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Some Theorems on Geometric Measure 
of Distortion 

Y . D . M A T H U R , J. MlTTER* 

In this paper the relationship between the rate of transmission of information and the geometric 
measure of distortion is established both in discrete and continuous cases. The geometric rate-
distortion function is defined as the infimum of the average mutual information between the sets 
of input and output symbols under the constraint that geometric distortion measure does not 
exceed a distortion limit. The slope of the geometric rate-distortion curve is evaluated and a lower 
bound is obtained. Finally geometric rate-distortion function is constructed for symmetric 
distortion measure. 

I. INTRODUCTION 

Consider an M-letter independent source with input symbols {0, 1,..., M - 1} 

which are used to communicate over channel whose set of output symbols is {0, 1, . . . , 

..., N — 1}. Let the channel matrix be {#//,•} where qj/t is the probability of receiving 

j when i is sent. If the input distribution is {p jflo 1 t h e n t n e output distribution 

{qjYj~Q is determined by 

(1-1) q} = YaPttjn f o r a ] 1 J • 

Further let Q{J denote the distortion when symbol i is received as j such that Q^ > 

> a > 0, i =# j; QU — a. If we denote the geometric mean of single letter distor­

tions Qij by aDG, then 

(i.2) aI>G = r M r j / , ) . 
i,j 

* The author is thankful to C.S.I.R. (India) for financial assistance. 



Also, the average mutual information l(X; Y) (or R({a;/i})) between the input and 399 
output, is given by 

(ì.з) Kx;Y)-ЧЫ) = I,Ђ>ajltiofi 
ІSH 

I Vilm 

where logarithms are considered to the base 2. 

On the lines of Shannon's rate-distortion function [4], Sharma, Mitter and Mathur 
have defined the geometric rate-distortion function R(aDG) as 

(1.4) R(aD*G) = mmR({qjli}), 

where the minimization is done with respect to all those {g,7i} for which aDG ^ aDc, 

aDG being a fixed quantity. 

The measure defined in (1.2) has some advantages over the Shannon's measure 

of distortion given by 

(1-5) D = ZT,Pi.qjlt.Qij. 
i J 

Some relations that it bears with entropies of the system and the rate of transmission, 
have been given in [5]. Bounds on R(aDG) when measure of distortion is symmetric 
i.e., Qij = p > a Vi, j ; i 4= j were obtained by Sharma and the authors in [6]. 

In the present communication, we obtain some expressions for R(aDG) and study 
the nature of the geometric rate-distortion curve. A lower bound on R(aDG) when the 
measure Qtj = Q(X; y) (continuous case) depends on the difference of x and y and 
its value when the measure is symmetric, are obtained herein. 

II. THEOREMS ON aDG 

Theorem 2.1. Let R(aDG) be the geometric rate-distortion function of a discrete 
memoryless source with source probability {p;} and single letter distortion measure 
Qij, then R(aDG) can be expressed as 

(2A) R(X) = v . aDG log aDG + T > log ^ , 

where 

(2.2) I / W l / D * G = 1 for all j , 
i 

and 

(2.3) pf1 = I < ^ ? 7 D * G > for a l l i. 



400 Proof. Proceeding as in Gallager [2], it can be shown that by constructing 
a function cp as 

<p = I(X; Y)-v.aD*G + £S, Y,1m > 
i j 

where 

E«,/ . = 1 > 
J 

and differentiating it with respect to qin, after setting 5, = — p{ log p.h the condition 
for qjn to yield a stationary point for q> is that 

(2.4) • qj/i = iiiqjQ"i'j"D*a, for all i and j 

satisfying 

L>iP,eIrD*0 = 1 for all j . 

Further setting (2.4) in (1.3), we get 

RW) = TZPtnajQlj'0** log (nie]f*c) = 
i j 

= v.xD* Yj>iqjHiQ*ijD*a log Qtj + TZp,qMf*° log P-t = 
l i j 

= v.aD*logaD*+YdPilognt, 

using (2.3). • 

The result can be analogously extended to continuous case. With similar notations, 
we have 

(2.6) R(aD*G) -y.,D* log aD* = J p(x) In fi(x) dx 

such that 

j>(x) p(x) QV°D*G(X; y)dx - 1 for all y , 

and 

(2.6a) H-\x) = fc(y)Qv"D*°(x;y)dy, 

where In denotes logarithms to the base e. 

The parameter v admits of a geometrical interpretation which we now state below: 

Theorem 2.2. The slope R'(aDG) of the geometric rate-distortion curve at aDG is 
given by 

(2.7) R'(aD*G) = v.\og (2. aD*G). 



Proof . From (2.1), it follows that R^DS) is a function of v, aDG and nt (i - 0 , 1 , . . . 401 
..., M — 1). Thus, we have 

K( D*) = dR(<D% =
 8R | 8R (JL\ + y8A ( d^ \ = 

U G) daD* daD*G dv\daDG) rdii\daDG) 

= v + v . log aD*G + \aD% log aD*G + I H f ^ Y I - ^ . 
L ' i«i \ d v j J d a D c 

As the transverse the R(aDS) curve, the solution always satisfies (2.2), so that 

ZlfiiaD*loSeij + ^]piQv
tr

mG = o. 

Multiplying this by qj and summing over/, we obtain 

^ S l o g . D S + 1 - ^ ^ 1 - 0 . 

i Hi \dvj 

This, in turn gives 

R'LD*) = v + v . log aDS . D 

Theorem 2.3. For a reproducing probability distribution q = [q0, ql. ..., g^- i ) 
let Bq = {j : q} = 0} and Vq = {j : qj > 0} be the boundary and interior sets 
respectively. Then a conditional probability assignment {<?j7i} such that 

Qj/i = PiQjQtj ° f ° r a ' l l a n c l J > 

yields a point on the R(aDS) curve if and only if 

(2.8) I < ™ I r D * ° = 1 > for jeB,, 
i 

where ju,- and v satisfy (2.3). 

Proof . Let a change of transition probabilities Aqjyi be such that 

(2.9) AqJfi £ 0 , for jeBq, 

(2.10) EA^.-O 
J 

and 

(2.11) AaDG = exp [ £ Y>,. Aq,/( log <?0] = exp (0) = 1 . 



402 For Vq, the change in l(X; Y) is given by 

AIv = Z Z PІ A(1J/І І 0 8 ЏiЄÏf 
i jev. 

A1jli 

Aqj 

(from 2.4) and for Bq, the change is 

A!B = IEp i Aa j 7 i log A ^ i . 
i JeB, Aqj 

Thus the total change is then given by 

A! = I I p,. A;/i{log e I r
D * c + log P i ) + X Z Pt.Aqj/i 

i jeVq i jeB„ 

By adding and substracting the quantity 

I Z Pi • A<Z,7i{log Q)f*a + log /:,} , 
i JeB„ 

we obtain 

A! = Z L>. • A /̂.{iog eJrD*G + log MJ + 

(2'12) +iip«.Ag//«to8(A
 A g j / : . . P J -

U«», \Aqj . titQlj" Gj 

Invoking the constraints (2.10), (2.11), the first expression on the right hand side 
of (2.12) vanishes. Again by applying the inequality 

(2.13) log x ^ 1 (with equality iff x = 1) 

x 

to the second expression of right hand side of (2.12), we get 

A/ ^ 0 

if (2.8) holds. 
This shows that any change of transition probabilities can only increase l(X; Y) 

if XDG is kept fixed when (2.8) holds, which implies that the above solution achieves 
the minimum of l(X; Y). The second part of the theorem can be readily established 
by showing that the set of transition probabilities which does not satisfy (2.8), will 
decrease l(X; Y), keeping aDG fixed. • 



Theorem 2.4 (Another form of R^DS)). Let p. be the set {/i} where p. = (p.0, fiu ... 403 
..., JUM_,) and /i; > 0 for each i -= 0, 1,..., M — 1 satisfying 

(2.14) Y> ;. p , . $•?*- ^ 1 for all j , 

then 

(2.15) R(aD*G) = max(v.aDSlogaDS + £p,.logJul.) 
v.ueii ' 

and a necessary and sufficient condition for /i to achieve maximum in (2.15) is that 
its components be given by 

(2.16) ^ • 1 = Z ? J e I / D * ° , i = 0 , l , . . . , M - l . 
j 

Proof. From the assumption aDG ^ aDG and making use of the inequality (2.14) 
and (2.13), we get 

R(aD*)- v . X l o g X - y ^ . l o g ^ 
i 

= I I*A,n ( l - ^ M ^ j = 1 - Zqj YMiP&T0*0 = 1 - & ; - 0 • 
« J I «2,/« J ; « J 

Hence, for every set of conditional probabilities {qjn} for which aDG 5g aD*, 
R(aDG) approaches the maximum on the right hand side of (2.15). Thus 

(2.17) R(aDS) = max (v . aD* log aD*G + ^Pi log P,) , 

y.liefi i 

we can easily see from Theorem 2.1, that 

(2.18) R(aD*G) = max (v . X log X + £p, log M l) . 
v,/ief2 i 

Thus combining (2.17) and (2.18), we obtain (2.15). The necessary and sufficuent 
condition for achieving the maximum in the statement of the theorem follows im­
mediately from Theorem 2.3. • 

In the next section, we shall come to a variational problem to find a lower bound 
of R(aDS). For that we shall need the continuous analog of Theorem 2.4 which may 
be stated as follows: 

If fi is the set of all non-negative functions JJ.(X) satisfying 

(2.19) $n(x) p(x) QV"D*C(X; y) dx = 1 for all y 



404 then 

(2.20) R(aD*G) = Sup [v . XD* log XD* + j>(x) In fi(x) dx] 
v,џ(x)єџ 

and a necessary and sufficient condition for p.(x) to achieve supremum in (2.20) 
is that there exists an output probability density function q(y) satisfying (2.6a) for 
almost all y for which q(y) < 0. • 

III. A LOWER BOUND WHEN Q(X; y) = Q(X - y) 

When the distortion Q(X; y) depends upon the difference of x and y, we call it as 
difference distortion measure. 

Theorem 3.1. If RL denotes the lower bound of R(XDG) for difference distortion, 
then 

(3A) RL = H(x) - H(t(x)), 

where H(X) is input entropy, that is — f p(x) log p(x), 

(3.2) Mx) = - H £ L _ , 
X ' VK J jY«D**G(z) dz 

and XD** is the value of XDG for z = x - y. 

Proof . Let us suppose that 

(3-3) "M-TV 
p(x) 

where S is a constant. 

If XDG* denotes the value of XDG when z = x - y, then (2.19) gives 

(3.4) S.jY'*D**c(z)dz^ 1 . 

Choosing S such that (3.4) holds with equality, it follows from (2.20) that 

(3.5) R(XD**) ^ v . XD%* In XD*G* + H(x) - In j y - D ** c (z ) dz = RL (say). 

Therefore, 

(3.6) RL. = X * in X * - X * J > e t o ) «AW dx 



and 

(3.7) R'l= - J{.D** In Q(X)}2 . ^(x) dx + (JX* In Q(X) <A(x) dx)2 . 

From (3.7) it can be readily seen that RL ^ 0, therefore RL is convex n function of v. 
Hence, there exists the unique maximum at some v satisfying R'L = 0, that is 

(3.8) X * In X * = X * .fin Q(X) ^(x) dx . 

Suppose that the value of X * In X * for v obtained from (3.8) be denoted by Dv, 
then from (3.5) it follows that 

RL = vDv + H(x) - In JY-*D**G(z) dz = H(x) + J>(x) In \jj(x) dx . Q 

IV. CONSTRUCTION OF R(X) F e R A SYMMETRIC MEASURE 
OF DISTORTION 

If the number of input and output symbols are the same and if the cost of every 
correct transmission is a and that of any incorrect transmission is ft (obviously a < ft) 
so that 

[P otherwise , 

then we may refer to this as symmetric measure of distortion. We shall give a theorem 
on the construction of R(aDg) for the symmetric measure of distortion. We first prove 
two lemmas. 

Lemma 1. Let R(aD%) be defined for some source X with probability P = 
= {Poi Pu •••> PM-I} a n c l distortion matrix {QU} and suppose the new distortions 
are formed by multiplying each row of the distortion matrix by a constant i.e., 

Qij = C; . Qij , 

then 

(4.2) R ( X ) = K ( X / C ) , 

where C = 2 s"" logC ' and k is defined for the source X and distortion Q^. 

Proof . We know that 

R ( X ) = min l(X; Y) 



406 subject to the constraint 

(4.3) 2
I"T,lPl9l"iose,J

 = aD% 

or 

2_iEjpi«i/i logpu < D*lC 

which by definition is R^D^C). Q 

Lemma 2. Let p0 be the probability of the source letter corresponding to a row 
with all entries 1 in the distortion matrix. Then 

(4.4) RGDS) = ( l - p 0 ) R ( C D S ) 1 / ( 1 - " 0 , ) ! 

where R is defined for the distortion matrix with row of l's deleted, the source being 
(1, 2, ..., M — 1) with input probability distribution 

(4.5) p* = P\ Pí PM-I 

1 - Po 1 - Po 1 - Po 

Proof . The geometric distortion XDG is not affected by omitting the distortion 
corresponding to the reproduction of source letter O. Thus to minimize l(X; Y) 
we must choose gj7i so that /(x0, Y) = 0. With this choice 

R^D'c) = min l(X; Y) = 
M - l 

= min[p 0J(x 0 ;Y) + y > i J ( x i ; Y ) ] = 

The constraint is 

But 

Therefore, 

= m i n [ ( l - p 0 ) E ^ i _ / ( x ( ; Y ) ] . 
;=i 1 - p0 

M-í 

YYPiljU^SQij = lOga^S-
; = o j 

Y/IJIO l°g Qoj = 0 • 

M-í _ 1 

I I ~ - «,/. log Qu = ^ — log X = log ( X ) 1 / ( 1 "po) • 
j - i ; 1 - Po 1 - Po 

So by the definition of R^DQ), we obtain the desired result. Q 



Theorem 4.1. Under symmetric measure of distortion 407 

(4.6) R(aD*) = (1 - ffjc_.) [HM_K+l(X) - B.(dK_0 - AK_t log (M - X)] 

for 

«->S<*"1 )<«- )S=S«->SW . for 2 < K < M + 1 , 

where 

K - l 

°"K — X Pi > f° r ^ = 1 > °"o — 0 > 
i = 0 

(4.7) ,DS(K) = p°K~' [ a log a + 0? log j8 - a log a) (M - K) PK~1 1 
L 1 — O-JC-IJ 

and 

(4-8) A, = 

n * \ 1 / ( 1 - < 7 K ) 

S^£) - a l o g a 

/? log /? — a log a 

II(A) = - ^ log ^ - (1 - AK) log (1 - JK) ; 

also HM-K(X) is the entropy of the source (pK/(l — aK),..., pM-i/(l ~ (TK)> prov­
ided that p0 < /?! < .. . < p M _ ! . 

Proof. We have indicated in Theorem 2.1 that the set {aj7;} giving R(aD%) is 
given by 

qJ/t = qj^iQ]}"D*G for all ; and ; ' , 

where q/s satisfy the constraint 

(4.9) M ; L V l 7 f l * G = l for all ... 
j 

For symmetric measure of distortion, it has been shown in [6] that 

(4A0) R(XD*) ^ H(X) - H(A) - A log (M - 1), 

where H(X) is the source entropy, 

A g^Lz-g log g 

j? log /? — a log a 



408 and 

#(_) = - _ log _ - (1 - _) log (1 - A) 

with equality in (4.10) if 

(4.11) aD% _ a log a + (p log p - a log a) (M - l ) p0 , 

p0 is the minimum input probability and q} in (4.9) under this measure is given by 

(4-12) 

All ay's will be non-negative if 

(4.13) Pj _ 

= Pj[ßXß + (M - 1) aДя] - qл" , 
qj P'ľ - a*° 

0Xfia-i* + ( M _ !) 

Denote 

(4.14) ,DS - « log « + (jß Ь g /î - a log a) (M - 1) p0 = aDS (1 ) . 

Then for __>S > aDg (1 ) [3], output zero will never be used and we can therefore 
remove it from the output alphabet and delete the corresponding column from the 
distortion matrix without affecting R(aD%). Thus for __>S > * D S ( 1 ) w e n a v e M x 

x (M — 1) distortion matrix {g;j} with all /?'s in the first row. Dividing the first row 
by p and using Lemma 1, we have 

(4.15) RG_S) = R(%DS/r), 

where R(1) corresponds to the matrix 

(4.16) W) -

1 1 
a ß 

ß ß 

Using Lemma 2, we get 

(4.17) R(%DS) - (1 - _ o) R(2)((X)1/(1-^) • 



From (4.15) and (4.17), we have 

(4.18) R(aD*) = (1 - Po) R(2)((X/r)1/(1 ~P0)) 

for XDG > aDG
( 1 ) and R(2) corresponds to the (M - 1) x (M - l) matrix and the 

source 

p** -, ( Pi , P* , . . , , fl*-i 
\ 1 - p 0 ' 1 - Po ' ' 1 - Po 

A lower bound of R2(aDG) can be obtained similarly which is valid for 

XD* < . log a + (fi log p - a log a) (M - 2) — E i - , 
1 - Po 

where pj is the second lowest probability. Thus the second break point occurs at 

aD* ( 2 ) , where 

(aDS(2)//3"0)1/(1 " p o ) = a log a + (fi log £ - a log a) (M - 2 ) — ^ — . 
1 - Po 

409 

Hence 

R(aD*) = Я ( X ) - i ? ( ^ ~ a l 0 й a XD*G - a log a - W ( M - l ) 

for 

аnd 

J?log/? - a l o g a j \j81ogj8 - alog 

aD£ < a log a + (j8 log p - a log a) (M - 1) p0 

KÓD - d - 4 -w-i - u {^77""."'*"} -
( j8 log jg - a log a J 

for 

where 

x D G / / F ° ) ' / ( 1 - p o ) - « l o g « ) ] Q g 

P log £ - a log a J 

n*(') <- n* < n*<2) 

(M - 2)] 

Я K - І W - - ! т ^ - ю g Pi 

,•=1 1 - p 0 1 - Po 

Continuing this way, we get the desired result. D 
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