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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 6 

Some Further Remarks on the Index 
of Context-Free Languages 

A. B. CREMERS, K. WEISS 

Let x be a complexity measure for grammars. The following problem is investigated: Do there 
exist such context-free languages L that no context-free grammar generating L can be minimal 
both according to x and according to the index? For a set of well known complexity measures the 
answer is in the affirmative. 

1. THE INDEX OF GRAMMARS AND LANGUAGES 

Let G = (TV, T, P, S) be a context-free grammar (CFG), where JV is the set of 
nonterminal symbols, T the set of terminal symbols, P c JV x (IV u T)* the set of 
productions and S in JV the start variable. Let e denote the empty word and L(G) the 
language generated by G. 

Following [ l ] , we now define the index of G. Let F be a derivation of a word w 
in (JV u T)* according to G: 

F : S = w0 =>* w± =>* .. . =>* w„ = w . 

We define 

Ind (F) = max {l(d(wt)) \ 0 = i = n} , 

where d(w) is the word obtained from w by deleting all terminal symbols, and for 
a word w, l(w) denotes the length of w; 

Ind (w) = min {Ind (F) | F is a derivation of w according to G} ; 
Ind (G) = max {Ind (w) \ w in L(G)} , 
Ind (L) = min {Ind (G) | L = L(G)} . 

In [5] the existence of a context-free language (CFL) of infinite index is proved 
and in [3] a hierarchy of context-free languages is established with respect to the 
index. This gives rise to the question how this hierarchy is related to well known 



complexity hierarchies of context-free languages. To this end, we collate in Section 2 
the definitions of several complexity measures for grammars, as introduced in [2]. 
In Section 3 we show that, for a CFG, the requirements of simplicity with respect to 
such a complexity measure and with respect to the index are in general in conflict. 

2. COMPLEXITY MEASURES FOR GRAMMARS 

Let G = (N, T, P, S) be a CFG. A binary relation o on N is defined as follows. 
For A, B in N the relation A c=-B holds, iff there exist x, y in (N vj T)* such that A -> 
-> xBy is a production in P. Let o * denote the reflexive and transitive closure of 
the relation t>. The nonterminal symbols A and B are said to be equivalent, shortly 
A = B, iff both A i>* B and B c=>* A holds. Each equivalence class of N according 
to = is called grammatical level of G (cf. [2]). For a grammatical level Q of G, let 

Depth (Q) = card (Q). 

A grammatical level Q is termed nontrivial if Depth (Q) > 1. 
We define 

Depth (G) = max {Depth (Q) | Q is a grammatical level of G} , 
Lev (G) = the number of grammatical levels of G , 
NLev (G) = the number of nontrivial grammatical levels of G , 
Var (G) = card (IV), 
Prod (G) = card (P) . 

Let xy be a complexity measure defined for a class y of grammars and L a language 
which can be generated by a grammar in y. 

Then we define 

xy(L) = min {xy(G) \Giny, L = L(G)} . 

If a complexity measure x is defined for all CFG's and CFL's, respectively, we mostly 
omit the subscript of x. 

3. INCOMPATIBILITY OF THE INDEX AND GRUSKA'S 
COMPLEXITY MEASURES 

Let x be one of Gruska's complexity measures of Section 2. In the following, we 
study the question whether there are CFL's Lsuch that no CFG generating Lean be 
minimal both according to x and according to the index. As it will be shown in this 
section, the answer to this question is in the affirmative for each complexity criterion 
of Section 2. 

Let y denote a class of grammars and T = {L = L(G) \ G in y}. For a complexity 



measure xy defined on y and a language Lin T let 

x;\L) = {G e y \ L = L(G), K,(G) = *y(L)} . 

Definition. Two complexity measures xyA and %y2 are said to be compatible iff 

*-}(L) n Ky-j(L) * 0 

for each L in L. 

Let c and lin denote the class of all context-free grammars and the class of all 
linear grammars, respectively. 

The proofs of the results in this section are based on the following consideration: 
Clearly, for each linear language L, Ind (L) = 1 holds; furthermore, Ind (G) = 1 

iff G is a linear grammar. Thence, in order to show that a complexity measure x and 
Ind are incompatible, it is sufficient to construct a linear language L such that for 
a nonnegative integer n both xc{L) g n and xlin(L) > n holds. 

Theorem 1. 

(1) Var and Ind are incompatible. 

(2) Lev and Ind are incompatible. 

Proof. Let R = {b}* a{b}* a{b}* a{b}* a. R is also written in the form 

R = R1R2 

where Rj = {b}* and R2 = a{b}* a{b}* a{b}* a and 

R = R3aR4aR5aR6a 
where 

R. = {b}* , 3 ^ i = 6 . 

(l) R is generated by the following grammar: 

Gj = ({S, A}, {a, b}, {S - AaAaAaAa, A -> bA, A - e}, S). 

Thence, Var (R) = 2. 
Next we show that Varlin (R) > 2. 
Assume Varlin (R) = 1. Let G2 be a linear grammar with only one variable S 

generating R. For a word x = xtx2 ... xn of arbitrary length, xt in {a, b}, let q{x) 
denote the number of indices i such that x ; 4= x i + 1. Clearly, for all w in R, q{w) = 1 
holds. 

If S -• PiSp2 is a production in G2, then a(j8,) = q(P2) = 0. Otherwise, a word 
P\wf$\ could be generated which does not belong to R. But then we may conclude 
that fit is in {b}* and P2 = e. Thence, by productions of the form S -> pxSP2 only Rt 

is generated. Therefore, R + L{G2). 



Assume Varlin (R) = 2 and let G3 be a linear grammar for R with only two 
variables S and A. If S = A then for all /?., J?2, P3, P* in T* with S =>* j M 0 2 and 
A =>* /?3S/?4, /Jlt93 in {*>}* and p2pA = £ holds. Furthermore, if A -> a!Aa2 and 
S -*• 7iSy2 are productions of G3, then a ^ is in {b}* and a2y2 = £. Thence, only Rt 

is generated by the productions considered so far. If S ^ A, then RAaR5aR6 must 
be generated by productions of the form A -* axAa2 and A -»• y where a l5 a2, y 
in T*; but this is impossible. Therefore, Varlin (R) > 2. 

(2) Since R = L(GX), Lev (R) g 2 holds. 

We show that Levlin (R) > 2: 
Clearly, Levlin (R) > 1. Assume Levlin (R.) = 2. Then there is a linear grammar G4 

generating R. Let Nt = {S = A0, Aj, ..., A„} and iV2 = {B1( ..., Bm} be the equi­
valence classes of nonterminal symbols of G4 according to = . If A; -* aAjfi, 0 ^ 
| i g n A ^ j g n, is a production of G4, then a is in {b}* and /? = £ holds. Thence, 
RAaR5aR6 must be generated by productions whose left-hand sides are in N2, i.e. 
productions of the form Bt -* dBfi' and Bt -* y. Since dp' must be in {b}* we 
get a contradiction. Therefore, Levlin (R) > 2. 

Theorem 2. Depth and Ind are incompatible. 

Proof. Let R = {{b}* a{b}* a{b}* a{b}* a}+a. R is a regular language, therefore 
Depth (R) = 1. (For a set of words M,M+ denotes the £-free catenation closure 
of M.) 

In the following, we show that Depth l in (R) > 1: 
Assume that there is a linear grammar G = (N, T P, S) such that Depth (G) = 1 

and R = T(G). Let N = {S = A,, ..., A„}. G is a sequential grammar, i.e. 

A; t>* A7 implies i ^ j , 1 g i ^ n . 

At first we consider productions of the form 

At -* aijAiPij, 

1 = i g n, 1 Sj ^ «i- Let /0(w) denote the number of occurences of a in a word w. 

Assertion 1. For each production At -* a^A^y there is a nonnegative integer q 
such that 

la(*M = 4a . 

Proof. Let xt in R be so that there is a derivation of Xj according to G in which 
the production At -> a^AiPij is applied: 

A! =>* aA,.^ => aaijAiPijP ^* aauyiPijp = xx . 

Since for each x in R there is a nonnegative integer k with I„(x) = 4k + 1, there 



exists an i0 such that 

Wi) = 4'o + 1 - h(*P) - IJlpuPu) • 

For x2 = actijUijyiPijPijP we have 

la(x2) = 4.0 + 1 + U«y^y) • 

Since x2 is in R there exists a / 0 such that la(x2) = 4/0 + 1. Thence, 

. . . U*M 
Jo - to + — ^ " • 

This proves Assertion 1. 

In the sequel, we consider words of the form 

x = (blafm a . 

Let A -* J91̂ 4y32 be a production of G with Z«(/?ijS2) > 0. Then la(fij2) = 4 bY 
Assertion 1; so either pi or p2 or both can be written in the form 

uabniav 

where u and t> are in T*. 

If r = max {/(/?) | A -> 0 is a production of G} then n t < r. Consequently, if 
a production A -> /?tA/?2 with la(Ptp2) > 0 is applied in a derivation of a word 
x = (fc'a)4m a according to G, then 1 < r holds. 

Let 

P . = {A ; - a y A ^ l 7 in P | / 0 ( a i ; j y = 0} , 
P 2 = {A( -» ff^j»7y in P | 1 g i ^ / g n} , 
P 3 = {A; -> y in P | y in T*} 

and let 

k = Z ^ « V y ) • 
Pi 

Consider x = (/j ra)4( t+r) a. By the above remark, no production A -* /?iAj52 with 
la(PiP2) > 0 can be applied in a derivation of x. Since G is assumed to be linear and 
sequential, each production of P 2 can only be applied once in a derivation according 
to G. Hence, any word generated by productions in P . u P 2 u P 3 contains at most 
k + r occurrences of a. 

Clearly, by the above construction 

x = (bra)4ik+r> a 

is not in L(G); but x in R, a contradiction. 
This proves Theorem 2. 



Corollary 3. NLev and Ind are incompatible. 

Proof. Let R be as in the proof of Theorem 2. Clearly, NLev (R) = 0. Since 
Depth l in (R) > 1, also NLev (R) > 0 holds. 

Theorem 4. Prod and Ind are incompatible. 

Proof. Let L = {a1 | 0 ^ i ±? 10}. 

L can be generated by the following grammar 

G = ({S, A}, {a}, {S -» A10, A -> a, A - • e}, S) . 

Thence, Prod (L) ^ 3 . 
We show that Prod l in (L) > 3. 
Assume Prod l i n(L) = 3 and let G be a linear grammar with Prod (G) = 3 

generating L. For no nonterminal symbol A, A =>* aA/3 holds. Therefore, the set of 
productions of G is of one of the following forms: 

(1) 
(2-1) 
(2.2) 
(2.3) 

(3) 

where all a;, /?;, yt are in T*. 
But no one of these production sets can generate L, a contradiction. 
This proves Theorem 4. 

(Received February 21, 1973.) 

S - • OL^Aß^ , A -> a2Bß2 , B^y, 
S -> a^Aßv , A-*yx, A-> y2 

S - • ЯiA/?! , S-+Уi, A-+y2 

S -+ a^Aß^ , S -> a2Aß2 , A^Уl 

Ѕ - У i , S ->y2 , S -*Vз 
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