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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 3 

A GEOMETRIC APPROACH FOR TESTING REGULARITY 
OF MULTI-DIMENSIONAL POLYNOMIAL MATRICES 
AND A PENCIL OF n-MATRICES 

F. ACAR SAVACI, I. CEM GOKNAR 

In this paper, a geometric approach will be derived for testing column regularity (CR) of 
multi-dimensional (m-D) polynomial matrices and a pencil of n-matrices "n-pencil" using some 
spaces defined by the coefficient matrices of the polynomial matrices. Assigning xLi to multi-
variable xi and using the form preserving polynomials concept it has been shown that CR of an 
n-pencil and m-D polynomial matrices can be stated as CR of a 1-D polynomial matrix. Defin­
ing an associated companion form for the 1-D polynomial matrix it has been proved that CR 
of 1-D polynomial matrix can be reduced to CR of the related 2-pencil. Thus CR of a m-D 
polynomial matrix and «-pencil has been stated in terms of CR of a pair of matrices. 

1. INTRODUCTION 

Motivation for studying the column regularity problem arises in different contexts: 
i) Specifically in the parameter identification problem [1, 2]; ii) in solving multi­
dimensional systems with Z-transform techniques and in invertibility of a polynomial 
matrix of several independent variables [3]. 

i) Parameter Identification in Linear Networks: 

The parameter identification problem can be formulated by writing network 
equations in terms of parameter coefficient matrices A,e RnX", i = 1, 2, ..., ne as 
follows 

( f giAi + D)X= Y (1) 
; = i 

where q;'s are unknown parameters, X e Rn is the measurement vector, Ye R" is the 
input vector; D e Rn*n and ne is the number of parameters which is usually greater 
than the number of measurements. In [1, 2], it has been shown that the parameter 
set {gt}?Bl can uniquely be determined in terms of {#J?=m+1 if and only if there 
exist I e f i " x l such that 

E(X) :=[A1XA2X... AmX] = £ xtEt m^n (2) 
; = i v J 
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is of full column rank where Xi is the /th element of X and Et consists of correspond­
ing columns of A,-. 

Definition 1. A linear map E('): R" -> RnXm defined by (2) is called an n-pencil. 

Definition 2. An n-pencil is column-regular if and only if there exists X e R" such 
that E(X) is of full column rank. 

Thus, based on these definitions it has been shown that: The unique solvability 
of the parameters is equivalent to column regularity of the related n-pencil; a Toeplitz 
matrix which depends only on the matrices E,'s can be iteratively constructed for 
testing column-regularity of the n-pencil (2) [1]. 

ii) Solu t ion of Mul t i d imens iona l Sys tems: 

Although the motivation is quite different, the n-pencil defined in (2) arises when 
the Z-transform of the following specific multidimensional system 

E1y(i1 + 1, i2,..., in) + E2y(iu i2 + 1, ..., in) + ... 

••• + Eny(ix, i2, ..., in + 1) = Bu(tlt i2,..., i„) (3) 

is taken as 

(XziEi)Y(z1,z2,...,zn) = BU(z1,z2,...,z„) (4) 
i = i 

where Y(zl5 z2, ..., zn) and U(zx, z2, ..., zn) are the Z-transforms of the sequences 
y(it, i2,..., in) and u(ilt i2, ..., in), respectively. Uniqueness of the solution to (4) 
can be investigated by considering the column regularity of the n-pencil in (4). 

A polynomial matrix of p independent variables arising in more general multi­
dimensional systems, E(xt, ..., xp) can be written as 

E(x1,...,xp) = £...fjEii_ipx[>...xi;, (5) 
il = 0 ip = 0 

where nt = deg,,. in E for (i = 1, ..., p) and E,,...,- e RnXn are coefficient matrices. 
In [3], necessary and sufficient conditions for the invertibility of a p-D polynomial 

matrix (5) has been given. The invertibility matrix for testing the regularity of p-D 
polynomial matrix given in [3] is quite involved, therefore is omitted here. 

The purpose of this paper is to formulate the column regularity of n-pencil and 
a MDP matrix in terms of column regularity of a pair of matrices (i.e., 2-pencil) 
arising while investigating uniqueness of solutions of implicit linear systems [4 — 6]. 
Therefore, some definitions related to 2-pencil existing in the literature will be given. 

2. PENCILS OF 2-MATRICES 

Consider systems defined by the following form 

E y(i + 1) = A y(i) + B u(i) (6) 
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where y(i) e Rm is the output of the system and u(i) e W is the input of the system. 
The pair E, A are n x m (m ^ n) constant matrices, B is n x r constant matrix, 
i is the dependent variable. 

The matrix pencil relating to the above implicit linear system "zE — A" where z 
is the independent variable is called as 2-pencil. 

In order to investigate uniqueness of the solution to equation (6) for any «(•) 
the following definitions are given. 

Definition 3. The characteristic subspace of the pair (E, A) is the largest subspace 

V* satisfying the following relation for a linear subspace V of R". 

AV c EV . (7) 

Definition 4. Characteristic kernel of the pair (E, A) is the subspace N defined by 

N = ker E n V* (8) 

In the literature column regularity of the pair (E, A) is usually defined as: "The 
pair (E, A) is C-regular (column regular) if 

dim N = 0" . (9) 

Note that the definition above is different than Definition 2. But the following 
theorem will show that there is no discrepancy between these definitions. 

Theorem 1. The generalized spectrum of the pair (E, A) is finite if and only if this 
pair is C-regular [4]. 

In [4], it has been proved that when the matrix pencil "zE — A" is column regular 
then the solution to the system defined by (6) is unique. 

Above definitions and theorem can be used when the multidimensional column 
regularity problem is stated in terms of column-regularity of 2-pencils. 

3. FORM PRESERVING POLYNOMIALS 

In order to link the multidimensional Z-transform with one dimensional Z-trans-
form the following definition which is a generalization of the definition in [7] is 
needed. 

Definition 5. A 1-D polynomial 

p(x) = i akx
k (10) 

fe = 0 

is a form preserving polynomial with respect to r-dimensional "r-D" polynomial 

mi mr 

P(*l .••*-) = Ti'"llaU...trXi •••*'" ( m l = m 2 = ••• = mr) (11) 
i i = 0 i'г = 0 
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if for every integer set (ilt i2, ..., ir) in p(xt, x2, ..., xr) there exists a unique k in 

p(x) such that ak = ahh^tir. 

As a consequence of this definition, the number of distinct terms in p(xu x2, ..., xr) 

is equal to the number of distinct terms in p(x). 

Theorem 2. Let p(x) be the 1-D polynomial obtained from the r-D polynomial by 

p(x) := p(xx, x2,..., xr)|xi «.--•,, /.^N 

Xr = XL

r 

then for Lx : = 1, L2 : = (mt + 1), L3 : = (mx + 1) (m2 + 1),..., L, :— (mt + 1). 

. (m2 + 1) ... (m r _ x + 1), p(x) is form preserving. 

Proof. Consider the distinct monomials x\lx2

2x'^ ... xr

r and x^x^x^3 ... xj

r

r of 

p(xx, x2, ..., xr). Suppose that with the assignment given above these monomials are 

transformed to the same monomial in x, that is 

xhxL2i2xL3h _ _ _ xLrir = xJixL2j2xL3h t > _ xLrjr ( 1 3 J 

(13) implies that 

(h ~ ji) + ( m i + 1) (ii ~ h) + (mi + 1) (mi + 1) (i3 - 13) + " . 

... +(mt + l ) ( m 2 + l)...(mr_x + l ) ( / r - j r ) = 0 

which can also be written as 

П (mk + 1) (ir - jr) = (h - Л) + (m, + 1) (i2 - j2) + • •, 
= i 
r - 2 

• П K + iЖ-i -jV-i)-

fc=l 

r - 2 

fc=l 

Taking the absolute value of each side and using the triangle inequality the following 

inequality is obtained. 

r - l 

I I (mk + 1) \h ~ Jr\ ^ |''l ~ j'll + (ml + 1) \i2 ~ Jl\ + ••• 
fc = l 

.» + I _ ( « - + l ) | - r - l - I r - l | . (14) 
fc=l 

a s \ik " Jk\ = mk (14) becomes 
r - l r - 2 

Y\(mk + 1) = m± +(mt + 1) m2 + ... +U(mk+ l)mr_. . (15) 
fc=i fc=i 

r - l r - 2 r - 2 

Since [ ] (mk + 1) = ["[ (mk + 1) m r_ x + [ ] (mk + 1) , (14) is reduced to 
fc=i fc=i fc=i 

r - 2 r - 3 

f[ (mk + 1) = mt + (mt + 1) m2 + ... + [T (mk + 1) mr_2 (16) 
fc=i fc=i 

Reducing (16) successively (mx + 1) ^ mx is obtained which is a contradiction. 
Therefore, the assumption made in the proof is not true and the theorem holds. • 
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Theorem 3. Let the coefficients ailh ir in (11) be all non-zero. Then the values 
for Lt in (12) are minimal values to preserve the form. 

Proof. When xLi is assigned as in (12), the polynomial in (11) can be written as 
mi m2 mr 

p(x, xL\ xL\..., xL-) = £ I ... Z «M2...i,*fl*tl<3 » . ^"ltr (17) 
• 1 = 0 12 = 0 ir = 0 

Let aft := aiii2 ir and fe := ^ + Lii2 + ... + Lr_i/r then (17) is 
d 

p(x) = £ afcx
fc 

fc = 0 

where d = m1 + (mx + 1) m2 + (mx + 1) (m2 + 1) m3 + ... + (mx + 1) ... 
. . . (mr_ j + 1) mr. The total number of aks is d + I which is equal 

d + 1 = mt + (m1 + 1) m2 + (m1 + 1) (m2 + 1) m3 + ... 

... + (mx + 1) (m2 + 1) ... (mr_ t + 1) mr + 1 = 

= (m1 + 1) [(m2 + 1) + (m2 + 1) m3 + ... + (m2 + 1) ... 

... (mr_ i + 1) mr] = (mi + 1) (m2 + 1) ... (mr_ x + 1) (mr + 1) = 

= fl(m(.+ l). 
i = l 

Hence, the number of terms of the polynomials (10) is exactly equal to the number 
of terms of the polynomial in (11) and therefore the theorem holds, • 

Example 1. Let p(xx, x2) = a00 + a01x2 + a02x\ + a10x1 + a11x1x2, then 1-D 
polynomial 

px(x) := p(xx, x2)\Xl=x = a00 + a01x
2 + a02x

4 + a10x + anx
3 

x2=x2 

is a form preserving polynomial with respect to 2-D polynomial p(xt, x2). 

Suppose that some monomials in (11) have zero coefficients. In this case, the 
assignment given in theorem (2) is not minimal. The following example will illustrate 
this point. 

Example 2. Let p(xx, x2) = a00 + a20x\ + a11x1x2 + a02x\. Then according to 
Theorem 2, 

px(x) := p(xx. x2)\Xl=x = a00 + a20x
2 + alxx* + a02x

6 

X2=X3 

is a form preserving polynomial with respect to p(xx, x2). But 

p2(x) := p(x1,x2)\Xl=x = a00 + a20x
2 + altx

3 + a02x
A 

X2=X2 

is another form preserving polynomial with minimal assignment. 

When a homogenous polynomial is considered the assignment given in Theorem 2 
as Example 2 shows is not necessarily the minimal one in degree. Because there 
is no one-to-one correspondence between the monomials of a homogeneous poly-
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nomial and the ones of a polynomial in the form (11). The following assignment will 
ensure that the resulting 1-D polynomial is the form preserving polynomial with 
respect to the homogenous polynomial. 

Notation. RlJ[x1. x2,..., xr] denotes the set of all polynomials of degree i, homogen­
ous in xt, x2, ..., xr over R. 

Fact 1. Number of terms in a polynomial in r — 1 variables of degree equal to 
n is equal to the number of terms of monomials of degree n in r variables. 

Theorem 4. p(x) := p(x1, x2, x2,..., xr) xl = 1, x2 = x, x3 = x (m+1) , x4 = 
= x(-m{-m+1) + 1\ ..., xr = xq is the form preserving polynomial with respect to 
p(xi, x2, ..., xr) e Rm(xx, x2, ..., xr) where q = mr~2 + mr~3 + ... + 1. 

Proof. Since the number of monomials of degree m in r variables is equal to the 
number of monomials of degree _ m i n r - 1 variables (Fact 1), there is one-to-one 
correspondence between the terms of the homogenous polynomial p(xt, x2, ..., xr) 
and the polynomial p(x2, x3, ...,xr) := p(xx,x2, ..., xr)|Xl = 1. The degree of mono­
mials of p(x2, ..., xr) is less than or equal to m and 

p(x2, X3, ..., Xr) = X ... £ aju2...jA2 • • • 4r (18) 
J2 = 0 j r = 0 

r r 

where YJi = a n d ji = m ~ EL-
i = 2 i = 2 

With the above assignment a polynomial in two variables p(x2, x3) can be written as 

p[X2, X3)\X2=ZX = (c7m0 ,o + am-l,0,lX + ••• a0,0,mxm m ) + 
X 3 = x m + i 

+ ^ , - 1 , 1 , 0 + 0.-2.1.1**-*-* + ••• + a0,Um-lx(m~inm+1)) + 

+ iw"1(«i,«-i ,o + «o,,n-i,t-^(m+1)) + xmfl0;m;0 (19) 

whose terms are distinct. Now assume that the above assignment for the polynomial 
in r — 1 variable "P(x2* x3,..., x r__)" with x2 = x, x3 = xm+1, ..., xr_t = 
= xmr +mr "'+l is form preserving. A polynomial in r variables iip(x2, x3, ..., x r)" 
can be written as 

n 
p(x2,X3,...,Xr) = £ x r - ^ * ( X 2 > * 3 > ' - - » * r - l ) ( 2 0 ) 

i = 0 

where pm^i(x2,..., xr_l) is an r — 1 variable polynomial with degree m — i. By 
induction hypothesis each terms of pm^i(x, xm+1, ..., xqi) where qx = mr~3 + 
+ m r~4 + ... + 1 will be distinct and highest degree term will be xm'qi. Therefore 
the assignment for xr should be xmqi + 1 where mq1 + 1 = mr~2 + mr~3 + ... + 1. 

D 
This result can be used to state column-regularity problem of an n-pencil in terms 

of column-regularity of minimal degree one-dimensional polynomial matrix. Minima­
lity is needed since the associated companion form will have a minimum dimension. 
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Theorem 5. The pencil in (2) is C-regular if and only if E(x) = ]T xqiEt is C-regular 
i ; = i 

where qt = 0, qt = ]T m'~fc 2 ^ i ^ n. 
k = 2 

Proof, (if part) is obvious. 
(Only if part): Assume that E(x) is not C-regular which implies all m x m de­

terminants of E(x) are identically equal to zero which means all coefficients are zero. 
Since the assignment xqi = xt is form preserving, by Theorem 4 all coefficients of 
any m x m subdeterminant of E(x) are zero; hence E(x) can not be C-regular. • 

Theorem 6. The p-D polynomial matrix defined in (5) is invertible (regular) if 
E(x) := E(xu x2,..., xp)\Xl=xri where rt = 1, r2 = (n.n + 1), ..., rp = (n^n + 1) . 

.(n2n + l) ... (np_!« + 1) is regular. 
Proof. Is similar to the proof of Theorem 5 when the assignment given in Theorem 

2 is considered with m, = ntn for i = 1, 2, ..., p. • 

Thus, as results of Theorem 5 and 6, column regularity of the pencil in (2) and the 
invertibility of (5) can be investigated in terms of column regularity and invertibility 
of their related one dimensional polynomial matrices, respectively. Then using 
Theorem 7 given below, regularity of a one dimensional polynomial matrix can be 
converted to column regularity of a pair of matrices and the geometric condition 
given in (9) can also be applied to multidimensional polynomial matrices. In order 
to find this relation, the companion form of a polynomial matrix is needed. 

Definition 6. Let E(z) be an n x m polynomial matrix of degree d: 

E(z) = E0 + Eiz + E2z
2 + ... + Edz

d (21) 

where each Et is real matrix. The associated companion form of E(z) is zE — A 
where E and A are 

E: = 

I 0 . . . 0 0 + I 0 . . . 0 
0 I . .. 0 

I 0 
A : = 

0 0 + I . . . 0 
+I 

0 0 . .'• Eđ — E0 —Ei - £ _ - i 

(22) 

Theorem 7. E(z) in (21) is column regular if and only if the pair (E, A) defined 
in (22) is column regular [2]. 

The following example clarifies the above procedure and the usage of Theorem 7. 

Example 3. Let the pencil of 3-matrices be 

E(xt, x2, x3) = Xl [ j ° ] + x2 [ ° 1 J + x3 [ J J J . 
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With the assignment given in Theorem 5 

._(„)-= 
Гl 0І Гo V] Гo o l Гo o~| 

1 0 + X 0 0 + x2 

0 0 + X* 0 1 

According to (22) E and A are 

1 0 " 0 0 1 0 0 0" 

0 1 0 0 0 1 0 0 

E = 
0 0 1 0 
0 0 0 1 

A = 
0 0 0 
0 0 0 

0 1 0 
0 0 1 

0 0 
0 1 

- 1 0 0 
- 1 0 0 

- 1 0 0 
0 0 0 

The characteristic subspace of (E, A) is found by the following iteration 

v ( f e + 1 ) = A~1(Ev(fc)), v ( 0 ) = w6 

which yields V* as V* = V(/c+1) = V(fc) for the smallest k for which equality holds. 

1" 
0 
0 

• 1 

0 
0 

V ( 1 ) = Im 

0 0 1 0 0T 
1 0 0 0 0 

0 1 0 0 0 

0 0 - 1 0 0 

0 0 0 0 0 

0 0 0 0 1 

V ( 2 ) = Im 

0 0 0 
1 0 0 

0 0 1 

0 0 0 

0 1 0 

0 0 - 1 

V ( 3 ) = Im 

0 0 
1 0 

0 1 

0 0 

0 0 
0 - 1 

v ( 5 ) = V ( 6 ) s= v* Im 

V ( 4 ) = Im 

гo 01 

1 0 

0 1 

0 0 

0 0 

_0 - 1 _ 

The characteristic kernel of (E, Á) is 

N = ker E n V* Im 

Г°l "0" 

0 1 

0 
0 

n Im 
0 

0 

1 0 

Л _0_ 

= 0 

Hence, the pair (E, A) is C-regular and so is E(xx, x2, x3). 
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4. CONCLUSIONS 

Uniqueness of solutions for multidimensional implicit linear systems can be 
investigated first by converting the multidimensional polynomial matrix in (5) 
to the one-dimensional polynomial matrix using the assignment given in Theorem 6 
and then determining its associated companion form through Theorem 7 and finally 
finding the characteristic kernel of the related 2-pencil. 

Using the assignment given in Theorem 5 and finding the characteristic kernel 
of the 2-pencil related to this assignment, the column regularity of n-pencil in (2) 
can be determined and hence it can be decided whether the related network parameters 
can be uniquely determined from the measurements or not. 

Thus, the new approach which needs to determine some subspaces has been 
introduced to test CR of an n-pencil and a multidimensional polynomial matrix 
while the other methods existing in the literature [1, 3] use iterative techniques. 

In [8], another method based on the multivariable polynomial interpolation to 
test regularity of n-pencil has been introduced. In this algebraic method specific data 
points are chosen to test CR of n-pencil. 

(Received November 30, 1990.) 
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