented investigators in the applying branches 
usually express their wish to determine the sum — if possible — so that only one 
component might be negative. This wish reflects the tendency of biomedical investi
gators to describe also the subsystems rather globally and uniformly. 

Thus a problem has risen to determine a function 

(3) f(t) = t 9^" + aek' > 0 
i = l 

which approximates a set of experimental data so that j(0) > 0 is exactly given, 
/'(0) = 0, f'(t) < 0 for all I > 0, g-, > 0, kt < 0 for all i = 1, ..., m, k < 0, g < 0, 
if neither g{ and g nor fc; and k are known, but also about m one knows only that 
it is a positive integer. 

2. ANALYSIS OF THE TARGET FUNCTION 

The negative component of (3) is determined by the initial conditions: 

t 9iki 
І = I 

( 4 ) g=f(0)-Z9i, k = 
i = l 9 

because = J fl; + « and j'(0) = £ gtk, + gk. 
i = l i = l 

Similarly as in [1] we can suppose that fc, <| k2 -4 • • • -4 km < 0 because from the 
commutativity of addition the ordering A', < k2 < ••• < km < 0 follows and if 
some fc; were very near to ki+l, one could put (gt + gi + 1) . e

1"' instead of gfik>t + 
+ a i + 1e'" + " and thus join the components not well distinguishable. 

From the statements that f'(0) = 0 and j'(0) < 0 for all t > 0 a new statement 
follows that there is number d > 0 so that for all t e (0, d) the second derivative 
f"(t) is negative. Moreover: if we subtract one or more positive components fromj, 
the new function will have in the same interval (0, d) its second derivative negative, 
because the subtracted components have their second derivatives positive (i.e. gik

2
it

kit). 

Let us define the function F(t) = In (j(t)). Its two derivatives are 

(5) F ' - ~ and F" =f"}f~"^ 
Ѓ 



The sign of F" is the same as the sign of j"j — j ' 2 ; evidently for t e (0, d) there is 
F"(t) < 0. One cannot determine generally whether the last relation holds for all 
positive t, as it will be illustrated in the appendix 1. 

Finally, let us suppose that /(0) is not too small. It is a suitable statement as other
wise the recognition of the exact forms in experimental data would not have meaning. 

For our purpose, we can express it as a hypothesis j(0) > £ # , (1 L ) = 
'=i V kJ 

— ~\ gfii. As fc, < k2 < ... < km, a relation holds that 0 = Cj < c2 < ... < cm < 
i = i 

< 1, so thatj(O) must be greater than a sum of certain positive fractions of g2, ..., gm. 
From this statement it follows: 

(6) j>,(l -^)-/(°)<°. 

£*{l---r)-Ao) 
(7) i=L_V—h i < 0 , 

i - i kx 

k,\ , . ™ ki fзifi-^V-дo) + Ьi 
І = I V kj І = I (8) — ^ - — ^ < 1 , 

V ki 

1-1 fct 

(9) '--i í = 1 * ' --i k l < 1 , 
v ki L9t~ 

i = l fe, 

< 1, 
Z 9i-f(0) 

(Ю) 

Iř.f 
І = I fe, 

v ki 

(11) Jžl í__ > 1 , 

Ž 0.-/(0) 
І = I 

- Ž ^ilc; 
(12) > - * - , 

I 0.-/(0) 
i = l 



(13) - fc > - f c , , 

(14) fc < fc. . 

Notes. The inverse relation ( l l ) can be formed from (10), because the left hand 
term in (10) is not equal to zero; otherwise the whole target of the presented pattern 
recognition method would not have meaning, as the only one negative components 
would degenerate to zero. The transformation of (12) to (13) has been done according 
to (4). 

From the relation (14) a possibility follows that we can join fc to the ordered se
quence of all k{. fc < fcj < k2 < ••• < km < 0. This ordering enables to use the 
"peeling" method, used already in [ l ] : an exponential function gfiki' with fcy < 0, 
added to similar exponential function gfik" or to a sum of such exponential functions, 
so that fc,- < kj, has the greatest influence to the sum for greater argument /, while 
for smaller arguments it can be neglected. For the logarithm of such a sum it holds 
that the values of it are nearer to a straight line with its first derivative equal kj for 
arguments rather greater. 

Let us mention that the formulation of the relation (6) is typical for heuristical 
recognition of forms; that relation cannot be tested before the algorithm because 
it needs the values determined during the algorithm run. The test whether the algo
rithm had recognized suitable forms is given only at its end: if fc < kt the relation 
(6) has been satisfied and the results are suitable; if fc 2: fc, the function (3) determined 
by the algorithm would not be a suitable approximation of the experimental data; 
simultaneously, the relation fc >. kv is a signalization that the experimental data are 
not a good material for the recognition of the forms to which the presented algorithm 
has been designed. It would be the same situation as if an algorithm for recognizing 
of flying patterns were applied in other fields or if an algorithm for reading manuscripts 
in Latin letters were applied to read e.g. Arabian letters. 

3. BASIC PRINCIPLES OF THE ALGORITHM 

The mathematical properties mentioned in the preceding paragraph have given 
the following principle of the algorithm: 

3.1. A pair of straight lines is generated so that one of them approximates the 
set of points obtained from the experimental data </l5 y\)>, ..., </„, y„> by transforma
tion In y'j —> y}, the other one approximates the same set of points with the exception 
of the first one. 

3.2. A certain game is performed between the straight lines (see below). If the 
game is successful for the first line, that line is transfoimed to an exponential function 
and fixed as a component of the target sum and its values are subtracted from the 
experimental results. 

3.3. If at least two results after the subtraction are positive the array of further 
points for the algorithm run is dilated to the only pairs with positive yj and the algo-



rithm is iterated from the point 3.1. If one or no results are positive the negative 
component is formed according to the formulas (4) and the run of the algorithm 
is finished. 

3.4. If in the game mentioned in point 3.2 the first straight line does not win the 
point with minimal ^-coordinate is released from the consideration and the game is 
repeated. 

The game is a net of much aspects (see its exact description in the following para
graph) but its main principle is that the first straight line must have at least once 
its first derivative less than that of the second straight line and at least one must then 
hold an inverse relation between both the derivatives. 

The determination of the straight line is performed according to the same formulas 
as in the method [1] (see there the paragraph 3, page 204). 

The operator can influence manually the game from the terminal and he can let 
print the information about the algorithm run. He does it by the same buttons as 
in [ l ] (paragraph 4.1, page 204 and 205). The function of the buttons is the same 
as there mentioned. Also the form of input data is the same as in [ l ] (paragraph 4.2, 
page 205 and 206), including an eventual input of gh kt which are known before the 
algorithm run. After the printing of results one can manually modify the results 
by the same way as in [ l ] , paragraph 4.2, page 206. 

4. EXACT DESCRIPTION OF THE ALGORITHM 

The algorithm is described in the same language SIMULA 67 [4] which has been 
used for the description of its predecessor in [ l ] . The reasons are the same, i.e. that 
language has suitable facilities for describing quasiparallel systems which are really 
formed during the algorithm run. Moreover, the reader can compare both the algo
rithms because in the present paper only the necessary modification of the algorithm 
presented in [ l ] have been done. All which is common for both the algorithms is 
written by equivalent SIMULA texts in both the papers. Nevertheless there is a lot 
of differences between both the algorithms so that it would not be readable to mention 
here only the modifications of the SIMULA text regarding to that or [ l ] . Special 
procedures for inputs, prints and buttons which have not been built into [4] have the 
same semantics as described in [ l ] , paragraph 5, pages 209 and 210. 

SIMSET begin 
link class pair; begin real lower, upper; end; 
set class sequence; 
begin 
ref (link) procedure order (n); value n; integer n; 
begin integer i; ref (link) X; X: = first; 

for i: = 2 step 1 until n do X : = X. sue; 
order := X 

end order; 



real procedure func (z, b); value z, 6; real z; boolean b; 389 
if empty then /««c : = 0 else 
begin ref (link) X; real Y; Y\= 0; 

for X : = if b then ./frst else progress, last, 
X. sue while Jf 4= none do 
Y\= Y + X. lower x exp (X. upper x z); 

func:= Y\ 
end; 

end sequence; 

ref (sequence) A, B, C, R; ref (pair) P, Q, NEG; ref (criterion) progress; 
switch £: = constant step, variable step, data inside, known components, results, new action, 

derivative; 
real .v, y, der; integer K; 
pair class component; 
begin detach; G \K\= K + 1\ 
if abs (I -- C . orrfer (K)). upper < bound go to G\ 
begin real R, S, T, U, V\ R\= S\= T\= U \= V := 0; 

for Q \ = C . order (K), Q . sue while Q + none do 
if Q . upper > bound then begin 

y : = Ijln (Q . upper); T: = T + 1; S : = S + Q . lower; V: = V + y, 
R:= R + Q. lower X y\ U\= U + Q . lower f 2 x y end; 

v : = R t 2 — (7 X V; if R = 0 v y = 0 then go to O; 
wp/>er : = ( r X JV — V X S)/>s bieer : = exp ((5 — t/ X upper)JR)\ 
if button (3) then begin 

Printline (from); print (K)\ text (to); print (C . cardinal); 
if button (2) then begin print (lower); print (upper) end 

end; 
if button (1) then display (false); 
E : resume (progress); go to G; 
D \ Printline (I have no exact values for the further approximation); 
lower ;= prec . lower; upper \ = prec . upper, go to £ 

end 
end component; 

boolean procedure button (n); value n; integer n; 
begin <see the explications in the text of this paper) end; 
procedure graph (b); boolean b; 
begin ncwline; texliter (if b then <fc = > else < — > , 65); 

R \ = if 6 then A else C; y : = 60/R . first. upper, 
for P : = R . first, P . sue while P + none do cycle: 
begin newline; printspace (abc (entier (P . upper X y)))\ 
if b then text (*) else text ( + ); carriage return; 
printspace (abs (entier (B .func (P . lower, b) X y))); 
if b then text ( • ) else text (0) end cyc/e; 

end graph; 

procedure tabulate (b); value 6; boolean 6; 
begin newline; R : = if b then /i else C; 

for P \= R . first, P . sue while P + none do cycle: 
begin real z; newline; print (P . upper); 
z \ = S . /itfic (P . lower, b)\ print (z); print (P . upper — z)\ end cycle 

end tabulate; 



procedure display (b); value b; boolean b; 
begin if button (9) then graph (b); 

if button (10) then tabulate (b); 
end display; 
set class criterion; 
begin procedure inform; 

begin if button (5) then begin Printline 
(new fixed component:); 
print (first . lower); print (first . upper) end; 
display (true) 

end inform; 
detach; 
new component . into (this set); 
E: if C . cardinal £ K + 1 then rra«///<? (this SIMSET); 
M: new component. into (this jer); S: resume (last); 
PR EG A ME: go to if C . cardinal •£ K + I then £ else S; 
if /or/. upper < first. upper then 

if button (6) then go to black else begin resume (last); go to PREGAME end; 

Gy.M£: 
go to if first. upper < last . upper A last . upper < 0 then black else white; 
white: if o«?/on (4) then 

if /?«•/ . upper = last . upper then Printline 
(put out button 4) 

else begin Printline 
(I want to prolongate due to button 4); 

go to black end; 
inform; if button (4) then go to black; 

fix: for P : = C • first, P . sue while P +- none do 

P . upper : = P . upper — /?/\s/ . /onvr X exp (first . upper X P . lower); 
first. into (B); if button (8) then 
begin E: inspect C . order (K) when link do 
begin o«J; go to E end; 
£: inspect C . /o.s/ when //«/: do if upper < bound 

then begin out; go to F end 
otherwise ra«me (this SIMSET); 
inspect C . to/. pred when ///iA do if upper < bound then 
begin out; C. last, out; go to F end 
otherwise resume (this SIMSET) 

end button 8; 
K:=0;%otoM; 

black: if button (6) then begin Printline 
(I want to fix due to button 6); go to/?x end; 
if C . cardinal <i K + 1 then 
begin if button (4) then Printline 

(/ cannot reflect the button 4); Printline 
(the input curve is too short); go to fix 

end; 
first. lower : = last. lower; first. upper : — last. upper; 
resume (last); go to GAME; 



disturb: Printline 391 
(/ try to fix the approximation from); 
input (K); K: = K- I; 

new component. into (this set); new component . into (this j'<?/); 
resume (first); 
last. upper : = /irs/ . upper; last . lower : = first . lower; 
go to if button (6) then black else 5 
end criterion; 
A : = new sequence; B : = new sequence; C : — new sequence; der : = 0; 
constant step : read (y); 
for x : — 0, x + y while A is sequence do 
begin />: = new pair; P . lower : = x; read (P . upper); Q : = new pair; Q . lower := P . lower; 

Q . upper := P . upper; P . into (A); Q . into (C) 
end; 
derivative: read (der); go to constant step; 
variable step: P := new pair; read (P . lower); read (P . upper); 
Q : = new pair; Q . lower : = P . lower; Q . upper : = P . upper; 
P. into (A); Q . into (C); go to variable step; 
known components: P :— new pair; 
read (P . lower); read (P . upper); P . into (B); 
for Q : = C . first, Q . sue while Q 4= none do 

Q . upper : = Q . upper — P . lower X exp (P . upper X Q . lower); 
go to known components; 
data inside: K : = 1; 

• analyzer: progress := new criterion; resume (progress); 
if last . upper > 0 then Printline 

(no more better results); 
if button (7) then stop; 
results: x := A .first . lower; y := der; inspect B when sequence do 
begin for P : = first, P . sac while P #= none do 

begin newline; print (P . lower); print (P . upper); 
x : == x — P . lower; y : = v — P . lower X P . upper 

end; 
NEG . lower : = .v; NEG . upper : = yjx; NEG . into (B); display (true) end: 
NEG . out; stop; 
begin comment: the following statements permit eventual modification of the results; 
M: input (K); inspect B when sequence do 

begin if K = 0 then 
begin new pair . into (B); K : = cardinal end; 
input (order (K) . lower); input (order (K) . upper); go to M end 

end of modifications; 
new action: P':— C . first; 
for Q : = A . first, Q . sue while Q =t= none do 

begin P . upper : = Q . upper — func (Q . lower, true); P : — P . sue end; 
K :—• 0; go to analyzer 
end program; 

Note. The presented algorithm has been programmed in a machine dependent 
symbolic language for the same small drum-memory computer ODRA 1013, as the 
algorithm presented in [ l ] (see [5], [6]). The duration of all the programmed algo-



rithm runs have been very approximately to n minutes if n input data have been 
processed. If we have use of the computer small core memory (256 words) the runs 
have given the results always in one minute (prints excluded, as they can prolongate 
the computation dependency on the button-formulated demands of the user). 
Similarly as in [ l ] , the size of the quasi-constant bound, empirically determined as 
10" '8 , has given suitable results. 

APPENDIX 1 

In the paragraph 2 the course of the function F has been partially studied (see the 
equations (5)). It has been proved the -e that there is a positive d so that for all t e (0, d) 
the second derivative of F is negative. 

(i) The statement that there exists a function F so that its second derivative is 
negative for all positive t is a consequence of the following theorem: 

If m = 1 then the second derivative of F is negative always if k + kxand naturally 
if g < 0, g{ > 0 and the function f has the course defined at the end of paragraph 1. 

Proof. Let us write without indices E(i) = ln(oek t + hect) where k, c, h < 0 
and g > 0. Naturally gekt + hect must be positive for all t > 0; this is satisfied if 
k > c and g > —h. Then it holds 

sgn (E") = sgn (gk2ekt + hc2ect) (gekt + hect) - (gkekt - hcect)2 

the left hand side can be algebraically modified by the following way: 

g2k2e2kt + ghk2e(k + c)t + ghc2e(k+c)t + h2c2e2ct - g2k2e2kt - 2ghcke(k + c)t -

- c2h2e2ct 

which is equal to 

e(k+c)t. gh(k - c)2 . 

The last expression is negative while the factor h is negative and all the other factors 
are positive. 

(ii) The statement that there is a pattern of the function E so that its second deriva
tive is positive for a certain value t0 > 0 can be proved: we present an example of a 
function E so that E" is positive for all t greater than certain t; the example of such 
a function E is 

F(t) = In/(f) where f(t) = e" f + e~2t - e - 3 f . 

The function satisfies all the necessary properties formulated in the paragraph 1. 
Namely: 

E(0) = I , f'(0) = 0 and f(t) > 0 for all t £ 0 . 



Moreover, f'(t) < 0 for all t > 0 because /'(*) = - e - ' - 2e 2t + 3e 3f = 
= - e - ' + e

- 3 ' - 2 e - 2 ' + 2 e - 3 ' = - e ( l - e"2 ') - 2e(l - e - t ) and for t > 0 
both 1 - e - 2 ' and 1 - e - f are positive. 

sgn(E"(r)) = sgn(r (0 . j ( t ) - j ' 2 ( t ) ) = 

= sgn [ (e - f + 4 e - 2 ' - 9e - 3 ' ) ( e - ' + e - 2 ' - e - 3 ' ) - ( e - ' + 2 e - 2 ' - 3e - 3 ' ) 2 ] = 

= sgn (e - 2 f + e - 3 f - e - 4 f + 4e - 3 f + 4e - 4 f - 4e - 5 f - 9e - 4 f - 9e - 5 f + 9e - 6 f -

- e - 2 ' - 4 e - 4 ' - 9 e - 6 ' - 4 e - 3 ' + 6e" 4 ' + 12e-5 ') = s g n ( e - 3 ' - 4 e - 4 ' - e - 5 ' ) . 

The argument of the sgn can be written as a product of a positive factor e - 3 ' with 
a factor 1 — 4 e - ' — e - 2 ' . The last factor is positive for t ^ 3 because then 

1 _ 4 e - f - 2 e - 2 ' ^ l - - 4 - - I > l - 4 - - L = l - l > 0 . 
e3 e6 8 64 2 64 

APPENDIX 2 

We have got the statement that there is a positive d so that for all t e (0, d) the 
second derivative of F is negative, from the other properties of the function/, namely 
from the statement that j'(0) = 0. We can generalize the described algorithm so 
that it is valid for all the functions / of given form but independently on their value 
/ ' (0) so that the natural logarithm of j must have its second derivative positive for t 
from a certain non-empty interval (0, d). This property need not be immediately 
tested at the beginning of the algorithm run but it is tested at the end by the quality 
of the approximation. For this reason the algorithm has been generalized so that 
before or after all the data the value of the derivation of the target function for 
t = 0 can be read, preceded by the signal 7 followed by the mark (compare with the 
paragraph 4.2 in [ l ] ) . If the value is not read it is automatically assigned as zero. 
This facility is completely reflected in the SIMULA text in the paragraph 4: the 
switch by the sentinel 7 is reflected in the switch declaration of the identifier L by the 
identifier derivative. This label performs that the value prepared in the input unit is 
assigned for the identifier der which has been before that action assigned by zero. 

(Received August 10, 1971.) 
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Zobecnění metody rozpoznávání forem v analýze pokusů 

EVŽEN KINDLER 

V práci je popsána metoda pro strojové proložení součtu exponenciálních funkcí 
naměřenými hodnotami, jsou-li požadovány předem tyto vlastnosti: jeden člen součtu 
exponenciel musí být záporný, ostatní kladné, všechny členy musí být v absolutní 
hodnotě klesající funkce, proložený součet musí probíhat naměřenou hodnotou pro 
argument rovný nule a pro tentýž argument musí mít proložený součet danou hod
notu derivace. Metoda je jistým zobecněním metody použité při řešení jednoduššího 
problému v [1]. 

PhDr. RNDr. Evžen Kindler, CSc, Biofysikálni ústav fakulty všeobecného lékařství Karlovy 
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