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KYBERNETIKA — VOLUME 28 (1992), NUMBER 2, PAGES 100-119

ADAPTIVE ESTIMATION IN
LINEAR REGRESSION MODEL

Part 2. Asymptotic normality

Jan Amos VISEK

Asymptotic representation of an adaptive estimator based on Beran’s idea of minimizing Hellinger
distance is derived. It is shown that the estimator is asymptotically normal but not efficient. From
the practical point of view the approach may be useful because it selects a model with distribution
of residuals symmetric "as much as possible” (in the sense of Hellinger distance applied on F(z) and
1~ F(z)). Tt is not difficult to construct a numerical examples showing that sometimes it is the only
way how to find proper model.

1. INTRODUCTION

This paper is the second part of the article “Adaptive estimation in linear regression
model”. The reasons and clarifying discussions about the adaptive estimation may be
found in the first part (cf. [20]). Also the notation of the present paper is the same as
in the first part and the numeration of theorems and lemmas continues.

The proof of consistency of the adaptive estimator included in the first part of this
paper has shown that the technique which leads to all results concerning the adaptive
estimator is simple application of classical tools. The proof of Theorem 2 is of a similar
character but much more longer. Therefore it will be divided into a sequence of steps,
assertions and lemmas, proofs of which will be omitted. We shall show only as examples
the proofs of Lemmas 3, 6 and 8. The reason for inclusion of the last three mentioned
proofs is the fact that they represent the steps which yield a little unusual form of the
result formulated in Theorem 2. All details can be found.in technical report {17].

2. PRELIMINARIES

In this section we shall prepare tools for proving asymptotic normality of the estimator
[J(,L)(Y} To this end we restrict ourselves on such densities g for which:
9'(v).

2
i) Fisher information is finite, i.e., the derivative of g exists and [ G- dy < o,
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ii) suplg'(y)| < Ks
yeR

i) g—(:-"l—)() for n — oo

where K is a finite constant. We need also an additional assumption on the kernel w.

/ Cw(t)dt

is finite and denote it by Ks. (Moreover we shall assume that all assumptions made in
the part 1 - see Sections 2, 3 and 5 - hold.)

We shall assume that

Remark 4. Condition iii) seems at the first glance a little strange. But it is clear
that for any g with sufficiently smooth tails (even with arbitrarily heavy tails) we may for
given {a,}32, / oo find {c.}32; \ 0 such that iii) holds. It may cause that {c,}%,, will
converge to zero rather slowly. Nevertheless, it is not inconsistent with other conditions
which we assumed to be fulfilled (see, e.g., conditions for Theorem 1).

Moreover from the assumption [ t*w(t)dt < oo we have

|:l|im t2w(t) =0,
lim tw(t) =0
Jtl=oo w(t)

and also
lim tw'(t) = 0.
t]l—o0 ( )

Another consequenceis that [ |t|w(t)d¢ < co and hencealso [ |tw?(t)|dt < K, [ |t|w(t)dt <
0.

Let us start with a simple assertion.
Assertion 1. For any # € R? and for all k =1,2,...,p we have

a ,
50 [ VB0, Y. B)dy =
- /{%;‘—@1 DR YB) 4 h(yY,B) PaaB gy

Similarly it is not difficult to show that

OEgu(y.Y, RN =y ‘
PaelnVef) ng oo [ w0 — 4 KT8 o)z

Let us denote [aEg'é(ﬁy;y'a) } by aEg"a(/yi;‘Y,m) .

=00
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Remark 5. Since

Il YeB) y On(=y,Y,8),
[EEE v s = [ v, 2eCLLE,,
we have 55~ [ ha(y, Y, B)hu(~9, Y, B)dy =2 | i"a(g;ﬁlhn(—y, Y, B)dy.

Lemma 3. For any f € R and k= 1,2,...,p we have
a 2
/ [aﬂ 5, Y,6) = 55 Ehan(a V. B )] = 0, (% ).
Proof. To prove the assertion of the lemma let us write

h (v, Y,8)— E?gn(y, Y, 8)bu(y) =

aﬂ 8By
= Teh,v, Ahiy) [ (4, Y,8) - Eyn(y,)/ﬂ)}
- -ynl(y,Y ﬂ)dﬁ (9, Y, B) {Ezyn(y,Y B) [gn(y,y B)—
- 0] + a0 - B ) | o) )

So we have arrived at the following inequality

E{ el V.8) - bl H)() ) <
e , 9 ?
< 3E [E (3, Y, B8 (y) [myn(y,)wﬂ) - a—ﬂkEyn(*y,Y, ﬂ)]
+ 0., Y.6) [Bﬂ n( y»Y,ﬂ)] {E“gn(y,Y,ﬂ)

[ot.v.0) 01, + [sd0.Y.0) -t v i)
Now

2
E (1, Y.8) - E [Eﬁ—%(y,v £)- sEon(s,Y, ﬂ)]

1 0
= Gt V) E[aﬁ Z{ w (e~ (¥ - X7))) -
~Ew (i - (Y- X)) )] =
= EYe). E[Z{w &~ (%~ X)) -

n%“
=1
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—Ew' (7' (y - (Y X)) E

= aat Yga(y, Y, B) ZE{w(c’(y—(Y XiB))) ~

i=1

—Ew' (g (y~(Y X78)))) <k

< gt ey Zx.kE{w - (- XTp))yY

_ w(egly = (Y- XFB)? X

= L E{w(c;‘(y—(K—X-Tﬁ)))w(c" - 063700}
< nlca sup [U:U((z))] Sup e} E7 g, (y, Y, B) - { Zw(C“y—(Y X ﬂ)))}
_ [w'(2))?

re s L T E Y08 By Y. ).

Since sup,er MJ%)B < sup,er [zl w(,) |? sup,er w(z) the last expression is of order O(n~*c;®).
Similarly

E a0, V,) - E [ (4, 8) ~ Ebau(0,,9)] ' <

IA

E0u(0.%,0)- €{ [dhn v, - Eteur )

. [g,;?(y,Y,ﬁ) +Efgu(y,Y, ﬂ)]z}
E'0u(, Y+ 8) - E[9a(y, Y, B) — Eguly, Y, )"

and using similar steps as in the proof of Lemma 1 we shall show that this expression is
small.

Finally,

| 0
0w, Y.8)- |6—ﬂkgﬂ(y,v,m$ -

n -1 n
= [Zw(e;’(y—(yx'—xg'ﬁ)))} |2 Tiyw' (¢ <
< o o el A < ok, @

where we have used an inequality

DA pal@
b+ 5 b b,

valid for by, by > 0.
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Using all derived inequalities together with
1 .
EldwY.8) — Eho(uv,p)] < me) " spu(),
2€
see [20], last line before Lemma 2, the assertion of the lemma follows. o

Remark 6. Notice that

d
o Bhg.(—y.Y.B) =
ETA 9n(~,Y,B)

= % {Z [ w(e; (~y — 2 + X7 (B — £°))e(2) dz} =
_ Y Julle (my — 2+ XT(B - 6°)))zug(2) d=
2en (0wt (—y — 2 + XT(B — f0)))g(z) dz) 7
LT (et = XE(B — A))ragl(z) dz
2en {0 [ule; (v + 2 — XT(B — B)g(z) dz}
LY [ (v — t— XT(B - Bo)))eag(S) dt
2ew (5 Jwl(ez (y — t — XF(8 - Bo)))g(—t) dt}F
- 1 S Jw(eg y =t~ XT(B ~ fo)))zarg(t) it .
2en (o0, Jwlesty —t — XP(8 - Bo)))glt) de}F

1t gives

OEign(—y,Y,8)| _ _ 8Eig.(y.Y,8)

N 9P St 9P e

In a similar way we can show that

) Egn(_va7 ﬁﬂ) = Egn(yayv ﬂo)
The last equality has to be used to prove the next lemma. That is why this lemma holds
only for g = g°

Lemma 4. For any k, £=1,2,...,p we have
82
h" - 1YY © .*hﬂ 9Y1 o -
J{rten v g 2mhate )
- Ehga(- Yﬂ”)-———a2 Edg.(y,Y, B2 (y) 2d =0,{n"¢ %)
gul—Y, ¥, 3Br0be gy, 1, a\Y Yy = Up n On
Lemma 5. For any 8 € RP and k, ¢ =1,2,...,p we have

/ {Bhn(y-,Y,ﬁ) Oha(—y, Y, B)
8ﬂk aﬁi

a 1 a i , ? _ ~1.-3
(’Tﬁ;'E gn(y,Y,ﬂ)-*aEf gn(—y>Y,ﬁ)b,.(y)} dy = Op(n7"¢; an)-
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Lemma 6. Forany k,{=1,2,...,p

/ PEgu(y, Y, B°)

EYRIR bu(y)dy = o(1).

Proof. The absolute value of above given integral is not larger than
5
—5 ) |zintiel -
ne o
L&
— ) |z -
ne ;

— |Zikie] - ‘// w'(t)g(y — tc")dtdy‘ +
1 ~on

/ / w'(e;'(y — 2))9(2)ba(y)dzdy

//uz"(t)g(y - ic,.)h(y)dtd;;‘ <

n

1
ne

n iz

-
— Z |Zikziel -
né =

Let us consider the first integral. It is equal to

-
nc ; [zikiel

= ;} Slewril: [#(016() - G(=a) - [gfan) ~ g(-an) et
+ [9’(‘51) - g'(cn) ] \‘703.} dtl

where ¢, € (min{—a,—tcs, —a,}, max{—an—tc,, —an}) and ¢, € (min{a,—tcn, a,}, max{a,—
tcn,ax}). Since fw”(t)dt = [w/(t)]=,, = 0 we have

T+

/ /‘,K,,I“m‘" w'(t)g(y - icn)bn(y)dtdy\ . ®)

/w”(t) [G(an — ten) — G(—ay — tcn)]dt‘ =

/"’"(i)[G(an) - G(-a,)]dt=0.

Similarly due to
g(an) = g(—an)
we have

/w"(t)t[g(a,,) — g(—aa)]dt =0.

Remember that n=! 3.0, |zuzi| < KZ. So, to finish the proof, we need to show that

i=1

& [ 106 - #(e) e

is small. It may be done as follows. Let us fix some ¢ > 0 and find K so that

€
w” ()| tdt < ——.
/!tl>1< I ) 4Ks
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(It is possible, because | [ t*w"(t)dt| < [*w"(t)|dt < K [ t2w(t)dt < o0.)
Then we have

£ £
() = 9'(G) ] w" (1) PdE| <2 Kg o — = .
| (o6 =gt <2k g = %
Now we shall estimate that part of integral which is over {t: [t| < K}. Due to I(g) =
N TR .
J %%%]—dt being finite we have limyy_q, [%&%L =0 and due to fact that limyj_. g(t) is
also zero we have

lim |g'(t)} = 0. )

[t}~ro0
Denote by Q the integral [ t*w”|df . Due to (4) we may find L > 0 so that for any
ly| > L we have |¢'(y)| < i5- Finally find no € N so that for any n > rg we have a, > 2L
and ¢, - K < L. Then for any such n we have |¢'(.)| < 55 as well as |¢'(G)] < 35
Hence

& €
[9'(6) — g'(G)]w" (%) <2+ =@ = =
[ 1o = g6 we 5=t
The proof for the second member in (3) is based on the Cauchy-Schwarz inequality and
the fact that Lu<1yl<an+r‘ b2 (y)dy < . o
Lemma 7. For any k =1,2,...,p we have
Ohuly,Y,8°  OEig.(y,Y,p°
/ Wy, V. 5%)  0Bigu(y ﬂ)b,.(y) «
B ps

X [ha(=3: Yo%) = Efga(=y,Y, )ba(y) ]| dy = Op(n”"c;%an).
Assertion 2. ,
OEz¢.(y,Y, 8% _1 .

P lb- X Pt g, v, 0002 )y = 0.

(8

Lemma 8. Let n™'c;%?2 — 0. Then for any k = 1,2,...p we have

ﬁ/ Oy, Y, %) _ 0Ftga(y,V,6°)
0B B

bu(y)] E%gn(yw Y, ﬁo)bn(y)“

0B} gu(y, Y, 89

- —aﬁ;—bn(y) [h,,(y, Y, /30) - E%.(/n(y: Y, /}D)b,,(y)} } dy = op(L).

Proof. Using equality (1) we obtain

Hha(y, Y, %) 9Eigu(y,Y, 5%, L 0
- . On 2gulY, )/1 3 bn ¥y)=
[ e AT ()| E2gu(y. Y, B7)bu(y)

- ){L [f’gn(y, Y, 8% 9Egly.Y, /i")]
" 2 3ﬂk aﬁk
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19g.(y,Y,8° _ 1 \
- E—g%[fﬁ_)gnl(y:)’ﬂ“)[gé(y,}’,ﬂ") - BV,

10g.(y,Y,8° _ - OVER
E_g%ﬁkﬂgn‘(y,hﬂ“)Eﬁgn(yvYJ’“)X

-

x [gd@,v.8) - EBlawv,)]} =Y k.

[

=1

Let us consider at first ;. We have

09.(y, ¥, 8%)  9Egn(y,Y,8°7 ., |
/ [ FT I ]bn(y)dy
99n(y, Y, 8°)  0Egn(y,Y,B%)

ETA ool
/ [Byn(y,Yﬂ") aEgn(vaﬂ )] |
an<lyl<an+ch aﬂk

an

)

Let us study at first the first integral of the right-hand-side of the last inequality. Let us
fix an € > 0 and § > 0. Then a straightforward computation gives (notice the factor nL)

IA

IN

P{n%
p{n%.i
nec,

i Tik [w(c;‘(ﬂzn - Y+ x78%) /w(c;‘(—a,. - Z))g(z)dzH

=1

1
-1
P{n icy

/“" [Bgn(y,Y,ﬁ") _ 9Egu(y. Y, 8%)
—an aﬁk Bﬂk

[‘X;: Tik ["’(C;l(ﬂn -Yi+ X7g%) - /w(c;'(u,l - z))g(z)dz]

i Tik [w(c,_.'(an - Y+ X:f%) - /w(c;'(a,. - z))g(z)dzH > %}
€
2

1
dy| >e} <

i=1

Let us write ¢; instead of Y; — X7 3% Then the first probability is bounded by

a’nc2 {Z Tik [ —e))— /w(c,‘,‘(un - Z))g(z)dz] }2 g
;nlg '2;: E {w(cll(an —e)) - /w(c;‘(a,. - z))y(z)dz}2 <

4- KE 2/ ~1 _ 4-K42 2 _
T | e = Dgladde = L [ ult)glon — eathit =
4.K?

- c:‘/“’z(t)[g(an) = &t g(an+én(ant))]dt

£2
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where [€,(an,t)] < cqft]. Since £ ——(“—"l — 0 it follows

g(a,,)/ ydt — 0
(/w’(t)dt <K /w(t)dt = 1(,),

:—2 K3 /g'(an + €n(an, t))wi(t) dt

may be bounded using the fact that [£,(an, )] < c,|t]. Indeed, for any L € R

The integral

} / d(an +€n(ﬂmt))tw2(t)dt1 -

I{A:>L+A|5L} {9/ (@ + &ufan, )10 (1) } dt‘-

At first fix M > 0 so that for any |y| > M we have

, 8¢’
W< Tk

Then select no € N and L > 0 so that for any n € A, n > ng it holds:
52
fm>b ftaw?(1)]dt < R, . RE Ky
l)) Ay — Cp L>M
C) g ﬂn! <

o
on = BK,KZ

(see assumption iii) at the beginning of this part of paper). Now taking into account
(7), (8) and (9) we see for n > ng that the first probability in (6) is bounded by %‘ The
second probability in (6) may be treated along the similar lines. Let us consider now
the second member or right-hand-side of (5) (again notice n%). Probability that this

member is larger than € may be treated as follows.

e

61,“4 E { Zx,g [w (e (y — &) — Ew'(c; (y ~ e:))] dg}

an<lyl<antch o7

i [w'(er ' (y — &) — Ew'(c; (v — &))] dy

an<|yj<an-tch

i=1

IA

[FAN

E

g2
nc, { an<|yi<antecl

2
/<I ot {Z Tik [w’(c;’(y—ei))—Ew'(c;l(y_e‘-))]} dy}

dy

)

<
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E Yo [ Wl v = =)~ Bl o = )] dxdy
EN Jan<lyl<antes 5

i=1

IN

2
< K3 /[w,(c_;l(y —2)) g(z)d=dy

2
€% Jan<lyl<antel

which converges to zero for n — co. Hence niRy = 0,(1). The same result one obtains
for nt R, using inequality (2) together with idea which the proof of Lemma 1 was based
on. Really, one has
109u(y, Y, 8%)
27 OB

1
< s Ke K E7 (Yo %) [on (0, Y, %) — Eguly, Y, B%)]" = Op(n”' %)

0 WY B (g2 (1, Y, 8 = Ehga(y,v,8%)]°] <

n

(see proof of Lemma 1). It implies (under assumption of present lemma) that niR, =
0,(1).

For the Rs we may write (let us use a little abbreviated form because there cannot be
any confusion)

Agn 11 1 1 [ —

=0 E2gn g3 —E23g, | = {5790 E ' gn[gn — Egn

5.9 €29 [g7 —Ebg.] g e (90 — Egn] +
+ [ - —Lf'asgk"]E"yn}E%gn[g.%—E%gn] +

OEg, __1 It 2 2

——E"7g, g2 — E2 = S;.

i) 9 {gl Ezgn] FZI 7

Let us start with the first right-hand-side member (obtained after carrying out appropri-
ate multiplication). We shall use again (2). Hence to show that P(rz]$| > ¢) — 0 for
1
n — oo it is (more than) sufficient for T, = ni‘E‘;‘gn{gn — Egy) and V, = n¥[g? — Eig,]
to prove that both converge to zero in probability. The Chebyshev inequality helps in
both cases. .
nz __
P(ITul > &) € —E7 g lga — Egul® = O (n7¥e?)
i

and

P([Val > 1) €

m|=
= S

1
L nI__
Efgs —Edg ]’ < =E '9.E[gn — Egu*
, 2

where we have used Lemma 1 and inequality (a — )% < b7%(a® — b2)? valid for a > 0 and
b> 0. A similar result may be obtained for nS,. The last mentber, namely 13 S5, stays
on the left-hand-side of expression given in present lemma. That concludes the proof. O

The following two lemmas have been proved in [1] but were not stated explicitly there.
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Lemma 9 (Beran [1]).

[fw(cn y—2)g(z)dz]"
hm <, / i(y = 2))g(2)dz et L dy —yl(g).

Lemma 10 (Beran [1]).

1 [ OEig, (1Y,

b [ EEOI T (1,9, 57) — Eban(, ¥, 700 0)  nloely
1 T LTk N — -

bt [Mzrj; z ‘] 3= Xe)g (Y = Xif) + (1),

i=1

Proof. We shall present nearly literally Beran’s proof. We may write

o [ OE3g(y, Y, ° :
b [ D (1, ) — B, Y8 (0) (o)l =

_ 1l BEtgu(y, Y, ) ! 0

= En {/——————-aﬁk E2g.(y,Y,8°) x

% [galy, Y, B°) = Egu(y, Y, 820 (y) ] b2 (y)dy
0Ezg,(y,Y, 1

_ /_g_a(%__@_)E Y. (v, Y, )

[huy, Y, %) — Ex gy, Y, BO)bul(y) I’ bi(y)dy} .

Since
OEdg.(y,V,8%) .y o
’ 9, E77g.(y,Y,87)| <
o1 [ K fw'(eq (g — 2))g(2)dz
P Jwlety - 2))glz)dz | T
Kif ‘_i.%y_—:ll
< wlen (y=2) / .
S ey - )dz)de w(e; (y — 2))g(2)dz <
< ¢V Ky Ky
and

Elh(y, V8% = Edgu(y, Y, 8001 <n e Ky - 2(y)

3. A. VISEK

(10)

(see the proof of Lemma 1) we obtain that the second integral of the right-hand-side of
(10) is Op(n~1c2ax) and after multiplication by n¥ converges to zero in probability. Let

us put

) =& [ ulelv - Do)z
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and

s(y) = g (v)-

Then for the first integral of right-hand-side of (10) we have

IN

A

IA

va

0
' {n / ﬁgﬁa%kﬁﬂ_)pgn(% Y, 8°) [gn(, ¥, 6°) — Egu(y, ¥, 8°)] bﬁ(dey}

{ dEg,. y,Yﬂ )E 19"(y Yﬂo)

[w(5 (v = Yi + X%) — Ew(e y — i + XTAO)] 82 y)dy}

E [ BEQ"(”’ Y g, ¥, Bl — Ve + X?ﬂ“))bf;(y)dyr
[ BE ] ELS syly) oo - wles(y — ¥i+ XTO)E()dy I <
G [E" ] {/[Ji(l, (e y — i+ XTBO) T dy-

/W(c,‘.‘(y ~Yi+ Xfﬂ"))lﬁ(y)dy}2

! {;L“r/{[%;ﬂ [ute =2tz )dz}dy:

[ izl xk] /[q ]2dy<2[ Seim) Tk "‘] /[ ) dy.

Let us denote by Wy the integral

b [y YRy

o8 (5, Y, 8% [n(v, Y, 8°) — Egaly, Y, 8% ]82(v)dy.

Further, again following [1], let us denote

R E,‘“._.lxik o : T —1 T Q0
U =n [—n Zs - X 8%)s - X;p°).

=1

Then we have

and also

vt = [ [lopay

cov (Wak, Unk) =

OEgu(y,Y, "
= B [ e v, 80 a0, 8~ sl Y8 RN -

111



112 1. A. VISEK

B ] S (Y, - KT - XW)} -

=1

Ty 9Eg.(y,Y, B
- {ncnz ,,kf “;’,, e Yo B) g1y (4, v, %) -

n

wic (y—Yi+ XTB%)) — Ew(q'y-Yi+ XT8) )b, (v)dy -
(cn

i=1

is'm — X7 (Y; — X7 ﬁ")} =

= [ [ [ (et - o - X E e (= X))
. lw(f (y—2)) [ wles(y - O)g(t)dt) biy)dy.s'(2)s(2)d=
= 1)‘:z Tor ‘L] f/{ w' (e (y— t)alt )de 1}
J w(er (y — )g()de]) ™ wle y - 2) N (y)dy - &'(2)s(z)d=
since BS(Y; — XTA%)s7H(Yi - XT 3% = 0. The last expression is equal to

G S 5P [ [ 5 ) wie = D (an

Now let us put

d(y) = ST ) .fw(c;'(y — 2))sl(=)s(z)d=.

Since s'(y) € Lo there exists for every ¢ > 0 a differentiable function e € L, such that
Pl € Ly and ||s'(y) — ¥ell < &, where || - || denotes the £,-norm. Then put also

el = 170l = Dl

By the Cauchy-Schwarz inequality we have

/ "'i(y)dyS/ L;zs;z(y){/ W(c;‘(y-:))-f(”"’} {/ w(ﬂ;l(y_z))[sy(:)])dz}] v
= @ [{ [ s e o
/ [+(2)]Fdz = )

_Since also

I 3/ o y){/w iy - ,)),(pc(z)s(~7)tlg}2 dy
[t fueo - [ttt i} b
/ / (e (v = =) e(2) =y = / ye(z)dz = llvl (2

Il

I

it
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and

due(y)

which implies

&) [l - )ers(ere =
200 [ wltly — eutisty - enit

lim d,,.(y) = ¥.(y),

nNs00

it follows by Vitali’s theorem that

Now

e = dalf = [ %57%00) { [t - ppte) - s'(z)]s(z)dz}zdy

[atw fueo- (e -

IA

1l

Hence

T [ o))y =

{a [wl o=t - eI oy

/ [e(2) — /()22 = 1o = S < e.

f [triectirsy - [ s’(y)dn(wdy( <

IA

A

+

A

' 08 s'(y)]d,.,,@)dy' ;

{ [0 =<wra [ &) dy}% +

{ [ieora [ - d..(yJde}
e Ul 11 < & (el + 151}

[ S neto) - | <

1
2

This inequality and (13) imply that

(Really we may write

Sty = 8'(d = doe) + (8" = Do) e +Pe(due — ) + (92 - [$2) + [

ln [ @t = 1w

113

(13)

(14)
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and value of the integral of any member of the right-hand-side, except the last one, can
be bounded by some constant multiplyed by ¢ which was fixed but arbitrary.) Finally
using (11), (12) and (14) we obtain

Jim cov (Waa, Une) = (S0P [y
(cor Wor 00)) = &7 (Era 2T [ [ ) 0ules™ (v — )P (2)s(2)d
SR >EE T o FA TR
But,
|/ wnts) - )t} )| <

1

: .
< {/[s' - s Py ]dﬁ(y)dy} — 0 forn— oo
and making use of (14) one obtains

lim | s (y)da(y)dy = IS@)I°-)

n—oo

3. ASYMPTOTIC NORMALITY

In this section we will give the main result of the paper. Let us summarize all assumptions
we have made and we will need for the Theorem 2.

We have assumed that “the random errors” in model (1) are i.i.d. according to the
d.f. G which has finite Fisher information I(g). It mean that the df. G is supposed
to be twice differentiable. Denote the first and the second derivative by g and by ¢/,
respectively. Moreover g is assumed to be symmetric around zero. Then we have required
the existence of constant Kj,..., K¢ such that for the kernel w, the design matrix and
the derivative of density ¢’ we have

supw(y) < Ki, sup '"‘(y} < K,
veR ver VW
M
supj"'T([y%H < Ka, sup sup |zi;| < Ky
yER €N j=1,.0p

suplg'(y)l < Ks and [ y*w(y)dy = Ks < co.
yeR

For the bandwidths {c,}22, \, 0 and the supports (given by a sequence {a,}32; / o0)
of kernel estimate we need
glan) _ g,

. - . g
lim nc®a;?? =0 and lim
n—00 00 (=%
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Basic conditions for identifiability of model were the following: For any § > 0 there are
A €(0,1) and K5 € R so that

lim sup sup /E%gn(y,y,ﬂ)E%g,,(—y,Y,ﬂ)dy <A
n—o0  BEC,(6,Ka,0%

and

limsup  sup ]hn(y,Y, Bha(—y, Y, f)dy. < A in probability.

n—oo  BEC,Kp B)
Let us write throughout this section ﬁ" instead of ﬁ(n)()’) and for any function F' = F(ﬂ)
write () instead of 2

3Bk 3B

B=fn

Theorem 2. Under the just summed up conditions we have for B" the following
asymptotic representation

n41(g)- S (B2 ~ BD) Zzu—wzg(y XTB%)g7 (¥ = X7 B°) + 0,(1)-

=1 i=1

Proof. Since A" maximizes

[ om0, ¥y
over all B € RP, it follows (see Assertion 1 and Rﬁnlark 5) that for every n € A and

k=1,2,.
/ Ohaly, Y, ")
B
Now expanding %éi’;k—mlh,.(—y, Y, ) at the point 4° to approximate M;;:—'ﬁmlhﬂ(—y, Y, 5)

we obtain

/0h,. I B s /Q”"(y_’wﬁhn(-y,xﬂ")dw

ha(~y, Y, A" dy = 0. (15)

9B
0 ha(y, Y, %), (¥, Y, 8°) Ohu(~y, Y, ﬂ")] .
* ; {/ [ 3PP R B 9B dy}

(B — B9) + (B~ B R(F" - 5°),

where sup,,_; |R,,| = Ou(l). Now successively using (15), Lemma 4 and 5 and
multiplying the whole equality by n% we obtain

R,
R / E y’yﬂo Rulu: X B)y (v, 80y =

- PEsqu(y, Y, %) o
=X {/ [WEW'”“ *

=1
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9E%g.(y, Y, 8°) OERg.(~y,Y, 8%
3B 3Be

£ ) Ryt O an)}\/ﬁ(ﬁél—ﬁ}?)

7=1

b2 (y)dy+

A straightforward computation gives

8Edg,(y, Y, 6°) Ly o
S P R g (v, Y, ) =
25,95, (9, Y, 8°)

_ ! 1 o [ 07 Egu(y, Y, 5°) »ﬂ) -1 0y

= bl 00 | T et v, )

_ 10Eg(y, Y 8% s oy 9Egn(1, Y, 8% _
P G L A
L1PEg(y, Y, 8°)  0E3qu(y,Y,8°) 0E¥gu(y,Y,B")
2 9P9B: 0P 3P ’

Now making use of Lemma 6 and Remark 6 we may write

\/—/01171 JaY:H h“(—y,Y,/jO)(h —

& Ezgn (©,Y, 8% 0B (-1, ¥, 1)
2 ; {/ 9 7 b (y)dy
By = 8 {RYje+ Opfn™ 0 a) + am} ValBy - BY).

Finally, due to Lemma 7 and 8 we obtain

2, . oEu Y, 8%) 0B gu(—,Y, 6°) .
S R - 8) { (Y, 8°) 9BR g (=3, Y, 8°) .,

FTA B bi(y)dy+
P
+Z[J‘”4 AR}je + Op(n~ c;:’an)} =

FEZg.(y,Y, ) '
- VA %%Tﬁbn(y)[h"(—y,v,w) B Y BOh()] dy + op(1).

The last equality may be rewritten to

B (R IS, LS e - 2)g(e)de
2Vl 5"){ Fulent v = 2otz ()i +

»
+ (B - 8] (Rie + op<n'1c;“an>} =
J=1
- va [ Baby.O),

O W) ka3, = Ezgu(y, Y, 8)0u(y) 1 dy + 0,(1)-
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o1l =
Using Lemma 9 and 10 and denoting for any k = 1,2,...,p 71 ‘Z,:, T4 by Ty we
arrive at

Zfﬂ“—ﬂ,)zm{l(g ) +o(1 +Zﬂ" ﬂ° {R}se +0y(n c;aa")}

i=1

— wha 3 - KT (Y- XTR) + o,(1)

i=1

From it follows that for any £ =1,2,...,p
ValBE — B) = 0,(1)

and that concludes the proof. ) =]

4. NUMERICAL STUDY

A very first idea about numerical performance of adaptive estimator may be built up on

the following tables. We have used well known Salinity and Stackloss data sets. Their

description and explanation may be found in a lot of papers and books, e. g., [12] or {11}.
Let us explain abbreviations in the following tables.

LS - denotes Least Squares estimate;

6( 5) — regression quantiles for a = .5;

ﬂpE .10) - the estimator i is defined as follows: use a preliminary estimator ﬁp,d,,m,my (in

our case Bpreliminary = 1(A B(.1) + B(.9) was used) and evaluate residuals; after trimming

off 10 % points having the largest values and 10 % points having the smallest values of

residuals apply LS to the rest;

ﬂh'a(.l5) - Trimmed Least Squares estimate after trimming off points according to re-

gression quantiles 3(.15) and 3(.85);

Huber - M-estimate with ¥(z) = signz - min{|z|, 1.25} and with 1.483 - MAD as a

scale estimate used for rescaling of residuals;

Andrews - M-estimate with 9(z) = sin(z) - [{jzj<r} (MAD as a scale estimate was

used);

LMS - Least Median of Squares (in fact model in which ([%} + [%])-th order statistic

of residuals was minimized);

LTS (Rousseeuw) - Least Trimmed Squares {in fact this estimate is Apg(c) where as

the preliminary estimator serves LM S);

Adaptive — adaptive estimator from this paper;

TLS (Adaptive) - Trimmed Least Square where trimming was according to Adaptive

estimator and in both cases of the data sets four points were trimmed off. More precisely,

when calculating results in the last line of the next tables for Salinity data the points 5,

16, 23 and 24 were trimmed off; while for Stackloss data the points 1, 3, 4 and 21 were

excluded. ’
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SALINITY DATA

Method Estimates of coefficients
Intercept  Sallag Trend H3O0 Flow

LS 9.59 11 -.026 -.295
B(.5) 14.21 740 -1 -.458
Bpe(.10) 14.49 774 -.160 -.488
ﬁKB(Al5) 9.69 .800  -.128 -.290
Huber 13.36 .756 -.094 -.439
Andrews 17.22 733 -196 -.578
LMS 36.70 .356 -.073 -1.298
LTS (Rousseeuw) 35.54 436 -.061 -1.277
Adaptive 36.70 367 -.071 -1.276

TLS (Adaptive) 30.28 589 -259  -1.091

Method Estimates of coefficients

Intercept  Air Flow Temperature Acid
LS 39.92 -72 -1.30 15
B(.5) 39.69 -.83 -57 .06
BpEe(.10) 40.37 -72 -.96 07
Brp(-15) 42.83 -.93 -.63 .10
Huber 41.00 -.83 -.91 13
Andrews 37.20 -.82 -.52 07
LMS 34.50 =71 -.36 .00
LTS (Rousseeuw) 35.48 -.68 -.56 .01
Adaptive 34.50 -.72 -.36 .00
TLS (Adaptive) 37.65 -.80 -.58 .07
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