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K Y B E R N E T I K A - VOLUME 27 (1991), NUMBER 5 

A PRIORI RESULTS IN LINEAR-QUADRATIC 
OPTIMAL CONTROL THEORY* 

TON GEERTS 

In the present paper we shall see that philosophizing on the specific nature of Linear-Quadratic 
optimal Control Problems (LQCPs) yields several a priori statements that are valid for the entire 
set of these problems. For instance, the real symmetric matrix that represents the optimal cost 
for a particular LQCP necessarily is a rank minimizing solution of the dissipation inequality 
(DI). Since, in case of a positive definite input weighting matrix, the set of these solutions of the DI 
is equivalent to the set of real symmetric solutions of the algebraic Riccati equation (ARE), our 
result thus covers both the regular and the singular case. In addition, we will provide a character­
ization of the afore-mentioned set of solutions of the DI. 

Next, a serious attempt is made at reducing general (indefinite) LQCPs to nonnegative definite 
LQCPs. Moreover, a distributional framework for singular LQCPs is proposed. 

1. PRELIMINARIES 

In this paper we will conider the linear time-invariant finite-dimensional system 27: 

x = Ax + Bu , x(0) = x0 , ( h l a ) 

where x(t) e R", u(t) e Rm for all t ^ 0, together with the quadratic form in (x, u) e 

eR"+ m 

w(x, u) = x'Qx + lu'Sx + u'Ru , (1.1b) 

with Q = Q', R = R'. All matrices involved are real and constant. 

The allowed inputs are assumed to be elements of C™m : = 

{u: R+ -> Rm | 3 3 V : u(t) = v(t)} , (1.2) 
£ > 0 v e C 0 0 ( ( - e , o o ) - + R n ) I g O 

the space of controls that are smooth on [0, oo). Now we introduce the infinite horizon 

cost criterion 

J(x0, u) := Jo° w(x, u)dt, (1.3) 

and here j 0 w(x, u) dt is understood to be lim ]"£ w(x, u) dt. The class of x0-dependent 
T-*oo 

* Presented at the IFAC Workshop on System Structure and Control held in Prague during 
25-27 September 1989. 
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elements of C™m for which this limit exists in R u { + oo}u { —oo}, is denoted by 
U(x0). With x = x(x0, u) we indicate the dependence of x on ;c0 and u. Then, let T c 
<= R" be an arbitrary subspace. We define the distance from x(x0, u) to T at infinity by 

do0(x(x0, u), T) : = lim d(x(x0, u) (t), T ) , (1.4) 
t-*O0 

if this limit exists. Here d(x, T), x e R", denotes the (Euclidean) distance from x to T. 
Without loss of generality, we may assume that 

\B' S R]' is of full column rank . (1.5) 

The general infinite horizon Linear-Quadratic optimal Control Problem with stability 
modulo T (LQCP)T now is defined as follows: 

For x0 e R", determine 

JT(x0) : = inf {J(.x0, u) | u e U(x0) such that dX)(x(x0, u), T) = 0} (1.6) 

and, if for all x0 JT(x0) is finite, then characterize, if one exists, all controls u* e\J(x0) 
(i.e., all inputs u* e U(x0) for which J(x0, u*) = JT(x0)). 

Next, we introduce the dissipation matrix 

F(K):=[ 
Q + Л'K + KЛ KB + S'' 

B'K + S R 
(1.7) 

where K denotes any n x n real symmetric matrix. If E(K) = 0, then K is said to 
satisfy the Dissipation Inequality (cf. [9]), abbreviated DI. We will define 

T : = {KeRnXn\K = K',F(K) = 0} , (1.8) 

the set of solutions of the DI. 
I f ( s i t 2 e C ) 

H(su s2) : = R + B'(lsx - A')"1 S' + S(ls2 - A)~x B 

+ B'(lst - A')'1 Q(ls2 - A)-'B, (1.9) 

then we may set 

Q : = normal rank (H( — s, s)) . (1.10) 

Now Schumacher [8] established that 

Lemma 1.1. If K e T, then rank (E(K)) = Q. 

Hence we are invited to define 

r m i n : = {K € T | rank (F(K)) = Q] , (1.11) 

the set of rank minimizing solutions of the DI. 
For every K e F it is possible to find real constant matrices CK and D^ such that 

\CK DK] is of full row rank and such that E(K) = \CK DK~\' \CK DK]. If, in addition, 
we define the linear system IK by the system equation (1.1a) and the artificial output 
equation 

yK = CKx + DKu (1.12) 
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(u e C™m), then it is readily seen (cf. [9]) that for every x0, every T> 0 and every 
smooth u, 

ft w(x, u) dt + x'(T) K x(T) = ft y'KyK dt + x0Kx0 , (1.13) 

with x(T) = x(x0, u) (T), of course. For further use, we set (K e r ) 

JK(X0,U):= $yKyKdt (1.14) 

(and we admit that this might cause some slight confusion). Moreover, we note that 
[B' D'K~\' is of full column rank (if Bu = 0 and DKu = 0, then Ru = 0 and 0 = 
= C'KDKu = (KB + S')u = S'u, whence u = 0). Finally, we mention that, if 

r J t (») : - .D J t + C J C ( i / - i 4 ) - t .B (1.15) 

(seC), then (1.10) Q = normal rank (TK(s)) (cf. [9]). The relation (1.13) will be of 
paramount significance in the sequel, as it has been before in e.g. [1], [9]. 

Now we make the following 

Standing Assumption. (A, B) is stabilizable and 3 : K° ^ 0. 
j r°sr 

Note that thus, in particular, R > 0 and that K° is not necessarily required to be 
in rmin. Furthermore, we observe that 

0 e r < e > | ^ ^ 1 > 0 o V V : w ( x , u) = 0 (1.16) 

and LQCPs with a nonnegative definite integrand will be called nonnegative definite 
LQCPs. The remaining ones will be called indefinite. 

Proposition 1.2. For every subspace T and every x0, U(x0) + 0. Moreover, 
there exist real symmetric matrices M+ and M~ such that, for all subspaces T 
and all x0, 

x'0M~x0 = JT(x0) ^ x'0M
+x0 . 

Proof. Let F e RmXn be such that AF := A + BE is asymptotically stable. By 
applying the feedback law u = Ex, we get that the solution of (1.1a) equals exp (AFt). 
x0 and thus x(t) ~> 0 (t -> oo). Hence, for all x0, J(x0, u) = x'0M

+x0 with 

M+ = $ (exp (Apt) [Q + F'S +SF + E'RE] exp (AFt)) dt 

and M+ is clearly real and symmetric. We establish that U(x0) + 0 and that for all 
T, JT(x0) ^ J0(*o) = x0M

+x0. On the other hand, it follows from (1.13) that for 
any T> 0 and any u, ft w(x,u))dt > x0K°x0, since K° S 0. Hence for all x0 

and all T, JT(x0) > JRn(x0) ^ x'0M~x0 with M~ = K°. 

Corollary 1.3 ([6], [7]). Consider (LQCP)T. There exists a unique KT 6 {K e 
e RnXn | K = K') such that, for all x0, JT(x0) = x0KTx0. Moreover, KT e T. 

In Theorem 2.1 we will confirm an old conjecture concerning KT raised in [9]. 
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2. A GENERAL DETERMINATION OF rmin 

Theorem 2.1. Consider (LQCP)T. There exists a unique KT e rmin such that, for all 

•*o? «ITv-x:oj — x0KTx0. 

Proof. See Theorem 2.1 in [4]. • 

If R > 0 (the regular case), then we can define the quadratic matrix function 

(f>(K) := Q + A'K + KA - (KB + S') R_1 (B'K + S) (2.1) 

(K an n x n real symmetric matrix), and it is immediately seen (cf. [9]) that then 

r = {K e RnXn \K = K', (j)(K) ^ 0} , (2.2) 

rmin = {Ker|</>(K) = o} . 
In other words, in the regular case the elements of Tmin are the real symmetric solu­
tions of the algebraic Riccati equation (ARE) <t>(K) = 0. 

In the singular case (R not positive definite) (f>(K) is not defined. However, we 
will present a representation of rmin that captures both the regular and the singular 
case. 

For this we will need the following concepts. Let K eT and IK be the system 
described by (1.1a) and (1.12). Then the weakly unobservable subspace associated 
with IK is defined by 

VK = y(Zx) • = {*o e R" I 3 : yK(xQ, u) m 0} (2.3) 
ueCsm

m 

and it is the largest subspace L for which there exists an FeR m X " such that (A + 
+ BE) L c L, (C- + DKF) L = 0(cf. [5]). Dually, W^ = W ( ^ ) i s the smallest subspace 
S for which there exists a G e RnXrk such that (A + GCK) S c S, im (B + GDK) c S. 
Here rk = rank (F(K)) = rank ([CK Dj). We state without proof that W = 0 if 
and only if ker(DK) = 0. Finally, we introduce R^ := V^ n W^. Set W := WKo, 
R : _ Rx0. In Section 2.3 of [4] it is proven by direct computation that 

Proposition 2.2. For every K e T, we have that Wx = W, Rx = R and 
(K - K°) W = 0. 

Next, if R+ denotes the Moore-Penrose inverse of R _ 0, then for any real sym­
metric matrix K of dimension n we may define 

</>0(K) := Q + A'K + KA - (KB + S') R+(B'K + S) . (2.4) 

If (K e T) CK
1 im (DK) : = {u e Rm \ CKu e im (DK)} , then it is obvious that 

C-1im(DJC) = ker(<A0(K)) (2.5a) 

and hence, if 

WK2 : = WK n (C- J im (DK)), W2 : = W n (CKO
l im (DKo)) , (2.5b) 
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then, by Proposition 2.2, for every K e T, 

WK2 = W2 . (2.5c) 

We arrive at one of our main results. 

Theorem 2.3. Let Wx be any left invertible matrix such that im (Wx) © W2 = W. 
Then 

T = {K e R"x" \K = K',(K - K°) W = 0, ij/(K) = 0} 
and 

Tmin = {K e R"x" | K = K', (K - K°) W = 0, X\J(K) = 0} 

with, for every n x n real symmetric matrix K that satisfies (K — K°) W = 0, 

rlf(K) := <j>0{K) - (UK)) Wx(Wi(<i>0(K)) W,)'1 W/(0o(K)). 

and it holds that W c ker (ij/(K)). 

Proof. Theorem 2.34 in [4]. • 

For one thing, Theorem 2.3 expresses that i/t(K) is independent of the choice 

for Wx. If R > 0. then W = 0 and we reobtain the results in (2.2). If ~ = 0, 

i.e. if 0 G r (1.16), then Theorem 2.3 transforms into Theorem 3.3 of [3]. Theorem 
2.3 can also be given in a form which is independent of K°; in Section 2.3 of [4] 
the author describes in full detail a sequence of matrix computations, to be applied 
to the matrices A, B, Q, S and R. In fact, this technique is nothing else than the 
application of the generalized dual structure algorithm (cf. [2]) to a system IK 

(K e r ) , without actually knowing the matrices CK and DK\ This technique leads 
to matrices B, S' and B, S' and R, where R is invertible, rank (R) = Q (1.10). Then, 
if for any real symmetric K of dimension n, 

$(K) := Q + A'K + KA - (KB + S') R'^B'K + S) 

and 
L(K) :=KB + S', 

it follows that K e T if and only if L(K) = 0 and $(K) = 0. Moreover, if L(K) = 0 
then (<P(K))B = 0. In addition, K e Tmin if L(K) = 0, 4>(K) = 0 (see Proposition 2.31 
(h) - (i) in [4]). Of course, if R > 0, then B, S' are not appearing, B = B, S' = S', 
R = R. Hence, if for some real symmetric K° <: 0, L(K°) = 0 and $(K°) ^ 0, 
then, apparently, there exists a negative semi-definite element of T. 

So much for the computational aspects of this paper. Now it is time for some 
analysis. 
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3. LINEAR-QUADRATIC CONTROL PROBLEMS IN A BROAD 
PERSPECTIVE 

Let K be any real symmetric matrix of dimension n. Then, due to Theorem 2.1, 
there exists a unique K e rmin such that, for all x0, J^T(K)(xo) = x'oKx0. This defines 
^.function 

n:{KeR»*»\K=K'}->Tmin (3.1) 

with n(K):= K. 

Lemma 3.1. Let KeT. Then n(K) = K. 
Proof. Take any x0 e R" and let u = U(x0) be such that d00(x(x0, u), ker (K)) = 0 

(such a control exists!). Then (1.13)-(1.14) J(x0, u) = JK(x0, u) + x'0Kx0 and thus 
n(K) = K. D 

If K is real and symmetric, but K <£ T, then we cannot say that n(K) ^ Kl Recall 
(Theorem 2.1) that every subspace T generates an element KT of rmin. Note that 
n(0) = KRn, n(l„) = K0. More generally, let T be a given subspace, and let the matrix 
T (of full row rank) be such that ker (T) = T. Then ker (T) = ker (KT) = T with 
KT := T'T, and hence n(KT) = KT. From this observation we derive directly that 

Lemma 3.2. 

V :n(n(K)) = n(K)o V :n(KT)=KT. 
Ke{KeRn*»\K = K'} T<=R" 

We introduce 

T'Jn:={K-Tmin\n(K)=K} (3.2) 

and note from the above that 

r„X = {K e R"x" I K = K', n(K) = K} . (3.3) 

If, from now on, 

K~ :=KRn,K
+ :=K0, (3.4) 

then we find that r ^ n * 0, since K+
 = n{K+) (0 c ker(K+)) and n(K+) = K+ 

(Lemma 3.1). It follows easily from Lemma 3.1 that K+ is the largest element of T 
and thus K+ is the largest element of rm?n. 

Now suppose that we are able to prove that for every T c R", KTeTmin (i.e., 
that n2 = n, by Lemma 3.2). Then, clearly, 

K~ is the smallest element ofT^n . 

If this turns out to be true, then it is the set T^m rather than the set rmin which appears 
to be the pivot in linear-quadratic optimal control theory: 

Every KT e T^in and K+ and K~ then are the largest and smallest element of this 
set, respectively. 
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But first, for something completely different. Recall (1.12)-(1.14) and read KT 

instead of K there. 

Theorem 3.3. Let u e V(x0) be such that da0(x(x0, u), T) = 0. Then 
(a) J(x0, u) > JKT(X0, U) + x'0KTx0 . 

Now assume that J(x0, u) is finite. Then the next statements are valid. 
(b) The limit (x'(') KTx(*))00 := lim (x'(T) KT x(T)) exists and it is smaller than 

or equal to zero. r->0° 
(c) J(x0, u) = x'0KTx0 o {x'(-)KT x('))x = 0 and yKr = 0}. 
(d) Inf {JKj(x0, u) | u e C™m such that dOD(x(x0, u), T) = 0} = 0. 
(e) If K e {K G T | KT = 0}, then K ^ KT. 

If T c ker (KT), then KT is the largest element of the set {K e T | KT = 0}. 
Proof. Let u eU(x0) be such that dx(x(x0, u), T) = 0. If J(x0, u) = +oo, then 

(a) is trivial. Since always J(x0, u) > x'0K°x0, we now assume that J(x0, u) is finite. 
Let T> 0, then (Corollary 1.3) x'(T)KT x(T) ^ J? w(x, u) dt (x(T) = x(x0, u) (T)), 
and hence, by (1.13), 

J(x0, u) = j 0 y'KryKr dt + x'0KTx0 . 

This yields (a). Next, from (a), JKr(x0, u) < oo, and thus (1.13) (x'(') KT('))X exists. 
From the above it must be ^ 0 and we have (b) and 

J(x0, u) + (x'(-)KT *(•))«, = J*T(x0, u) + x'0KTx0 . 

Since JKT(XO> U) = 0, we now establich (c), and (d) is immediate from (a). Finally, 
if KT = 0 and u e U(x0) is such that d^x, T) = 0, then x'(T) K x(T) -> 0 (T-> oo), 
and hence J(x0, u) = J^(x0, u) + x'0Kx0 (1.13). Thus, KT > K and if, moreover, 
T <= ker (KT) then KT e {K e T | KT = 0} . D 

Consider Theorem 3.3 (e). It is clear that the first claim is a generalization of 
Lemma 3.1. Since 0 e K for every K e T, we reobtain the well-known fact that K+ > 
> K for allK G T from the second claim. 

If R > 0, then there exists an invertible matrix D such that 

F(KT) = [CKjD]' [CKrD] 

with CKr = (D - 1 ) ' (B'KT + 5), because (2.1)-(2.2) 0(KT) = 0. It follows that 

ykTyKT = [u' + x'(KTB + S') R"1] R[u + R-^B'KT + S) x] 

and hence, by Theorem 3.3 (c) that 

Corollary 3.4. If R > 0 and for a given x0 there exists an optimal input for (LQCP)T 

then this input is unique and it can be given by the state feedback law 

u = - R - ^ B ' K T + S)x. 

The corresponding state trajectory x(t) = exp (AKrt) x0 (t ^ 0), with 

AKj:= A- BR-^B'KT + S), 

is such that x'(t) KT x(t) -* 0 (t -+ co). 
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Hence, every optimal control for a regular LQCP can be implemented as a state 
feedback. This is in accordance with our expectations (e.g. [1], [9]). 

If for some T, KT = 0, then Theorem 3.3 yields us 

Corollary 3.5. Let KT = 0. Then, for all x0, J(ker(KT)nT)(x0) = Iker(ieT)(*o) = 
= JT(x0). In particular, KT e Tm

q
n. 

Proof. Let x0 be given and ueU(x 0 ) be such that d(x, T) = 0 and J(x0,u) 
is finite (and ^ 0) Then (Theorem 3.3 (b)) dx(x, ker (KT)) = 0 and hence 

^(ker(KT)nT)(^o) = IT^O)- ° n t h e ° t h e I * h a n d > J(ker(KT)nT)(Xo) = «Iker(KT)(*o) ^ 
^ JT(x0) by Lemma 3.1. • 

Thus, if O G T (1.16), then for all T, KTeTmin. Now we are going to consider 
the general case. Analogously to the proof of Theorem 3.3, we can establish that 
if u e U(x0) is such that J(x0, u) is finite, then JKo(x0, u) < oo and 

(x'(-)K°x('% := lim x'(T)K°x(T) (3.5) 
X->oo 

exists and it is = 0 (K° = 0!). In addition, 

J(x0, u) = JKO(x0, u) - (x'(-) K° (x(-))x + x'0K°x0 , (3.6) 

and thus we are motivated to investigate the nonnegative definite LQCP associated 
with EK0: For all x0, determine 

JKO(x0) : = inf {lim (fJ y'KOyKO dt - x'(T) K° x(T)) | u e C } . (3.7) 
r-*oo 

Due to (A, B)-stabilizability, the optimal cost for this problem is finite for every x0 

and it can be proven (compare Lemmas 1, 3 in [7]) that there exists a real matrix L 
such that (for all x0) JKo(x0) = x'0Lx0 . 

Moreover, if 

P rj\ . _ C'K°CKO + A'L+ LA LB + C'KoDKol , ^ 

D L + DKoCsKa DKoDKo I 

with L any n x n real symmetric matrix, 

TK0:= {LeRnXn\L= L, FK0(L) = 0} , (3.9a) 
and 

IVm.n : = {Le TK0 f rank (FR0(L)) = normal rank (Txo(s))} , (3.9b) 

then it follows from [8] (or Theorem 2.1) that Le TKmin . But then, of course, 

K~ = L+K° (3.10) 

and L + K° e Tmin ( l . l l ) , (1.15)! In fact, we have much more than that, 

Proposition 3.6. 

K G r o L = K - K° 6 I > , 

KerminoL=K-K°GrKomin. 
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Now we make the following 

Assumption 3.7. For every subspace T and every x0, 

inf { lim (JJ y'KOyKo dt - x'(T) K° x(T)) \ u e Cra
m such that djx, T) = 0} = 

T->oo 

inf {JKo(x0, u)]ue Cra
m such that djx, (ker (K°) n T)) = 0} . 

The author believes that Assumption 3.7 is generally true, but he has not (yet) 
been able to prove this. Actually, he conjectures that even the next assumption is 
satisfied. 

Assumption 3.8. Let the system I be described by x = Ax + Bu, x(6) = x0, and 
y = Cx + Du. The inputs are assumed to be smooth on R+, J(x0, u) = j0 y'y dt 
and M0 ^ 0 is a given real symmetric matrix. Then, for all subspaces T and for x0, 

inf { lim ( j j y'y dt + x'(T)M0 x(T)) | u e Cra
m such that dx(x(x0, u), T) = 0} 

r->-oo 

= inf {J(x0, U)\UG C™m such that doo(x(x0, u), (ker (Af0) n T)) = 0} . 

Anyway, let Assumption 3.7 be satisfied. Then, from (3.6) —(3.7), for every subspace 
T and every x0, 

JT(x0) = in {JKo(x0, U)\UG C2„ such that djx, (ker (K°) n T)) = 0} + 

+ x'0K°x0 (3.11) 

(and thus, by definition (3.1), n(K°) = K~). Suppose that for all x0, 

inf {JKo(x0, u)\ue Cm
sm such that djx, (ker (K°) n T)) = 0} = x0LTx0 

(3.12) 
with LJ = 0 and LT e T ^ (3.9b). Then apparently, 

KT = LT +K° , (3.13) 

i.e., we have the optimal cost for the general (LQCP)T if the optimal cost for the 
nonnegative definite LQCP with stability modulo (ker(K°)n T) is known. Next, 
we observe that ker (K°)n ker(KT) = ker (K° )n ker(LT). Now if u is such that 
JKo(x0, u) < oo and do0(x(x0, u), (ker (K°) n T)) = 0, then (Theorem 3.3 (b)) also 
dM(x, ker (LT)) = 0 and hence, by Corollary 3.5, 

inf {JKo(x0, u)\ue Cra
m such that djx, (ker (K°) n ker (L?))) = 0} = 

= XQLJ'XQ , 

for all x0. But this implies that, for all x0 (3.11), (3.13), 

JkeT(KT)(Xo) = ^oL-^T + & J ^0 ~ ^T^o) » 

i.e., 
for every subspace T, KT e T^in, and, in particular, K~ is the smallest 
element of r^ j n . 
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Hence, if Assumption 3.7 is valid, then the set Tm^n contains all matrices that 
represent optimal costs for LQCPs and K~ is the smallest element of the set. Note 
that if K° = 0, then Assumption 3.7 is automatically satisfied (see also Corollary 
3.5) and for T = 0 it is satisfied as well! 

4. DISCUSSION 

If Assumption 3.7 (or 3.8) is valid, then the above yields us a method for reducing 
indefinite LQCPs to nonnegative definite LQCPs. The idea runs as follows. Let the 
subspace T be given and assume for the moment that we can find the optimal cost 
for the nonnegative definite LQCP with stability modulo (ker (K°) n T) associated 
with 2V> (1.1a), (1.12). Let this optimal cost be denoted by LJ eTXniin (3.9b), L£ > 0. 
Then (3.13) KT = LT + K°. 

Next, let x0 e R" be given. If u e C%m is such that dw(x(x0, u), (ker (K°) n T)) = 0, 
then (3.6) J(x0, u) = JKo(x0, u) + x'0K°x0. However, if R is not positive definite, 
then optimal controls within C™m need not exist (see Example 2.11 in [5]). A reformula­
tion in the style of [5] is needed incorporating distributions as allowed inputs. 
An appropriate distributional extension of C™m is the input class C™mp, the space 
of impulsive-smooth distributions on R with support on [0, oo). Here an impulsive 
distribution is a linear combination of the Dirac d distribution and its derivatives. 
If UIK ( K e T , see (1.1a), (1.12)) denotes the space of controls w e C?mp for which 
yK is smooth (i.e. has no impulsive component), then it turns out (Proposition 2.31 (e) 
in [4]) that for every KeT, USK = U1KO =: U (compare with Proposition 2.2). 
Now if we define 

JT(x0) : = inf {JKo(x0, u) \ u e U such that dx(x, (ker (K°) n T)) = 0} + 

+ XQJV X0 

for every x0, then this definition coincides with (3.11) if R > 0 and it is a reasonable 
extension of (3.11) if R is merely ^ 0. 

Note that if we would have chosen any other negative semi-definite element K° 
of r , then the space of allowed distributional inputs remains the same. 

Next, it is well known (see e.g. [4]), that the existence of optimal controls for 
nonnegative definite LQCPs associated with SKo, say is related to the question whether 
the intersection of the imaginary axis C° and a*(lKo) is empty or not. Here the set 
a*(lK0) denotes the set of invariant zeros associated with IK0 (cf. [10]). In Proposi­
tion 2.37 of [4] it is shown that if K e T then o*(ZK) n C° = 0 if and only if 
a*(lKo) n C° = 0. Hence if for all x0, optimal controls exist for the LQCP with 
stability (T = 0) associated with IK0, then for all x0 there exist optimal controls 
for the (LQCP)0 associated with IR0 as well and vice versa. Moreover (Proposition 
2.2), RKo = 0 <=> R^0 = 0 and hence (cf. [5]) optimal controls are unique for the 
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former problem if and only if they are unique for the latter problem (if R^ = 0, 
then ZK is called left invertible). 

The reader will agree with the author, that the above-given strategy looks promis­
ing if (at least) we can solve nonnegative definite LQCPs with arbitrary stability 
requirements. These problems have been investigated in depth in [4]. Related 
material can be found in [2], 

Briefly, our approach thus consists of the following steps. First, we must try to 
verify whether Assumption 3.7 (or 3.8) is valid or not. Then, we must find a negative 
semi-definite solution of the DI. Recall that at the end of Section 2 we mentioned 
that K e To {L(K) = 0 and $(K) = 0}, with L(K) and $(K) a certain linear and 
a certain quadratic matrix function, respectively. Finally, with [4], the LQCP with 
stability modulo T is solvable. 

Of course, many issues are not yet fully understood. To name but a few: 

Suppose that, if JKo(x0,u) < oo, then automatically x'(t) K° x(t) -» 0. Hence, 
apparently, L?Rn is the smallest positive semi-definite element of TK°min (3.9b), by 
[2]. Thus K~ is the smallest element of Tmin n {KeT\K ^ K°}, i.e. K~ is the 
smallest element K of rmin that satisfies K = K° (if K° = 0, then we reobtain 
Corollary 6.4 of [2]. 

If JKo(x0,u) < oo, but x'(t) K° ;t(t) does not automatically converge to zero, 
then one might ask oneself whether the choice of K° matters or not. Assume that 
K° ^ K° = 0 and Ki>2 e T, is it then sensible to choose K° instead of K? or is the 
choice irrelevant? 

Yes, still a lot of work has to be done. Nevertheless the author has faith in the appro­
ach described above, not in the least because the easiest LQCP, the one with stability 
(T = 0), has been solved along the lines of the above in Section 2.3 of [4]. 

5. CONCLUSIONS 

Let us summarize the most relevant observations made in this paper. The real 
symmetric matrix that represents the optimal cost for any LQCP is necessarily a rank 
minimizing solution of the dissipation inequality. The set of these solutions can be 
characterized in an elegant way. 

If Assumption 3.8 holds, then for every subspace T, KTerm^n. 
IfKT = 0, then KT e r ^ n . 
Optimal controls for regular problems can always be implemented as state feedbacks 
If T £ ker (KT). then KT is the largest element of the set {K e T \ KT = 0}. 
Indefinite LQCPs can be reduced to nonnegative LQCPs. 

(Received October 1, 1990.) 
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