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KYBERNETIKA — VOLUME 11 (197 5), NUMBER 6 

New Algorithm for Polynomial Spectral 
Factorization with Quadratic Convergence I 

ZDENEK VOSTRY 

The whole paper is divided into two parts appearing separately. In part I and II new efficient 
algorithms are derived for the numerical spectral factorization of polynomials arising in discrete 
and continuous optimality problems, respectively. 

INTRODUCTION 

If we are given a function a(Q = b(C') 6(C), where 6(C) = 60 + 6,£ + ... + bk{
k 

and b0bk + 0 without any loss of generality then the spectral factorization of a(C), 
fl(C) = a0 + fli(C + C_1) + ••• + «fc(Cfc + C~*), is defined as a polynomial cp(Q if 

(1) 9(r%)(p(0 = «(C) and q>(C) + 0 for |r| < 1 . 

This problem is mentioned in [1 —4]. 

There are several ways of numerical computation of the polynomial spectral 
factorization. For example 

(i) computation of the roots of a(£) and their possible selection, 

(ii) triangular factorization of semi-infinite matrix 

(iii) Newton-Raphson method. 

First method requires great amount of operations and its accuracy is given by 
multiplicity of the roots of a(C). 

Second method is an iterative method with linear convergence. In [2] a very 
useful method for Cholesky triangular factorization of a positive definite Toeplitz 
matrix is described. By rearranging these expressions the next method is developed. 

Consider two vector sequences 

P(i) - [Ho0, " i 0 , • • •, Pl°] , QW = [«.° . 3i°, • • •, «t°] . i = 0, 1, 2. . . , 



for which 

P ( 0 ) = [ a 0 , a 1 , . . . , a k ] , G W - » [ - i , « 2 . . . . . - * . 0 ] > 

and 
„<0 „<0 

p(.+ i) _ n(0 _ 9o_ (o „0 + i) _ „0) _ io_ „(0 •' — 0 1 ft - O 
Po Po 

Pii+1) = pi° = ak, a ( i + , ) = tf) = 0 , 

then lim g ( i ) = 0, lim P ( 0 = P and the polynomial P(() = p0 + PiC + ••• + Pk(k 

satisfies 

lp(<r)p(r1) = a(c). 
Po 

Hence the (1 jp0) P(() is the spectral factor of a((). 
This method requires only 2k + 1 operations in one iteration and the error de

creases as |A|\ where X is the root of a(C) lying inside the unite circle and being maximal 
in modulus. If Ul = 1 then for sufficiently large i the error decreases as l/i only. 

Third method is described separately and a new way of computation is developed. 

NEWTON-RAPHSON METHOD 

Consider a function F(() = fr(()b((-1) — <p(() <p((_1). Denoting <p(() as (p and 
<p((-1) as ip, the "differential" of F with respect to variations d(p in cp is 

(2) d p = — cp d(p — (~p d(p 

To obtain a new value q> + d<p, we solve the "linear" equation F + dF = 0. The 
substitution (pi+l = <p; + dcp gives 

(3) <p(ivi+i) + <p (v+ i ) = bh + 9
( i y " . 

Properties of the sequence <p(0), <p(1), ... are summarized in the folliwing theorems. 

Theorem 1. [1, 3]. If <p(0) + 0 for |( | S 1 i-e- <P(0) is a stable polynomial, the 
iterative solution of (3) has the properties bellow: 

(i) <p(i) 4= 0 for |.[ ^ 1 implies that <p(i+1) + 0 for | . | ^ 1 

(ii) <p(0), <p(1), <p(2),... converges uniformly for |( | ^ 1 to the unique solution cp 
such that cpcp = bb and (p #= 0 for |(| < 1, 

(iii) for real z e < — 1, 1> and <p(0)(o) > 0 the following inequality holds 
_<p(i)(z)<<p(i + 1 ) ( z ) ^ ( i ) ( z ) 

(iv) the convergence of the sequence <p(0), <p(1), <p(2)... is quadratic in nature. 



Theorem 2. For any polynomial cp(0) and modulus of £ equal to 1 holds 

VXQV'Xr^^KOXr1), f = 1,2,..., 
where q>{,) is given by (3). 

Proof . It is evident that for |f| = 1 

(«p(*+i) _ (pW)((pO+i) _ ~(0) ^ o . 

Using (3), 

p ' + y + i) - foSstO. 

From the above theorem it follows 

(4) _ > ( i > ) ^ _ > ? = a 0 . 
i =0 1=0 

Now we introduce a new approach to solving the equation (3). Consider the 
substitution 

(5) <p(i + 1) =i(<p ( i ) + x(i)) 

then 

(6) <p(i)x(i) + <p(i)x(i) = 2bB 

and for the sake of clarity the equation will be written as 

(7) cpx + cpx = c = 2bb , 

where 

cp = cp0 + </>_£ + .. . + %Cfc; 

X = x0 + xtC + .. . + xtC
fc, 

c _Co + c_(c + r 1 ) + ... + cj$* + r * ) . 
Equation (7) can be written in the following useful matrix form 

<Pk <Pk-í ••• <Pi <Po <Po <Pi 

0 <pk <?x 0 (p0 

Фk-i <Pk 

.... ęk_г 

]_0 0 . . . 0 ęk 0 0 . . . 0 ę0 J 

*fc I 

x t 

x0 

x° 
x t 

_**_! 
In a shorthand notation <£._ = C. 



N o w we m a k e use of t he subs t i tu t ion X = TY, where Yhas the same s t ructure as X, 

such tha t the $ T ma t r ix will be t r iangular . Its elements are de te rmined by the stabi

lity test of the po lynomia l q> as follows. 

Stability tes t 

<?k <Pk-l ••• (?o 

<?o <Pi ••• <?k | Po = ~ 

<Pk-i <Po 

<?o~ <?l-i\Pi = ~ 

<?l-i ••• <?l 

<Pk-i 

<?o 

<?) = (?) + <?k-jPo, j = 0, 1 . . . (fc - 1) 

(?) = <?) + (pì-i-jPi, j = 0, 1 . . . (fc - 2) 

<Po <?i \Pk-i = z 

(Po 

T h e equa t ion <PTY = C can be wri t ten as 

(9) 0 . . . 0 2<pk
0 0 

0 . . . 0 0 (Po 

0 . . . 0 0 
0 . . . 0 0 

and gives the y0, yu ..., yk after simple c o m p u t a t i o n . 

The subs t i tu t ion X = TY can be c o m p u t e d as 

0 "1 У/Ł I 
(Pk-2 <?k-l 

Уi 0 ęl q>\ Уi 

0 <Po J Уo 

Уo 

Уi 

LУk_ 

ykyk-i yiy0 

y0yi Pk-i 

y0yiy2 

y\y\yl 
Pk-2 

Po 

xkxk-l 



where the third row of this scheme is given as the sum of the first row and the second 419 
row multiplied by pk_ v 

This algorithm for solving (7) requires only _k2 + _k + 1 operations. 

PROPERTIES OF THE EQUATION (7) 

Denote dx the degree of a polynomial x. Premultiply (7) by £a6 and denote bCdb = 
= b (b is the reciprocal polynomial to b), then 

(10) q>x + <px = 2bb . 

For our purpose db = d<p and moreover we require dx = db. If <p, b are stable 
polynomials (it particularly implies that the roots of <p and b do not lie on the unite 
circle) then (10) has only one solution and dx = db. On the other hand, if q> + 0 
and b + 0 for ](| < 1 and cp(r]) = b(r]) = 0 for some r\, |i;| = 1, then many solutions 
of (10) with dx = db exist. 

Example 1. 

q, = i - r , b = 1 - £, dx = I. 

Denote x = x0 + JC.£, then from (10) 

( i -C)x + ( c - i ) x = 2 ( i - c ) ( C - i ) . 
Hence 

X - x = 2(C - 1) 

and the solution with 3x = 1 can be written as x = (I — _) + T(1 + C), where 
T 4= 1 is a real number. 

Our algorithm is based on the stability test and hence if any roots of the poly
nomial (p tends to 1 in modulus then at least one q>0' approaches 0. Using a computer 
the computational errors increase as cp^ approaches 0. In some cases the errors can 
be increased such that a new iteration of the algorithm is worse then the present one. 
Considering a finite number of decimal digits in a computer, this follows from Exam
ple 1. 

These properties are not due to the choice of computational method of solving (6) 
but to the nature of this spectral factorization. 

In many instances the troublesome roots may be isolated by a preliminary factoriza
tion. 



Numerical properties 

There are two ways of numerical testing of the given algorithm: first, to compare the 
coefficients of <p(,)<~(l) and bb, second, to compare the coefficients of <p(,) and b, 
where b is the accurate spectral factor of a = bb~. The proportionality between 
these errors depends on the roots of a and the modulus of the coefficients of b. 

Example 2. 

b = (І2 + I)3 

a 

ęę — a 
b 

<p- b 

20 0 15 0 6 0 1 a 

ęę — a 
b 

<p- b 

1 0 " 6 

1 
1-24. 1 0 " 2 

0 
0 
0 

2-6. 1 0 " 7 

3 
1 23 . 1 0 " 2 

0 
0 
0 

- 5 - 2 . 1 0 " 7 

3 
—1-25 . 1 0 " 2 

0 
0 
0 

- 2 - 6 . 1 0 " 7 

1 
-1-23 . 1 0 " 2 

Ь = (1 - 0,99Ç)2 

a 5-880996 3-920598 0-9801 

qxp — a 

Ь 

џ> — b 

1-22. 1 0 ~ 1 2 

1 
3-6. Ю " 1 1 

5-9. 1 0 " 1 3 

1-98 
- 4 . " 1 3 

-2-01 • 10" 1 4 

0-9801 
- 3 - 5 . Ю " 1 1 

Choice of the starting polynomial 

Theorem 3. Let b be a polynomial and a = b(£) b(£ l) = a0 + a\(C + £ ') + . . . 
. . . + ak(C

k + rk), then <p(1) = l/N/(-o) (-o + «iC + ••• + aj*) is a stable poly
nomial (<p(I) + Ofor |C| ^ 1). 

Proof . Consider the algorithm (3). Then for (p(0) = ^Ja0 the <p(1) is a stable 

polynomial from Theorem 1. 

As it follows from numerical examples this polynomial <p(1) is a suitable starting 

polynomial and corresponds to the starting polynomial in the second mentioned 

method. 



Stop rule 

One of the very important problem is to stop the iteration process in such a way 

that the result is stable in spite of computation errors and has a maximal reachable 

accuracy. 

The first condition can be reached very simply because the computation of each 

iteration is based on the stability test of the previous iteration. 

The second condition can be reached if the monotonicity of the iteration <p(,)(0) 

(see the condition (iii) of Theorem 1) and inequality (4) (see Theorem 2) are tested. 

The result of the iteration process is choosen in the following way. 

k 

(i) if (p(n

0\ > (pfa1'* o r X (V/0)2 < ao t n e n <P = <PW if <P(B) is stable, else <p — 
i-o 

= q)(n~l) (it follows from the algorithm that <p ( n - 1 ) is a stable polynomial); 
k 

(ii) if X ((p(n))2 - a0 < a0 1 0 " 1 4 or n > 30 then 
1 = 0 

(p = (p(n) ; 

(iii) if the stability test of <p("~l) for computing cp(n) does not hold then 

<p - <p( 
— л > - - ) 

NUMERICAL EXAMPLES 

(Computer IBM 370, 16 decimal digits, program in the PL/I language.) 

Consider two examples without troublesome roots reported in [3]. 

1) db = 3 
b 89 27 7 1 
a 8004 2491 622 85 

after CPU time 0.07s and n = 4 (n-number of iterations) 

(p-b - 7 1 . 10" 1 5 3-5. 10~15 2-2. 10" 1 6 -1-4. 10" 1 7 

<p~-a -2-7. 10" 1 2 5-7. 10~14 -5-7. 10" 1 4 - 1 - 1 . 10" 1 4 

2) db = 8 

b 1 3,01 3,7488 2,2309 01704 -1-7945666 

-3-19483744 -2-594828029 -0-858277728 

a = bl 

after CPU time 0.705 and n = 16 

\\q> - b\\ = 2-4 . 1 0 - 8 , ||<pp - a\\ = 1-4 . 1 0 - 1 3 

| b = max \bj\). 
0 < / S S 6 



422 3) Consider a polynomial b with single roots on the unite circle b = 1 + £ + 

+ C2 + • • • + C10 then after CPU time l-32s, n = 22 

\\q> - b\\ = 3-6 . 10"7 , \\q>(p - a|| = 8-1 . 10~12 . 

4) Consider a polynomial b no root of which lies on or closed to the unite circle 

b = 6 + 5C + 4C2 + 3C3 + 2C4 + C5 

then after CPU time 0-13s and n = 5 

\\<p - b\\ = 11 . 1 0 " 1 5 , f w - a|| = 1-8 . 1 0 - 1 4 

(note that a0 = 91). 

5) Consider polynomials roots of which tends to 1 in modulus 

b || <p — i | | \<p<p — a\\ CPU time number of iteration 

(1 + 0-99Í)2 3-6 . 1 0 " 1 1 1-2 . 10~ 1 2 0-20 17 
(1 + 0-999Ö2 1 1 8 . 1 0 " 8 4-5 . 1 0 - 1 0 0-27 23 
(1 + 0-9999Č)2 2 . 10~ 6 9 . 1 0 ~ 9 0-33 28 
(1 + ď 6-9 . 10~ 5 1-18. 1 0 - 8 0-33 28 

CONCLUSЮN 

It follows from other examples that the accuracy of results depends only on the 

roots nearest to the unite circle and on its multiplicity. In cases where b has not 

troublesame roots the polynomial <p is correct to fifteen decimal digits. 

(Received March 20, 1975.) 
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